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Abstract—We consider the problem of controlling the trans-
mission rate in a communication network where each node
adjusts its own transmission rate exclusively based on the phys-
ical medium occupation (the band occupancy of the aggregate
complementary nodes). We show how to design a decentralized
control for maximizing both band occupancy and fairness. If
the network is fully connected, the problem admits a simple
solution. Difficulties arise in the case of partially connected
networks, and in the presence of time—varying network topologies
and delays. General conditions are given which, by properly
tuning control parameters, assure stability. These conditions are
conservative and affect the system performance. However, we
show that, in the case of symmetric connections, stability can be
studied based on the system eigenvalues even in the presence of
topology switchings. Less conservative bounds can be inferred by
exploiting known properties of the eigenvalues of the adjacency
matrix of a graph. We finally consider the multi-channel case,
in which nodes may jump among channels: the previous scheme
can be extended to this case and asymptotically ensures uniform
channel exploitation. '

Keywords: Distributed control, Transmission control,

Switching, Lyapunov Functions.

I. MOTIVATIONS AND DESCRIPTION OF THE CONTROL
PROBLEM

In highly dynamic mobile scenarios (e.g. vehicle—to—vehicle
communication [2], swarm robot systems [3], and affinity
matching [4], [S]) the communication protocol should be able
to adapt to sudden changes in network topology. Moreover,
often no fraction of the overall available band can be used for
network discovery, coordination and connection setup, hence
the control must be decentralized. Furthermore, the control
should possibly be simple, in order to be implemented on low-
computation-power devices with limited energy consumption.
In addition, simple control algorithms do not suffer of fragility
phenomena in the presence of network variations [6]. The
Carrier Sense Multiple Access (CSMA) p-persistent protocol
family represents an interesting solution for coordinator—free
ad hoc networks [7], [8], [9], [2], [10], [11]. In wireless
communication networks, fairness is not less important than
the maximization of channel utilization [12], [13], [14]; con-
currently fulfilling both design goals is challenging and crucial.

In a recent paper [15] an improvement of the p-persistent
protocol has been proposed based on a decentralized and
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distributed control paradigm [16]. The protocol requires that
every node, asynchronously and independently, subdivides
time into time slots with equal duration. At the beginning
of each slot, the node has to choose whether to transmit or
to switch to receiving mode. With a probability p the node
starts transmitting a packet of data. At the end of transmission,
the node has preemption over the channel, i.e., if it chooses
to perform another transmission (again with probability p)
it is allowed to do it immediately: this guarantees a better
throughput in case of bulk transmissions. If a node chooses to
switch to receiving mode (with probability 1 — p), it remains
in that mode either until the beginning of the next slot or until
the channel becomes idle. The decision variable for each node
is then its transmission probability, which may be different for
different nodes. In a multiple node scenario, it is legitimate to
model this quantity as a continuous variable evolving on a
continuous time scale.

The simple decentralized algorithm proposed in [15] ensures
convergence, full channel exploitation and fairness under the
assumption of full connection (i.e., if each node is connected to
all the others). Under occlusions (i.e., if the connection graph
is not complete), fairness and even stability are not in general
guaranteed. However, the control scheme can be rendered ro-
bustly stable with respect to topology switching by increasing
the value of a certain parameter, at the price of compromising
the performance in terms of channel exploitation.

