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Oscillators are essential to fuel autonomous behaviours in molecular systems. Artificial os-
cillators built with programmable biological molecules such as DNA and RNA are generally
easy to build and tune, and can serve as timers for biological computation and regulation.
We describe a new artificial nucleic acid biochemical reaction network, and we demonstrate
its capacity to exhibit oscillatory solutions. This network can be built in vitro using nucleic
acids and three bacteriophage enzymes, and has the potential to be implemented in cells.
Numerical simulations suggest that oscillations occur in a realistic range of reaction rates
and concentrations.
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1. Introduction

All organisms require timing circuits to orchstrate processes related to their life cycle,
such as cell growth, metabolism, and division [36]. By building molecular timers from the
bottom up, we have an opportunity to understand the design requirements to program
periodic biochemical behaviours. In addition, synthetic oscillators are useful components
to direct autonomous molecular operations in vivo and in vitro [11, 13, 30, 33, 35].
In vitro nucleic acid oscillators can be built with a small number of parts, and their

behaviour is quantitatively predictable [15, 16, 19, 22, 35]. Nucleic acids have become
molecular building blocks for a variety of logic and dynamic circuits, because their thermo-
dynamic and kinetic interactions can be programmed by choosing their sequence content
with rational optimisation algorithms. Existing nucleic acid oscillators however cannot
be ported to the cellular environment, because they rely on the presence of multiple
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single-stranded or partially single-stranded DNA species, which are incompatible with
the cellular machinery [15, 16, 19, 22]. Here we describe a new nucleic acid oscillator
architecture that has the potential to overcome this limitation, as it does not require
single stranded DNA molecules. A particularly interesting aspect of our circuit is that
all regulatory interactions are non-cooperative. Therefore, the corresponding model does
not include Hill-type nonlinearities, present in the majority of models for molecular non-
equilibrium circuits.
Our oscillator comprises three polymerases, two of which mutually regulate each other

(Fig 1 A). The interactions among enzymes are defined by four synthetic genes and four
RNA species (Fig 1 B). The activity of two of the enzymes is modulated by RNA species
that serve as inhibitors or activators. The third enzyme species controls the baseline
production of two of the RNA species, and has a net effect of counteracting the mutual
regulation of the other two enzymes. For instance, let us consider the pathway by which
enzyme E2 is inhibited by enzyme E1 and activated by enzyme E3. E1 produces RNA
species R1 by transcribing gene g1; R1 binds to and inhibits enzyme E2, converting it to
inactive enzyme E∗2 (a reaction experimentally demonstrated, for instance, in [23, 24]).
RNA species R4 (transcribed by E3) counteracts this pathway and causes reactivation of
E2 (conversion of E∗2 to E2), because it is designed to displace R1 bound to E2, and to
titrate free R1 as well. Similar reactions generate inhibition and activation pathways for
E1 (due to E3 and to E2, respectively). Overall, these interactions contribute to creating
a negative feedback loop. This system can be experimentally implemented using T7, T3,
and SP6 bacteriophage RNA polymerases [20, 21, 31], which can be purchased off-the-shelf
from many vendors. RNA sequences (known as aptamers [12]) that bind to bacteriophage
RNA polymerases and work as inhibitors have been experimentally characterised [23,
24]. RNA activators can be designed as strands whose sequence are complementary to
the sequences of the inhibitors via the mechanism of strand displacement and strand
titration [18, 37].
We describe this system by means of ordinary differential equations (ODEs) built using

the law of mass action, starting from a list of chemical reactions reported in Section 2.
We demonstrate that the system is a candidate oscillator due to the sign pattern of
its Jacobian matrix [3, 4]; in particular we show that the system admits transitions to
instability that are exclusively oscillatory.
Our analysis relies on monotone systems theory (background is provided in Section 3)

and the theory of invariant sets. In Section 4 we study the capacity of this dynamical sys-
tem to structurally exhibit sustained oscillations whenever it becomes unstable, in view
of its particular Jacobian structure; this approach can be applied to a variety of chemical
reaction networks, as we have shown, for instance, in the context of other titration-based
regulatory networks [10]. Structural (namely, parameter-free) results can greatly help un-
ravel the functioning of biological systems, which are affected by intrinsic uncertainties
and variabilities in their parameters, but can nonetheless exhibit an extraordinary ro-
bustness and resilience [2]. We conclude with a numerical bifurcation analysis and study
of period and amplitude as a function of variations in individual parameters, showing
that for realistic reaction rates the system exhibits oscillatory behaviours (Section 5). We
previously described a two-enzyme oscillator relying on RNA aptamers [6, 9]; we claim
that a three-enzyme system is more tunable, and simulation results indicate that in a
certain region of parameter space its amplitude can be modulated independently from
the period.
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2. A three-enzyme oscillator regulated by first and second order reactions

