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Abstract— We study diffusion of cooperation in a two-
population game in continuous time. At each instant, the
game involves two random individuals, one from each
population. The game has the structure of a Prisoner’s
dilemma where each player can choose either to cooperate
(c) or to defect (d), and is reframed within the field of
approachability in two-player repeated game with vector
payoffs. We turn the game into a dynamical system, which
is positive, and propose a saturated strategy that ensures
local asymptotic stability of the equilibrium (c, c) for any
possible choice of the payoff matrix. We show that there
exists a rectangle, in the space of payoffs, which is positively
invariant for the system. We also prove that there exists a
region in the space of payoffs for which the equilibrium
solution (d, d) is an attractor, while all of the trajectories
originating outside that region, but still in the positive
quadrant, are ultimately bounded in the rectangle and,
under suitable assumptions, converge to the solution (c, c).

I. INTRODUCTION

Two large populations of individuals play a game in
continuous time. At each instant, a random individual
of the first population engages in play with a random
opponent extracted from the second population. The
resulting payoff, which depends on the action profiles
of both players, is a vector. The game is a Prisoner’s
dilemma [25], [16]: each player can choose either to
cooperate (c) or to defect (d). The defection of a single
player is most beneficial for the defecting player and
most harmful for the other player, while for both players
mutual cooperation is preferable to mutual defection. We
reframe the problem within the field of approachability
in two-player repeated game with vector payoffs [8], [7].

In a two-player repeated game with vector payoffs, a
set of payoffs is approachable [10] if the row player has a
strategy such that, for any strategy used by her opponent,
her average payoff uniformly approaches the set with
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probability 1. The notion of approachability is due to
[10]: Blackwell’s Theorem, giving conditions for a set
to be approachable, is often used to prove convergence in
different application domains, e.g., allocation processes
in coalitional games [17], regret minimization [19], [15]
and weak approachability [28]. A similar concept can be
found in adaptive learning and evolutionary games [14],
[24]. The original discrete-time formulation of approach-
ability has been adapted to continuous-time repeated
games in [15], which also highlights the connection with
Lyapunov theory. An extension to infinite-dimensional
spaces is due to [18]. Approachability shares striking
similarities with differential game theory and, as such,
can be studied using differential calculus and stability
theory [22], [26]. Approachability and differential in-
clusions [2] are studied in [22], where it is highlighted
that Blackwell’s theorem is a generalization of von
Neumann’s minmax theorem [29]. [26] proposes a set-
valued analytical perspective [1], [3]; approachable and
discriminating sets can be reframed within the context of
set invariance theory [11]. A core concept in approach-
ability is that of nonanticipative strategies, similar to
those in differential games [5], [12], [26], [23], [27];
classical feedback strategies in differential games are
special nonanticipative strategies. Excludability of sets
is a complementary notion to approachability [20] and
another concept related to approachability is attainabil-
ity [6], [21], useful in application domains such as
transportation, distribution and production networks.

In this paper, we set up the approachability problem
for the two-player repeated game with vector payoffs in
a system-theoretical framework, turning the game into
a positive dynamical system and showing that it can
be reviewed as a population game. In Smale’s good
strategies for Prisoner’s dilemma [25] and subsequent
developments [9], [8], [7], the decision of each player
is based on the knowledge of the whole current aver-
age payoff vector. Here, we propose a novel saturated
strategy where each player’s decision is based on the ex-
clusive knowledge of her/his own current average payoff
and of the diagonal entries of her/his own payoff matrix:
information about the other player is not required, which
makes this strategy well suited also for games with
incomplete information [4]. The main contributions can



be summarized as follows:
• the saturated strategy, for both players, ensures that the
equilibrium (c, c) is locally asymptotically stable for any
choice of the payoff matrix;
• there exists a rectangle R, in the space of payoffs,
which is a positively invariant set for the system;
• there exists a region D, in the space of payoffs, for
which the equilibrium solution (d, d) is an attractor,
namely, all of the trajectories originating in the region
converge to the equilibrium;
• all of the trajectories originating outside region D, but
still in the positive quadrant, are ultimately bounded in
the rectangle R: if the equilibrium (d, d) is unstable,
they all converge to the equilibrium (c, c);
• under suitable assumptions on the payoff matrix val-
ues, the solution (d, d) can be rendered unstable by a
proper choice of the saturated strategy.

Numerical simulations illustrate the evolution of the
game with the proposed saturated strategy.