In this paper we further investigate the control scheme in
[15], by proving new theoretical properties and examining the
trade—off between robust stability and performance.

o In the case of full connectivity, we show that the control
variables satisfy the positivity constraints and the upper
limits in terms of band exploitation. Fairness is proved
by showing that the transmission rate variance is a
Lyapunov-like function for the overall system.

o When occlusions are present, we show that the robust
version of the scheme proposed in [15] ensures stability
even in the presence of feedback delays, O—transmission
saturations (i.e., the constraint that transmission rates
cannot be negative) and topology switchings.

o We further consider the occlusion problem when con-
nections are symmetric (i.e., node ¢ is (directly) linked
to node j if and only if node j is (directly) linked
to node i) and we show that stability can be assessed
by standard eigenvalue techniques, even under network
topology switchings, since it is related to the eigenvalue
analysis of the adjacency matrix of an undirected graph,
for which results are available in the literature.

o Also in the general case, results about the eigenvalue



analysis of the adjacency matrix can be exploited to
find less stringent robustness requirements, which allow
a better performance in terms of band exploitation. We
identify a worst—case topology (bipartite graph) for which
fast switchings can be treated.

o« We tackle systems with multiple channels, in which
nodes can switch among channels, based again on a
fully decentralized decision. We show that the dynamics
asymptotically converges to the equal exploitation of each
channel.

Decentralized algorithms have been proposed for power
control in wireless communication networks, such as the
Foschini—Miljanic algorithm [17], see also the recent [18],
[19]. Here, conversely, we are concerned with bandwidth
allocation. The adopted approach is also related to consensus—
oriented control [20], which is currently receiving attention
especially in communication control problems [21], [22], [23],
[24], [25], [26]. The essential difference is that here we do
not focus on agreement among agents, but mainly on full
band exploitation; however, we would like to ensure a “fair”
allocation of resources, i.e., an equal bandwidth available for
each node. The eigenvalue analysis is similar in spirit, but
we will be mainly interested in the smallest eigenvalue of the
adjacency matrix, while the consensus is mainly influenced by
the second smallest eigenvalue of the Laplacian matrix.

A. Description of the control problem

We consider the problem of n transmitting nodes, sharing
a common communication channel of known bandwidth p.
Each node autonomously decides its transmission rate based
exclusively on its own rate and on the aggregate transmission
rate of the other nodes. We define the variables:

o z;(t) € R: message rate of the i-th node, i = 1,...,n;

e y(t)=>"", z;(t) € R: total message rate;

o u;(t): control signal at the i-th node;

o 2i(t) = >, i(t) = y(t) — z;(t): aggregate message

rate of the nodes complementary to the ¢-th node.

Each node autonomously controls its transmission rate accord-
ing to the following equation:

The overall control goal is the ideal steady—state condition
lim ;(t) =2, v, )
t—o0 n

which implies fairness and full band exploitation (since
limy o0 y(t) = p).

A control law of the form w; = wu;(x;,2;) would require
full connection (i.e., each node should be connected to all the
others). Yet this is not always the case.

Definition 1: Let C;, for i = 1,...,n, denote the set that
indexes the nodes connected to node ¢. The connectivity
degree, c;, is the number of elements of C;. Also, let

wit) =Y z4(t)
Jj€Ci

denote the aggregate transmission rate of the nodes in C;. ¢

If the network is not fully connected, each node can rely on w;
only, hence the control has to be of the form u; = w;(z;, w;).
We will consider the following linear law

ui(t) = —a(l + pi)zi(t) — aw;(t) + ap, 3)

where o and p; are positive parameters.

In [15] it is shown that in the case of full connection, i.e.,
when w;(t) = z;(t), the control law (3) renders system (1)
asymptotically stable and that, if p; = p for all 4, then

p

lim xz;(t) = .
n+ u

t—o00

“

Therefore, in the case of full connection, (2) can be satisfied
up to an arbitrarily small tolerance.

In most of the paper we will work under the following
assumption.

Assumption 1: The protocol is common to all the nodes:
Hi = H.
The assumption will be temporarily removed in Subsection
II-D to discuss a possible adaptive mechanism for p;(t), which
(though common to all nodes) can lead to different gains.