In the following, capital letters represent chemical species and the corresponding lowercase
letters represent species concentrations (e.g., species A has concentration a). Our three
node oscillator is described by the biochemical reactions below. Reactions are grouped in
two sets corresponding to functional modules (Fig. 2), whose common external input is
E3. For simplicity we assume a common degradation rate for all products Ri, i = 1, ..., 4.

Module 1:

E1
α1−−⇀ E1 +R1 Production

E3
α3−−⇀ E3 +R3

E2 +R1
β1−−⇀ E∗2 Inhibition

E∗2 +R3
γ1−−⇀ E2 Conversion

R1 +R3
δ1−−⇀ 0 Titration

R1
φ−−⇀ 0 Degradation

R3
φ−−⇀ 0

Module 2:

E2
α2−−⇀ E2 +R2 Production

E3
α4−−⇀ E3 +R4

E1 +R4
β2−−⇀ E∗1 Inhibition

E∗1 +R2
γ2−−⇀ E1 Conversion

R2 +R4
δ2−−⇀ 0 Titration

R2
φ−−⇀ 0 Degradation

R4
φ−−⇀ 0

The differential equations describing Module 1 are:

ṙ1 = α1e1 − β1r1e2 − δ1r1r3 − φr1,
ṙ3 = α3e3 − γ1r3e∗2 − δ1r1r3 − φr3, (1)
ė2 = γ1r3e

∗
2 − β1r1e2.

The differential equations describing Module 2 are:

ṙ2 = α2e2 − γ2r2e∗1 − δ2r2r4 − φr2,
ṙ4 = α4e3 − β2r4e1 − δ2r2r4 − φr4, (2)
ė1 = γ2r2e

∗
1 − β2r4e1.

The total concentration of E1 and E2 is assumed to be constant, and equal to etot1 and
etot2 respectively; hence, mass conservation laws yield e∗1 = etot1 − e1 and e∗2 = etot2 − e2.
The two modules are interconnected and form a feedback loop: Module 1 (associated with
variables r1, r3 and e2) receives input e1 from Module 2; in turn, Module 2 (associated
with variables r2, r4 and e1) receives input e2 from Module 1. Both modules receive input
e3, which we assume is constant (Fig. 2); we assume that the timescale at which e3 binds
to a gene and transcribes RNA is fast relative to the other timescales in the system, so
that it can be neglected; this assumption is sensible for short transcripts (30-60 bases). In
the next sections we demonstrate that transitions to instability in this system can occur
exclusively due to a pair of complex conjugate eigenvalues crossing the imaginary axis,
hence sustained oscillations necessarily arise whenever the system is driven to instability.
From numerical simulations it is apparent that the system can actually be destabilised,
for suitable parameter choices, and is therefore a good candidate oscillator.
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3. Background

We summarise several background notions that are required to introduce our main results
in Section 4. Additional information can be found in references [3, 4]. Consider a system:

ẋ(t) = f(x(t), µ), x ∈ Rn, (3)

where µ is a real-valued parameter and f(·, ·) is a sufficiently smooth function, continuous
in µ, satisfying the following Assumptions for every admissible value of µ.

Assumption 1 All the solutions of (3) are globally uniformly asymptotically bounded in
the compact set S ⊂ Rn.

Hence, system (3) admits an equilibrium x̄ in S ([25, 26, 29]).

Assumption 2 ∂fi/∂xj is either always positive, always negative, or always null in the
considered domain.

Assumption 3 For all i, ∂fi/∂xi < 0, i.e., the system is non-autocatalytic.

Due to the monotonicity of fi(·) with respect to each argument xj , the Jacobian matrix
J of system (3) is sign definite.

Definition 3.1 Given a system with a sign-definite Jacobian J, its structure is the sign
pattern matrix Σ = sign[J].

The structure Σ of system (3) is assumed to be invariant with respect to µ. Assump-
tion 1 ensures that an equilibrium exists; all the following definitions refer to this equi-
librium, which is, in general, a function of µ: f(x̄µ, µ) = 0. We assume that x̄µ depends
continuously on µ. Note that a suitable change of coordinates always allows us to shift
the equilibrium to the origin, without affecting our analysis.