II. PROBLEM FORMULATION AND MOTIVATION

We consider a Prisoner’s dilemma with two players,
each striving to maximise its payoff. Each player can
choose either to cooperate or to defect; depending on the
players’ choice, the average payoff vector (x, y) evolves
according to the game payoff matrix[

(α1, α2) (γ1, γ2)
(β1, β2) (δ1, δ2)

]
, (1)

whose entries represent the payoff vectors when both
players cooperate (α), player 1 only defects (β), player
2 only defects (γ) and both players defect (δ). Player 1,
whose average payoff is x, chooses the row, while player
2, whose average payoff is y, chooses the column. In
the usual formulation, the defection of a single player
is beneficial to the highest degree for the defecting
player and harmful to the highest degree for the other
player, while for both players mutual cooperation is
more advantageous than mutual defection.

Assumption 1: In the payoff matrix (1),{
β1 > α1 > δ1 > γ1,

γ2 > α2 > δ2 > β2.
(2)

Fig. 1a shows the points corresponding to the payoff
vectors in the outcome plane (x, y): A = (α1, α2), B =
(β1, β2), C = (γ1, γ2) and D = (δ1, δ2).

We assume that the two players adopt a mixed strategy

u = u(x) =

[
u1(x)
u2(x)

]
, v = v(y) =

[
v1(y)
v2(y)

]
,

such that u1+u2 = 1, with u1, u2 ≥ 0, and v1+v2 = 1,
with v1, v2 ≥ 0. Then, defining the matrices

F =

[
α1 γ1
β1 δ1

]
, G =

[
α2 γ2
β2 δ2

]
,

the evolution of the average payoff in the repeated game
(or, as will be discussed in Section II-A, of the average
payoff over the population) is described by the system{

ẋ(t) = −x(t) + u(x(t))>Fv(y(t)),

ẏ(t) = −y(t) + u(x(t))>Gv(y(t)).
(3)

Given h, k ∈ R such that h < k, we define the
saturation function as

sat[h k]f(x) =


k if f(x) ≥ k,
f(x) if h < f(x) < k,

h if f(x) ≤ h,
(4)

and we consider the saturated strategy
u1(x) = 1− σ1(x),

u2(x) = σ1(x),

v1(y) = 1− σ2(y),

v2(y) = σ2(y),

(5)

where σ1(x) =
[
sat[0 1]

(
α1−x
α1−δ1

)]p
,

σ2(y) =
[
sat[0 1]

(
α2−y
α2−δ2

)]p
,

(6)

for p ∈ N, p ≥ 1. Function σ1(x) is illustrated in Fig. 1c
for various values of p: the larger is p, the steeper is the
saturated function in the interval [δ1 α1].

For each player, the proposed strategy is exclusively
based on her/his own current average payoff and on
the diagonal entries of her/his own payoff matrix and
information about the other player is not required.

Adopting the strategy (5)–(6), system (3) becomes
ẋ = −x+ α1 + (β1 − α1)σ1(x) + (γ1 − α1)σ2(y)

+(α1 + δ1 − β1 − γ1)σ1(x)σ2(y),

ẏ = −y + α2 + (β2 − α2)σ1(x) + (γ2 − α2)σ2(y)

+(α2 + δ2 − β2 − γ2)σ1(x)σ2(y).
(7)

A. A Population-Game Perspective

Equation (3) is in the same spirit as in Hart and Mas-
Colell’s paper [15] on continuous-time approachability.
To see this, consider the time-average expected (over
opponent’s play) payoff defined as

Γ(s) =
1

s

∫ s

0

[
u>Fv
u>Gv

]
dτ ∈ R2.

If we rescale the time window using s = et, take[
x(t)
y(t)

]
= Γ(et) and differentiate with respect to t,

we obtain the differential equation (3). Note that, after
rescaling the time window, we have[

x(0)
y(0)

]
=

∫ 1

0

[
u>Fv
u>Gv

]
dτ ∈ R2.
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(a) The outcome plane (x,y).
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(b) The outcome plane (x,y).
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(c) Function σ1(x), α1 = 3, δ1 = 1.

Fig. 1: The outcome plane (x,y): (a) with the indication of sets D and R; (b) divided in nine regions. (c) Plot of function σ1(x), with α1 = 3
and δ1 = 1, for various values of p.

Adopting a population-game dynamics perspective,

the state
[
x(t)
y(t)

]
∈ R2 represents the current average

payoff over the population.