II. ANALYSIS OF THE CONTROL SCHEME
The system described by (1) and (3) can be represented as

#(t) = Az(t) + alp 5)
where 1=[11 ... 1]7 and
—(14p) =012 —013 —01n
—021  —(14p)  —da3 —02n
A=a | —931 —032  —(14p) —O3n |
_5n1 _5n2 _5'”3 _(1+N)

with 0;; = 1 if node j is linked to node 4, d;; = 0 otherwise.
We can compactly write

A=—af(p+1)I + A

where A is the adjacency matrix associated with the system
graph.

A. Some theoretical results about the control scheme under
Jfull connection

Under full connection assumption, the state matrix has the

form A = —af[ul + O], where O is a matrix of ones. Its
eigenvalues, —a(n + p) and —ay,” are real and negative for
all > 0.

The state of system (5) always remains positive and satisfies
the band upper limit.
Proposition 1: For any p > 0, the simplex

S:{x: x; >0, Z xigp}
i=1

is positively invariant: if 2(0) € S, then the solution z(t) of
(5) remains in S for all ¢ > 0.

©)

Note that O has rank 1 and its eigenvalues are n, with multiplicity 1, and
0, with multiplicity n — 1.



Proof: The derivative of the total message rate y(t) is

n

g =—ay [(1+pz;(t) +2(t) —p) =

j=1

—al(n+p)y —pn].

The time—variation of y associated with the initial condition
y(0) is then

i) = (0 - L

)e—a(7L+;L)t+ pn )
n+p
Therefore
on

Jm y(t) = P S

which implies that, when  is small, a large quote of the band
is exploited. The bound y < p is never violated if y(0) < p,
because, when y = p, we have y < 0. To show that z; > 0 is
never violated as well, suppose that z; = 0 and z; > 0, for
i # j. Then, equation (3) yields

ii = —Oé[Zi

where the inequality holds since z; < y < p. Therefore, x;
cannot become negative and the claim is proved. [ ]
To show that the system monotonically tends to fairness, we
define its variance® to be

V= i:(x
i=1

and we prove it is a Lyapunov-like function for system (5).
Proposition 2: The variance function (7) is monotonically
decreasing and tends to zero.
Proof: Exploiting the expression of y provided in the
proof of Proposition 1, we have

2 Z
= 2« Z
= 2« Z

Then V (t) = e~ 22V (0) and lim;—,, V (¢) = 0. [

Note that the total message rate is associated with the fast
mode —a(n + p), while the variance is associated with the
slow mode —au. As a consequence, y converges quickly to
its equilibrium value pn/(n+p), while the variance converges
slowly to zero, especially if w is small. However, the control
law is designed so that, to achieve fairness, it is not necessary
to wait for the transmission rates to reach their steady state; the
convergence of the variance to zero, i.e., the convergence of
the system to a fair occupancy of the channel, is independent
of the convergence of each channel to its steady state.

It can also be seen that the behaviour of the system is robust
with respect to the insertion of new nodes. In fact, assume that,
at t = tg, k new nodes are added with zero initial transmission
rate. The state & of the new system has dimension n + k,
with initial condition Z;(tg) = z;(to), for i = 1,...,n, and

—y/n)? 7

Vo= —y/n) (& —y/n))
—y/n) [Mwi—l—y—p_w

—y/n)(zi —y/n)u = —2auV.

3Note that y/n =3, x;/n corresponds to the average

Zi(to) =0, fori=n+1,...,n+k. As long as the old state
z(tp) is in S, the new state £ at time tf{ will be in Sp,4,
the analogous set defined in the augmented state space. So no
boundary violations are possible.

B. Robustness under occlusions and communication delays

Under occlusions, stability is no longer ensured for any
value of ;1 > 0; however, it is preserved as long as the
parameter (. is large enough.