Definition 3.2 System (3) undergoes a Transition to Instability (TI) at µ = µ∗ iff its
Jacobian matrix J(x̄µ) is asymptotically stable in a left neighborhood of µ∗, and unstable
in a right neighborhood1. A TI is simple if at most a single real eigenvalue or a single
pair of complex conjugate eigenvalues crosses the imaginary axis.

Definition 3.3 System (3) undergoes an Oscillatory Transition to Instability (OTI) at
µ = µ∗ iff its Jacobian matrix J(x̄µ∗) has a single pair of pure imaginary eigenvalues,
while all the other eigenvalues have negative real part:

σ (J(x̄µ∗)) = {λ1, λ2, . . . , λn}, where λ1,2 = ±jω,

with Re(λk) < 0 for k > 2 and Re(λk) > 0 for k = 1, 2 in a right neighborhood of µ∗.

We now provide general definitions for candidate oscillatory and multistationary sys-
tems. We consider system (3), with its given structure Σ (invariant with respect to µ),
under Assumptions 1, 2 and 3.

Definition 3.4 A system of the form (3), with structure Σ, is structurally a candidate

(1) oscillator in the weak sense iff it admits an OTI for some µ = µ∗;

1The definition holds as well for systems transitioning to instability from the right to the left neighborhood of µ∗:
just take µ̂ = µ∗ − µ as the bifurcation parameter.
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(2) oscillator in the strong sense iff every simple TI (if any) is an OTI;

Necessary and sufficient conditions characterizing strong and weak oscilla-
tors/multistationary systems are provided in [3] in terms of cycles in the structure graph.
We associate matrix Σ with a directed n-node graph, whose arcs are positive (+1), neg-
ative (−1), or zero depending on the sign of the corresponding matrix entries.

Definition 3.5 Given a graph, a cycle is an oriented, closed sequence of distinct nodes
connected by distinct directed arcs. A cycle is negative (positive) if the number of negative
arcs is odd (even). The order of a cycle is the number of arcs involved in the cycle. We
say a system is critical when all negative cycles (if any) are of order two.

Proposition 3.6 A non-critical system is a candidate oscillator in the weak sense if
and only if its structure has at least one negative cycle (necessarily of order greater than
two).

Proposition 3.7 A non-critical system is a candidate oscillator in the strong sense if
and only if its structure has only negative cycles.

Proofs for Propositions 3.6 and 3.7 can be found in [3].

Remark 1 The results above are verified as well if we drop Assumption 1 and we restrict
our analysis to solutions that belong to a compact positively invariant set S, with a
non-empty interior and with no equilibrium points on the boundary.

The graph-based results in [3] have been generalised in [4] to the case of systems
composed of the sign definite interconnection of subsystem that are either monotone or
anti-monotone. We provide below the definitions of monotone and anti-monotone system.

Definition 3.8 A system

ẋ(t) = f(x(t), u(t)), (4)

where u(·) ∈ R is a scalar, time varying input, is input-to-state monotone if, denoting
as x1(t) and x2(t) the solutions of the system corresponding to inputs u1(t) and u2(t),
the fact that x2(0) ≥ x1(0) and u2(t) ≥ u1(t) for t > 0 implies that x2(t) ≥ x1(t) for
t > 0, where inequalities are intended to hold componentwise. The system is input-to-
state anti-monotone if the input has the opposite effect on the state, i.e., if x2(0) ≥ x1(0)
and u2(t) ≤ u1(t) for t > 0, then x2(t) ≥ x1(t) for t > 0. If the system includes an output
y = g(x), the system is input-output monotone (anti-monotone) if it is input-to-state
monotone (anti-monotone) and if x2 ≥ x1 implies g(x2) ≥ g(x1).

A simple characterisation of input-to-state monotonicity and anti-monotonicity [1, 28]
can be provided by exploiting the concept of Metzler matrix: a matrix is Metzler if its
elements satisfy aij ≥ 0, ∀(i, j) such that i 6= j.

Theorem 3.9 System (4) is input-to-state monotone if its Jacobian matrix J = ∂f/∂x
is a Metzler matrix and ∂f/∂u ≥ 0 componentwise. Conversely, system (4) is input-to-
state anti-monotone if its Jacobian matrix J = ∂f/∂x is a Metzler matrix and ∂f/∂u ≤ 0
componentwise.