III. MAIN RESULTS

We begin by showing that both the cooperative point
A and the non-cooperative point D are equilibria for
the dynamical system (7), and that A is always locally
asymptotically stable if a saturated strategy with p > 1
is chosen, regardless of parameter values.

Proposition 1: For any p ≥ 1, both A = (α1, α2) and
D = (δ1, δ2) are equilibria for system (7). Furthermore,
for p > 1, A = (α1, α2) is locally asymptotically stable
for any choice of the values in the payoff matrix (1).

Proof: If (x, y) = (α1, α2), then σ1(x) = σ2(y) =
0, while, if (x, y) = (δ1, δ2), then σ1(x) = σ2(y) = 1;
in both cases, as can be computed by substitution in
system (7), ẋ = ẏ = 0, hence both of the points are
equilibria for the system.

The system Jacobian matrix in the non-saturated re-
gion is shown in Table I. When computed at the cooper-
ative equilibrium, for p > 1, it becomes J(α1,α2) = −I ,
where I is the identity (and analogously for the saturated
regions 2, 3 and 6 in Fig. 1b). Hence, the equilibrium
A = (α1, α2) is locally asymptotically stable, for any
choice of the payoff matrix values.

The equilibrium A is not necessarily stable if p = 1,
while the equilibrium D can be either stable or unstable,
depending on the payoff matrix values and on p.

Example 1: Consider system (7) with payoff matrix[
(α1, α2) (γ1, γ2)
(β1, β2) (δ1, δ2)

]
=

[
(4.5, 4) (0.5, 4.5)
(6, 1) (1.5, 2)

]
. (8)

If p = 1, the equilibrium A = (α1, α2) is unstable, while
the equilibrium D = (δ1, δ2) is asymptotically stable.

To state our main theorem, we need to consider two
sets in the outcome plane: the quadrilateral

D = {(x, y) : x ≥ 0, y ≥ 0,

(β1 − δ1)y + (δ2 − β2)x ≤ β1δ2 − β2δ1,
(γ1 − δ1)y + (δ2 − γ2)x ≥ γ1δ2 − γ2δ1}

(9)

and the rectangle corresponding to the non-saturated
region,

R = {(x, y) : δ1 ≤ x ≤ α1 and δ2 ≤ y ≤ α2}, (10)

both shown in Fig. 1a.
Theorem 1: Given system (7) under Assumption 1,

the following statements hold.
(a) System (7) is positive.1

(b) The rectangle R is a positively invariant set for the
system.

(c) All of the trajectories originating in D converge to
the equilibrium D = (δ1, δ2).

(d) All of the trajectories originating in R2
+ \ D are

ultimately bounded in R.
Proof: The lines x = δ1, y = δ2, x = α1 and

y = α2 divide the positive orthant R2
+ = {(x, y) :

x ≥ 0 and y ≥ 0} in nine regions, as shown in Fig. 1b.
According to the values of the saturation functions inside
each region, we can compute the derivatives ẋ and ẏ.
• Region 1: x < δ1 and y > α2, hence σ1(x) = 1 and
σ2(y) = 0, ẋ = −x+ β1 > 0 and ẏ = −y + β2 < 0.
• Region 2: δ1 ≤ x ≤ α1 and y > α2, hence σ2(y) = 0,
ẋ = −x+ α1 + (β1 − α1)σ1(x) ≥ 0 (strictly positive if
x 6= α1) and ẏ = −y + α2 + (β2 − α2)σ1(x) < 0.
• Region 3: x > α1 and y > α2, hence σ1(x) =
σ2(y) = 0, ẋ = −x+ α1 < 0 and ẏ = −y + α2 < 0.
• Region 4: x < δ1 and δ2 ≤ y ≤ α2, hence σ1(x) = 1,
ẋ = −x+β1+(δ1−β1)σ2(y) ≥ (β1−δ1)[1−σ2(y)] > 0

1A system is positive if the positive orthant is a positively invariant
set for the system: the state variables are always positive in value.