A more general concept, which we will use in the following, is given by monotonicity
(or anti-monotonicity) with respect to a given signature tuple (s1, . . . , sn), where si = 1
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or −1 for all i [14]: this amounts to requiring that, after changing the sign of the state
variables as x̂i = sixi for all i, the system becomes monotone (or anti-monotone). Hence,
Theorem 3.9 applies to the system in the new coordinates.

4. Analytical results

4.1. Existence of equilibria

First, we show that this system always admits a steady state (equilibrium).

Proposition 4.1 Consider the interconnection of systems (1) and (2). For any constant
e3 > 0, there exists a suitably large ρ ∈ R+ such that the compact set

Sρ =
{
r1, r2, r3, r4, e1, e2 ≥ 0 : r1 + r3 ≤ ρ, r2 + r4 ≤ ρ, e1 ≤ etot1 , e2 ≤ etot2

}
is positively invariant. Moreover, all of the solutions of the system are globally uniformly
asymptotically bounded in Sρ, hence the interconnection of systems (1) and (2) satisfies
Assumption 1.

Proof. The inequalities e1(t) ≤ etot1 and e2(t) ≤ etot2 are always satisfied by construction.
Consider the constraint r1 + r3 ≤ ρ and assume that at some point r1 + r3 = ρ. Then

d

dt
(r1 + r3) = α1e1 − β1r1e2 − δ1r1r3 − φr1 + α3e3 − γ1r3e∗2 − δ1r1r3 − φr3

≤ α1e
tot
1 + α3e3 − φr1 − φr3 = α1e

tot
1 + α3e3 − φρ < 0

for ρ large enough: ρ > α1etot1 +α3e3
φ . Hence, the constraint r1 + r3 ≤ ρ cannot be violated.

Analogously, the constraint r2 + r4 ≤ ρ cannot be violated because, if at some point
r2 + r4 = ρ, then

d

dt
(r2 + r4) ≤ α2e

tot
2 + α4e3 − φr2 − φr4 = α2e

tot
2 + α4e3 − φρ < 0

for ρ > α2etot2 +α4e3
φ . Then, any value ρ > max

{
α1etot1 +α3e3

φ , α2etot2 +α4e3
φ

}
ensures that Sρ is

positively invariant. Also, since d
dt(r1+r3) is negative whenever r1+r3 ≥ ρ and d

dt(r2+r4)
is negative whenever r2+r4 ≥ ρ, any trajectory of the system is uniformly asymptotically
bounded in Sρ (indeed, V1 = r1 + r3 and V2 = r2 + r4 can be taken as Lyapunov-like
functions for modules 1 and 2, respectively, to show that all the trajectories of the system
are uniformly ultimately bounded in the compact set Sρ [5]). �

Proposition 4.2 The dynamical system defined by the interconnection of systems (1)
and (2) always admits the existence of a steady state.

Proof. The existence of the compact invariant set Sρ where the solutions of the system
are globally uniformly asymptotically bounded (Proposition 4.1) implies the existence of
a steady state [25, 26, 29]. �

We later demonstrate that this steady state is unique.

Remark 2 The presence of degradation reactions (at rate φ > 0) is essential to have struc-
tural boundedness. In fact, if we set φ = 0 and we consider the function ψ = −r1 + r3 + e2,
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we have

ψ̇ = −ṙ1 + ṙ3 + ė2 = −α1e1 + α3e3 ≥ −α1e
tot
1 + α3e3,

which may grow unbounded for a large value of e3.

4.2. Monotonicity properties and uniqueness of equilibrium point

Now we show that the overall system is the feedback interconnection of two subsystem,
corresponding to the modules defined earlier, that are respectively anti-monotone and
monotone. This property further implies that the system admits a unique equilibrium.
We individually linearise subsystems (1) and (2) around an equilibrium point (which

is guaranteed to exist), and we begin by studying each subsystem in isolation.

Module 1: ż = A1z + B1δe1, (5)
Module 2: ẇ = A2w + B2δe2, (6)

where the linearised state variables of each subsystems are z = [δr1 δr3 δe2]
> and

w = [δr2 δr4 δe1]
>. We denote equilibrium values of each variable with a ¯ symbol (e.g.,

ē1 is the equilibrium of e1). The linearised dynamics are defined by matrices:

A1 =

−β1ē2 − δ1r̄3 − φ −δ1r̄1 −β1r̄1
−δ1r̄3 −γ1ē∗2 − δ1r̄1 − φ γ1r̄3
−β1ē2 γ1ē

∗
2 −β1r̄1 − γ1r̄3

 , B1 =

α1

0
0


and

A2 =

−γ2ē∗1 − δ2r̄4 − φ −δ2r̄2 γ2r̄2
−δ2r̄4 −β2ē1 − δ2r̄2 − φ −β2r̄4
γ2ē
∗
1 −β2ē1 −γ2r̄2 − β2r̄4