J(x,y) =

−1− p(α1 − x)p−1
[

β1−α1
(α1−δ1)p

+
(α1+δ1−β1−γ1)(α2−y)p

(α1−δ1)p(α2−δ2)p

]
−p(α2 − y)p−1

[
γ1−α1

(α2−δ2)p
+

(α1+δ1−β1−γ1)(α1−x)p
(α1−δ1)p(α2−δ2)p

]
−p(α1 − x)p−1

[
β2−α2

(α1−δ1)p
+

(α2+δ2−β2−γ2)(α2−y)p
(α1−δ1)p(α2−δ2)p

]
−1− p(α2 − y)p−1

[
γ2−α2

(α2−δ2)p
+

(α2+δ2−β2−γ2)(α1−x)p
(α1−δ1)p(α2−δ2)p

]
TABLE I: Jacobian of system (7) for δ1 ≤ x ≤ α1 and δ2 ≤ y ≤ α2.

and ẏ = −y + β2 + (δ2 − β2)σ2(y) ≤ (β2 − δ2)[1 −
σ2(y)] ≤ 0 (strictly negative if y 6= δ2).
• Region 5, namely region R in (10), is positively
invariant: in fact, if x = δ1, σ1(x) = 1 and ẋ =
(β1 − δ1)[1 − σ2(y)] ≥ 0; if x = α1, σ1(x) = 0 and
ẋ = (γ1 − α1)σ2(y) ≤ 0; if y = δ2, σ2(y) = 1 and
ẏ = (γ2− δ2)[1−σ1(x)] ≥ 0; if y = α2, σ2(y) = 0 and
ẏ = (β2 − α2)σ1(x) ≤ 0. This proves statement (b).
• Region 6: x > α1 and δ2 ≤ y ≤ α2, hence
σ1(x) = 0, ẋ = −x + α1 + (γ1 − α1)σ2(y) < 0 and
ẏ = −y+α2+(γ2−α2)σ2(y) ≥ 0 (null only if y = α2).
• Region 7: x < δ1 and y < δ2, hence σ1(x) = σ2(y) =
1, ẋ = −x+ δ1 > 0 and ẏ = −y + δ2 > 0.
• Region 8: δ1 ≤ x ≤ α1 and y < δ2, hence σ2(y) = 1,
ẋ = −x+γ1+(δ1−γ1)σ1(x) ≤ (γ1−δ1)[1−σ1(x)] ≤ 0
(strictly negative if x 6= δ1) and ẏ = −y + γ2 + (δ2 −
γ2)σ1(x) > (γ2 − δ2)[1− σ1(x)] ≥ 0.
• Region 9: x > α1 and y < δ2, hence σ1(x) = 0 and
σ2(y) = 1, ẋ = −x+ γ1 < 0 and ẏ = −y + γ2 > 0.

Statement (a) follows from the fact that, for any point
of the regions 1, 4 and 7, including x = 0, ẋ > 0, while
for any point of the regions 7, 8 and 9, including y = 0,
ẏ > 0, hence the positive orthant is positively invariant.

Consider now the segments B′D and DC ′ in Fig. 1a:
segment B′D lies on the line (β1 − δ1)y + (δ2 −
β2)x = β1δ2 − β2δ1, while segment DC ′ lies on the
line (γ1 − δ1)y + (δ2 − γ2)x = γ1δ2 − γ2δ1. If we
compute the normal component of the derivative, for all
points belonging to these segments, and we recall that
σ1(x) = 1 on B′D and σ2(y) = 1 on DC ′, we obtain
(β1−δ1)ẏ+(δ2−β2)ẋ = 0 and (γ1−δ1)ẏ+(δ2−γ2)ẋ =
0. Hence, no trajectory can cross these lines (actually,
the two segments are invariant sets). As a consequence,
the trajectories originating in D are bounded in D and,
due to the sign of the derivatives in regions 4, 7 and 8,
converge to the equilibrium D for large enough time,
thus proving statement (c).

The signs of the derivatives computed above also
show that any trajectory starting in R2

+ \ D (which is
bounded in R2

+ \ D) converges to R for large enough
time, hence proving statement (d).

The proof of Theorem 1 entails the following result.
Corollary 1: System (7) does not admit equilibrium

points outside the rectangle R.
Does the proposed saturated strategy, with p large

enough, ensure that all trajectories originating in R2
+\D

converge to the equilibrium A = (α1, α2), when the
equilibrium D is unstable? To investigate this problem,

we just need to consider all of the trajectories originating
in R\D (since all trajectories in R2

+ \D are ultimately
bounded in R and D = (δ1, δ2) is an equilibrium point).

The system Jacobian computed at D = (δ1, δ2) is

J(δ1,δ2) =

[
−1− p δ1−γ1α1−δ1 p β1−δ1

α2−δ2
p γ2−δ2α1−δ1 −1− p δ2−β2

α2−δ2

]

=

[
−1 0
0 −1

]
+ p

[
− δ1−γ1
α1−δ1

β1−δ1
α2−δ2

γ2−δ2
α1−δ1 − δ2−β2

α2−δ2

]
= −I + pΘ.