 , B2 =

α2

0
0

 .
The two linearised subsystems are stable, and the matrices defining their dynamics (Ja-
cobian matrices of the nonlinear systems) are Metzler up to changes in the sign of some
variables. This can be easily shown by changing sign to the first component of z and to
the second component of w: z1 := −z1 and w2 := −w2. This is equivalent to changing
sign to δr1 and δr4, where r1 and r4 are variables of the original system, and provides
matrices:

Â1 =

−β1ē2 − δ1r̄3 − φ +δ1r̄1 +β1r̄1
+δ1r̄3 −γ1ē∗2 − δ1r̄1 − φ γ1r̄3
+β1ē2 γ1ē

∗
2 −β1r̄1 − γ1r̄3

 , B̂1 =

−α1

0
0

 , (7)

and

Â2 =

−γ2ē∗1 − δ2r̄4 − φ +δ2r̄2 γ2r̄2
+δ2r̄4 −β2ē1 − δ2r̄2 − φ +β2r̄4
γ2ē
∗
1 +β2ē1 −γ2r̄2 − β2r̄4

 , B̂2 =

α2

0
0

 . (8)

Remark 3 We have applied a local change of variables, since z1 = δr1 and w2 = δr4 are
variables of the linearized system. This is equivalent to applying the linear transformations
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z = T1ẑ and w = T2ŵ, with T1 = diag{−1, 1, 1} and T2 = diag{1,−1, 1}. This leads to the
transformed state matrices Â1 = T−11 A1T1 and Â2 = T−12 A2T2, and to the transformed
input matrices B̂1 = T−11 B1 and B̂2 = T−12 B2.

Proposition 4.3 Matrices Â1 in (7) and Â2 in (8) are Metzler and are Hurwitz stable.
Moreover, their inverse matrices are (element-wise) negative.

Proof. Consider systems (5) and (6), which after the sign change have matrices (7) and
(8). Since all of their off-diagonal entries are non-negative, Â1 and Â2 are Metzler ma-
trices. They are also irreducible2. Hurwitz stability (all the eigenvalues of the Jacobian
J = ∂f/∂x(x̄) have a negative real part) immediately follows from the fact that Â1

and Â2 are Metzler and diagonally dominant, with negative diagonal entries (this is a
consequence of Gershgorin’s circle theorem). Finally, any stable and irreducible Metzler
matrix has an element-wise negative inverse (see [5] for details). �

We are now ready to demonstrate monotonicity properties of the two nonlinear modules.

Proposition 4.4 Systems (1) and (2) are respectively input-to-state anti-monotone and
monotone after the sign change in the relative variables:

δ̂r1 = −δr1 and δ̂r4 = −δr4. (9)

Proof. This follows from Theorem 3.9, since the state matrices Â1 and Â2 are Metzler,
while the input matrices B̂1 and B̂2 are respectively nonpositive and nonnegative. �

Monotonicity and stability have important consequences on the static input-state and
input-output characteristics (input-output equilibrium conditions) and on uniqueness of
the equilibrium point. Indeed, the feedback of two systems that are either monotone or
anti-monotone always admits a single equilibrium point (if any).
We have shown in Proposition 4.2 that an equilibrium always exists; we prove below,

for completeness, that the static input-output characteristics of the two modules are
monotonic, hence such an equilibrium point is unique.

Proposition 4.5 We assume that inputs e1 and e2 in systems (1) and (2) are constant.
Then, the steady-state values of the modules, r̄1(e1), r̄3(e1), ē2(e1) and r̄2(e2), r̄4(e2),
ē1(e2), depend monotonically on the inputs. Precisely, r̄2(e2), r̄4(e2) and ē1(e2) monoton-
ically increase as a function of e2, while r̄1(e1), r̄3(e1) and ē2(e1) monotonically decrease
as a function of e1.

Proof. We recall that, for a generic system ẋ = f(x, u), the steady-state characteristic
x̄(u) is implicitly defined by

0 = f(x̄, u).

We can apply the implicit function theorem to find its derivative:

d

du
x̄(u) =

(
−∂f
∂x̄

)−1 ∂f
∂u
.

2A matrix is irreducible if there does not exist a permutation of its rows or columns that transforms it into a block
triangular matrix.
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Consider Module 1, after the sign change in the variables at equation (9):

d

de1
z̄(e1) = −(Â1)−1B̂1 < 0.

The inequality holds componentwise (Proposition 4.3), hence after the sign change equi-
libria r̄1(e1), r̄3(e1) and ē2(e1) are monotonically decreasing functions of e1.
As for Module 2, after the sign change at equation (9):

d

de2
w̄(e2) = −(Â2)−1B̂2 > 0

componentwise, hence after the sign change r̄2(e2), r̄4(e2) and ē1(e2) are monotonically
increasing functions of input e2. �

Proposition 4.6 The interconnection of systems (1) and (2) admits a unique equilib-
rium.

Proof. The system always admits a steady state, as shown in Proposition (4.2). Due to
Proposition 4.5, ē2(e1) is a decreasing function and ē1(e2) is an increasing function. Thus,
the system of equations: {

e2 = ē2(e1),

e1 = ē1(e2),

has a unique solution. �

It is possible to demonstrate that this unique equilibrium is strictly positive, and there
cannot be equilibria with zero components. This claim can be proved by showing that the
two equilibrium equations intersect for positive values of e1 and e2. Then, we can show
that all other variables have a positive steady state from their equilibrium conditions,
which are all derived analytically in Appendix A.

4.3. The interconnected system admits exclusively oscillatory transitions to
instability

Based on the properties demonstrated in the previous sections, we establish that our
three-enzyme network has the appropriate structure to exhibit sustained oscillations,
whenever it is driven to instability. More precisely, the network admits exclusively oscil-
latory transitions to instability.

Proposition 4.7 The interconnection of systems (1) and (2) is a strong candidate
oscillator.

Proof. The Jacobian of the overall system, with variables ordered as (δr1, δr3, δe2, δr2,
δr4, δe1) and with the variable sign change δ̂r1 = −δr1 and δ̂r4 = −δr4, highlights that
the system is the negative feedback interconnection of two monotone subsystems:

J =


−β1e2 − δ1r3 − φ δ1r1 β1r1 0 0 −α1

δ1r3 −γ1e∗2 − δ1r1 − φ γ1r3 0 0 0
β1e2 γ1e

∗
2 −β1r1 − γ1r3 0 0 0

0 0 α2 −γ2e∗1 − δ2r4 − φ δ2r2 γ2r2
0 0 0 δ2r4 −β2e1 − δ2r2 − φ β2r4
0 0 0 γ2e

∗
1 β2e1 −γ2r2 − β2r4


(10)
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Due to Proposition 4.1, the system satisfies Assumption 1. By inspecting the Jacobian
matrix, it is apparent that Assumptions 2 and 3 are also satisfied. Therefore, the system is
a strong candidate oscillator [3, 4]. This means that the system can transition to instability
exclusively due to a pair of complex conjugate eigenvalues crossing the imaginary axis
(OTI) and yielding oscillatory dynamics. �

5. Numerical analysis

Model (1)-(2) was integrated using the MATLAB routine ode23. Bifurcation analysis,
period and amplitude computation was also done writing MATLAB scripts ad hoc.
In the numerical analysis that follows, we choose nominal parameters (Table 1) that

are compatible with reaction rates measured in nucleic acid strand displacement reactions
and in vitro transcription. An example solution trajectory for Model (1)-(2), integrated
with the nominal parameters, is shown in Fig. 3

5.1. Randomised parameter sampling

First, we selected random values for the parameters sampling from a uniform distribution
in the interval 10−2 to 102 times the nominal parameter value (Table 1). We locate peaks
and wells of the oscillations and compute period and amplitude as averaged over all
the measured peaks and wells. A trajectory is classified as oscillatory if at least three
oscillations are measured, if the period of the trajectory is between 0.5 h to 40 h, and its
amplitude is larger than 1 nM. This plot highlights that high degradation rates and low
concentrations of e1 and e2 are associated with loss of oscillations.

5.2. Bifurcation analysis

Using analytical equilibrium conditions (expressions (A1) and (A2) reported in the Ap-
pendix), we find equilibria numerically and compute the eigenvalues of Jacobian (10) at
the equilibria. If at least one pair of complex conjugate eigenvalues with non-negative
real part is found, the equilibrium is classified as oscillatory. We vary two parameters
simultaneously, while all others are kept constant as in Table 1. Oscillatory regions are
shown in orange in Fig. 5, while stable regions are shown in blue.