Both J(δ1,δ2) and Θ are irreducible Metzler matrices
(their off-diagonal entries are nonnegative) with negative
diagonal entries. It is worth recalling that a Metzler
matrix has a real dominant eigenvalue, associated with
a positive eigenvector (the Frobenius eigenvector) [13].

Lemma 1: There exists a finite p ≥ 1 for which the
equilibrium D of system (7) is exponentially unstable if
and only if matrix Θ has a positive eigenvalue.

Proof: It is immediate, since, denoting by θi (with
i = 1, 2) the eigenvalues of Θ, which are real, the
eigenvalues of J(δ1,δ2) are λi = −1 + pθi.

Then, we can state the following.
Theorem 2: There exists a finite p ≥ 1 such that all of

the trajectories of system (7) originating in R \ (δ1, δ2)
converge to the equilibrium A if and only if matrix Θ
has a positive eigenvalue.

Proof: Necessity. By contradiction, if matrix Θ
does not have positive eigenvalues, then the equilibrium
D is locally asymptotically stable and for any p there
exists a neighborhood N of D, having a nonempty
intersection with R \ (δ1, δ2), such that the trajectories
originating in N converge to the equilibrium D, and not
to the equilibrium A.

Sufficiency. If matrix Θ has a positive eigenvalue,
then the equilibrium D is unstable for p large enough:
the corresponding Jacobian J(δ1,δ2) has a real positive
eigenvalue associated with a positive Frobenius eigen-
vector. Consider, for simplicity, the new variables z =
α1−x
α1−δ1 and w = α2−y

α2−δ2 . In R, both z and w take values
between 0 and 1. This change of variables, applied to
system (7), gives the system{

ż = −z − µ1z
p + ν1w

p + (1 + µ1 − ν1)zpwp,

ẇ = −w + µ2z
p − ν2wp + (1− µ2 + ν2)zpwp,

(11)
where µ1 = β1−α1

α1−δ1 , ν1 = −γ1−α1

α1−δ1 , µ2 = −β2−α2

α2−δ2 ,
ν2 = γ2−α2

α2−δ2 are positive values. The equilibrium points
are transformed as A′ = (0, 0) and D′ = (1, 1) and the
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Fig. 2: Plane (z, w), construction for the proof of Theorem 2.

square A′H ′D′K ′ in Fig. 2 is a positively invariant set
for the system. Our aim is to show convergence to A′.

Since D′ is unstable, we can consider the direction of
the Frobenius eigenvector [zF wF ]>, with zF , wF > 0,
and the Lyapunov-like function

U(z, w) = zF z + wFw,

which is zero at A′ and positive for any other point in
R2

+. We can always find a triangle, D′E′F ′ in Fig. 2,
corresponding to the set

Tσ = {(z, w) : U(z, w) > σ, 0 ≤ z ≤ 1, 0 ≤ w ≤ 1},

such that all the trajectories originating in Tσ \ D′ are
repelled, namely U̇(z, w) = zF ż + wF ẇ < 0 for all
(z, w) ∈ Tσ \ D′. Given a point D′′ = (z̄, w̄) on the
diagonal A′D′ (z̄ = w̄), we can always find a value
of p such that the inequalities ż < 0 and ẇ < 0 are
satisfied for all 0 < z ≤ z̄ and all 0 < w ≤ w̄ such
that z = w. By picking p large enough, we can choose
such a point D′′ arbitrarily close to D′ and, in particular,
inside the triangle Tσ . Note that, if U̇(z, w) < 0 holds
for p = p̄, it holds for any p ≥ p̄: in fact, denoting
ζ = zp, ω = wp, wFµ2 − zFµ1 = q, zF ν1 −wF ν2 = r
and [zF (1 + µ1 − ν1) + wF (1− µ2 + ν2)] = s,

U̇ = −(zF z + wFw) + qzp + rwp + szpwp

= −(zF
p
√
ζ + wF

p
√
ω) + qζ + rω + sζω

is decreasing in p for 0 ≤ z, w ≤ 1 (0 ≤ ζ, ω ≤ 1).
Then, we consider the Lyapunov-like function

V (z, w) = max{z, w},

which is zero at A′ and positive for any other point in
R2

+. If z > w, V̇ (z, w) = ż, while if z < w, V̇ (z, w) =
ẇ. Now, fix z = z̄ and consider the segment D′′H ′′ in
Fig. 2, with 0 ≤ w < w̄ (hence, z > w), where

˙̄z = −(z̄ + µ1z̄
p) + wp[ν1 + (1 + µ1 − ν1)z̄p].

Since ˙̄z < 0 for w = w̄ (by construction) and for w = 0
(because z̄ + µ1z̄

p > 0), it is ˙̄z < 0 for all w in the

segment, in view of linearity with respect to wp. Then,
fix w = w̄ and consider the segment D′′K ′′ in Fig. 2,
with 0 ≤ z < z̄ (hence, z < w), where

˙̄w = −(w̄ + ν2w̄
p) + zp[µ2 + (1− µ2 + ν2)w̄p].

Since ˙̄w < 0 for z = z̄ (by construction) and for z = 0
(because w̄ + ν2w̄

p > 0), it is ˙̄w < 0 for all z in
the segment, in view of linearity with respect to zp.
Therefore, V̇ (z, w) < 0 for z = z̄, 0 ≤ w ≤ w̄ and
for w = w̄, 0 ≤ z ≤ z̄, hence trajectories originating
in the square S = {(z, w) : 0 ≤ z ≤ z̄ and 0 ≤ w ≤ w̄}
(A′H ′′D′′K ′′ in Fig. 2) cannot escape S and will even-
tually converge to A′ = (0, 0), because, by construction,
the same reasoning holds for any point (z̃, w̃) such that
z̃ = κz̄ and w̃ = κw̄, with 0 < κ ≤ 1.

Then, the trajectories escaping from Tσ can enter
either the square S (and converge to A), or the region
H where z̄ < z ≤ 1 (H ′′H ′D′D′′ in Fig. 2), or the
region K where w̄ < w ≤ 1 (K ′′K ′D′D′′ in Fig. 2).
In region H, ż < 0; in region K, ẇ < 0. Hence, the
trajectories from both H and K converge to the square
S, and eventually to A′.

It is worth noting that, in view of Lemma 1, a value
of p for which D is unstable, hence the cooperative
equilibrium A attracts all of the trajectories originating
in R \ (δ1, δ2), can always be found under suitable
assumptions on the payoff matrix values (precisely, for
all values such that det Θ < 0).

Remark 1: The necessity part of the proof claims the
local stability of D based on linearization, which is
an abuse since the system is not continuously differen-
tiable everywhere. However, the argument can be made
rigorous by means of the same Lyapunov-like function
U(z, w) = zF z+wFw used in the sufficiency part, since
U̇(z, w) > 0. Details are omitted for space reasons.

IV. NUMERICAL EXAMPLES

For some choices of the payoff matrix and of p,
we have simulated the system evolution, generating
trajectories that start from random initial conditions
in the positive orthant. Trajectories converging to D
are in red, while trajectories converging to A are in
blue. The quadrilateral ABDC and the segments B′D
and DC ′ in Fig. 1a are drawn in green in the plots.
Fig. 3a corresponds to the game evolution with payoff
matrix (8): the choice p = 3 renders D unstable and,
as expected, the proposed saturated strategy guarantees
convergence to the cooperative equilibrium A of all
trajectories originating in R2

+\D. Conversely, in Fig. 3b,
showing the system evolution with payoff matrix[

(α1, α2) (γ1, γ2)
(β1, β2) (δ1, δ2)

]
=

[
(3, 3) (0, 4)
(4, 0) (1.9, 1.9)

]
, (12)



(a) Payoff matrix (8), p = 3. (b) Payoff matrix (12), p = 3. (c) Payoff matrix (12), p = 10.

Fig. 3: System evolution with the saturated strategy: trajectories with random initial conditions in the positive quadrant.

and with p = 3, some of the trajectories originating in
R2

+ \D converge to D, which is a stable equilibrium. A
new unstable equilibrium appears in between, which is
the turning point between trajectories converging to A
and trajectories converging to D. However, the choice
p = 10 destabilizes D: then, all of the trajectories
originating in R2

+\D converge to A, as shown in Fig. 3c,
consistently with our results.

V. CONCLUSIONS

We have shown that a saturated strategy robustly
ensures stability of the cooperative equilibrium of a two-
population game having the structure of a Prisoner’s
dilemma. Future directions involve the analysis of the
n-dimensional case and the extension of the analysis to
a larger set of games including the coordination game.
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