5.3. Period and amplitude

We focus on the influence of reaction rates and total concentrations of ei on the period and
amplitude. Parameters α1, α2, α3, α4, e3, etot1 and etot2 are particularly relevant because
they are experimentally easy to change (Fig 1 B): αi, i = 1, ..., 4, are transcription rates,
which can be tuned by mutating the promoter region; etot1 , etot2 and e3 can be chosen by
the experimenter.
We compute the period and amplitude from integrated solutions to the ODEs. As

explained in Section 5.1, we locate peaks and wells of the oscillations and compute period
and amplitude as averaged over all the measured peaks and wells. A trajectory is classified
as oscillatory if its period is between 0.5 h and 40 h, and its amplitude is larger than
1 nM. The results are shown in Figs. 6 and 7, where each individual parameter is varied
in the range of one tenth to ten times its nominal value, while other parameters are held
fixed at their nominal value (Table 1). Correlation between period and amplitude is shown
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in Fig. 8. To discriminate between damped and sustained oscillations, we check the sign
of the real part of complex conjugate eigenvalues of the Jacobian matrix (evaluated at
the considered combination of parameters). In Figs. 6, 7, and 8, damped oscillations are
marked by blue circles, and sustained oscillations are marked by red circles.
From Figs. 6 and 7 we observe that the period can be tuned from 0 to 5 hours. Also,

the parameters related to the kinetics rate can change the period up to 3 hours in the
range of one tenth to ten times their nominal value.
These plots show that when varying e3 in a range between 0.1-10 times its nominal

value, the period remains flat. In that same range, amplitude varies significantly. We also
observe that varying δ1 between 0.1-10 times its nominal value, amplitudes stays flat
while the period varies between 0-3 hours. It is worth noting that the titration rates δ1
and δ2 do not affect drastically neither amplitude nor period, which indicates that the
system performance is robust relative to variations in the titration rates.
We observe that there is a range in which parameters α2 and α4 could be varied to

tune exclusively the period, while the amplitude remains nearly constant. Alternatively,
there is a range in which parameters etot1 and e3 could be varied to modulate exclusively
the amplitude, keeping the period nearly unchanged (and slow).

6. Conclusion

We have described an artificial three-enzyme biochemical network that has the capacity
to oscillate. The network is designed for in vitro implementation with nucleic acid com-
ponents and bacteriophage RNA polymerases, but has the potential to be implemented
in vivo as well. The polymerases transcribe synthetic genes whose RNA transcripts in
turn regulate enzyme activity, generating a negative feedback loop that is necessary for
oscillations (the famous Thomas’ conjecture [27, 32]). We analytically demonstrate that
this architecture can exclusively undergo oscillatory transitions to instability, due to the
structure of its Jacobian matrix. Numerical analysis shows that in a range of realistic
parameters the system oscillates; simulations are useful to direct the experimental imple-
mentation of this circuit, which is currently being pursued.
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Appendix A. Equilibrium conditions

Here we derive equilibrium conditions for Modules 1 and 2. From ṙ2 − ṙ4 = 0 and ė1 = 0
(e1 ≡ ē1), we obtain:

α2ē2 = α4ē3 + φr̄2 − φr̄4.

From ṙ1 − ṙ3 = 0 and ė2 = 0 (e2 ≡ ē2), we obtain:

α1ē1 = α3ē3 + φr̄1 − φr̄3.

From ṙ4 = 0 and ė1 = 0,

r̄4 =
α4ē3

β2ē1 + δ2r̄2 + φ
=
γ2r̄2ē

∗
1

β2ē1
.

We obtain the quadratic equation a1r̄22 + b1r̄2 + c1 = 0, where

a1 = δ2γ2ē
∗
1

b1 = γ2ē
∗
1(β2ē1 + φ)

c1 = −β2ē1α4ē3

r̄2(ē1, ē3) =
−b1 +

√
b21 − 4a1c1

2a1

r̄4(ē1, ē3) =
γ2ē
∗
1r̄2(ē1, ē3)

β2ē1

Then we find ē2 (the equilibrium value of e2) as a function of ē1 and ē3:

ē2(ē1, ē3) =
α4ē3 + φr̄2(ē1, ē3)− φr̄4(ē1, ē3)

α2
. (A1)

Moreover, from ṙ3 = 0 and ė2 = 0,

r̄3 =
α3ē3

γ1ē∗2 + δ1r̄1 + φ
=
β1r̄1ē2
γ1ē∗2

.

We obtain the quadratic equation a2r̄21 + b2r̄1 + c2 = 0, where

a2 = δ1β1ē2

b2 = β1ē2(γ1ē
∗
2 + φ)

c2 = −γ1ē∗2α3ē3

r̄1(ē2, ē3) =
−b2 +

√
b22 − 4a2c2

2a2

r̄3(ē2, ē3) =
β1ē2r̄1(ē2, ē3)

γ1ē∗2
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Finally, we find ē1 (the equilibrium value of e1) as a function of ē2, and ē3.

ē1(ē2, ē3) =
α3ē3 + φr̄1(ē2, ē3)− φr̄3(ē2, ē3)

α1
. (A2)
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Table 1. Nominal simulation parameters
Rate Description Value Other studies

α1 = α2 = α3 = α4 (/s) Production of RNA 0.1 10−3 − 1 Refs.[8, 34]
β1 = β2 (/M/s) Inhibition 5 · 105 104 − 106 Refs.[18, 38]
γ1 = γ2 (/M/s) Activation 105 104 − 106 Refs.[18, 38]
δ1 = δ2 (/M/s) Titration 4 · 104 104 − 106 Refs.[18, 38]
φ (/s) Degradation of RNA 5 · 10−5 10−5 − 10−3 Refs.[7, 17]
e1(nM) Concentration 100
e2(nM) Concentration 100
e3(nM) Concentration 10
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Figure 1. A: Architecture of the three-node oscillator: enzymes E1 and E2 mutually regulate their concentration
(arrows indicate activation, flat arrows indicate repression) generating a negative feedback loop; enzyme E3 coun-
teracts the loop regulation. B: Schematic of the chemical reactions underlying the oscillator architecture. Different
enzyme species are indicated as circles of different color; bright color indicates active enzyme, and dim color in-
dicates inactive enzyme. RNA species are transcribed (dashed arrows) from synthetic genes present at constant
concentration; enzymes are activated or inhibited by a given RNA species according to the illustrated reactions
and corresponding rates. The full set of reactions is listed in Section 2, and result in ODE systems (1) and (2).
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Figure 2. Schematic of the interconnections between reaction Modules 1 and 2, with enzyme concentrations as
inputs and outputs.
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Figure 3. Left: Time evolution of e1 and e2 when parameters are chosen as in Table 1. Right: Trajectories in the
plane e1-e2 (black) and equilibrium conditions (red and blue).

Figure 4. We randomly choose parameters in the interval 10−2 to 102 times their nominal value (listed in Table 1).
Each black dot in this plot indicates that the (randomly) chosen parameter vector results in oscillations. Axes are
in log scale. Orange diamonds represent the nominal value of each parameter (Table 1).
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Figure 5. Log plots showing how varying pairs of parameters influences the stability of the equilibrium. Each
parameter was varied between one tenth to ten times its nominal value (black diamond; nominal values listed in
Table 1). Orange regions indicate oscillatory behaviour; blue regions indicate a single stable equilibrium.
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Figure 6. Period (h) as a function of each parameter (x axis in log scale). The period was computed numerically
for damped and sustained oscillations. We classify a solution as oscillatory (damped or sustained) as long as the
period is between 0.5 and 40 hours, and the amplitude is larger than 1 nM. Blue circles indicate when the Jacobian
has at least one pair of complex eigenvalues with negative real part (damped oscillations). Red circles indicate
when the Jacobian has at least one pair of complex eigenvalues with positive real part (sustained oscillations).
The parameters were changed in the range of one tenth to ten times their nominal values.
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Figure 7. Amplitude (nM) as a function of each parameter (x axis in log scale). We computed numerically the
amplitude of the solutions, as long as they classify as damped or sustained oscillations (period between 0.5-40
hous and amplitude larger than 1 nM). Blue circles indicate when the Jacobian has at least one pair of complex
eigenvalues with negative real part (damped oscillations). Red circles indicate when the Jacobian has at least one
pair of complex eigenvalue with positive real part (sustained oscillations). The parameters were changed in the
range of one tenth to ten times their nominal values.
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Figure 8. Period (h) and amplitude (nM) correlation. This figure combines the results plotted in Figures 6 and 7.
Amplitude and period of the solutions were computed numerically for both damped and sustained oscillations
(period between 0.5-40 hous and amplitude larger than 1 nM). Blue circles indicate when the Jacobian has at
least one pair of complex eigenvalues with negative real part (damped oscillations). Red circles indicate when the
Jacobian has at least one pair of complex eigenvalues with positive real part (sustained oscillations). Parameters
were changed in the range of 0.1 to 10 times their nominal values.