Theorem 1: ([15]) The control law (3) renders system (1)
asymptotically stable (for arbitrary C;), provided that p >
max;(c;). Stability is ensured even under switching (namely,
when the sets C; can change arbitrarily in time). O

Stability is ensured if p > max;(c;); however, ¢; are
typically unknown. Since ¢; < n — 1, we can rely on the
bound

p>n—1 ()

As it will be shown later, this bound is penalizing in terms
of performance. Conversely, we now show that large values
of 1 can ensure robust stability under communication delays.
Suppose that each node receives information about the trans-
mission rates of its adjacent nodes (the nodes in C;) with
delays. In this case, equation (3) becomes

ui(t) = —a(l+ p)x;(t) — « Z zj(t— 1) +ap,  9)
J€Ci

where 7;; are positive constants. We assume that
0<7; <7

for some unknown bound 7. As proved in the following
theorem, condition (8) ensures robustness with respect to
measurement delays.

Theorem 2: System (1) with the control law (9) is exponen-
tially stable for any finite value of 7, provided that condition
() is fulfilled. O

Proof: Being the system linear, we can study stability for
p = 0. Consider the auxiliary variables

gz(t) = eBt.Ii(t),
with B > 0. We prove that if 3 is small enough, and in
particular 8 < a(1 + p), then &;(t) is bounded for all ¢ and
for any initial condition z;(c) with o € [—,0]. Boundedness
of &;(t) implies exponential stability, since z;(t) = e~ #&;(t).

By computing the time—derivative of &;(t), we obtain
EB) = Mault)+ B lailt)
= —a(l+metat)

—a Y Py

JEC;

- (1+“_§) Ei(t)—a Y &(t—mi;)e"9.(10)

JEC;

ESN I

t—T,J)e’BT” + BePlai(t (t)

To prove boundedness of &;(t) for all ¢ and for all ¢, assume
that for some £ > 0 and for some ¢, |£;(5)] < & for all
i=1,...,n and for all & € [t — 7,t]. We prove that such a
bound is respected for ¢ > ¢. By contradiction, assume that,
for some [ € {1,..., t, |&(t)| = k and




&(H)& () > 0, so that |§l(t+e)| > r for some € > 0. Consider
the case &(f) = k and &(f) > 0; if B < a(1 + p), we have
(14 p—B/a) > 0 and, from (10), we obtain

- <1 T g) ka6 —my)lem

Jj€C

K [—a <1 +p— g) + a(n — 1)e/ﬂ

< w{—a—alp—(n—-1)e4 3}

For 8 small enough, &(f) < 0, which is in contradiction with
the assumption & () > 0. Therefore, the upper bound Gt) <
# cannot be violated. The case with &(f) = —« and &(f) < 0
can be treated analogously. |

G <

IN

C. Positivity constraints under switching topology

Transmission rates are subject to positivity constraints, z; >
0, which are satisfied by the above control scheme, provided
that p is taken according to (8), as shown next.

Proposition 3: The control law (3) with p# > n — 1 ensures
that the simplex set S (6) is robustly (i.e., under arbitrary
switching) positively invariant. O

Proof: We first show that z; cannot become negative. Let
x; = 0 for some 7 and let all the remaining coordinates be such
that y < p. Then

icz-:—ozzgvk—i-ozpz —ap+ap =0.
keC;
Therefore, z; cannot become negative. Second, we show that

y cannot exceed p. Let y = p. Then the following chain of
equalities and inequalities holds:

i=3 a3l

=1

—a(l—l—u)y—az (Z Jfk> +apn < —a(l+p—n)p < 0.

i=1 \k€eC;

a(l + p)z; — aw; + ap] =

Therefore, y cannot go above p. |

As a consequence of condition ;& > n— 1, the total message
rate at the equilibrium, g, is strictly less than p: § < p. This
happens because, when y = p, we have y < 0, hence p
cannot be an equilibrium. Therefore, the i-th message rate at
the equilibrium is

_Zjecz'ij"'p
1+p

as it can be checked by plugging (11) into the system equa-
tions. We have the following corollary.

Corollary 1: If p > n—1, then for any fixed matrix A there
exists an equilibrium point Z;(A) inside the set S, which is
positive component-wise. O
Therefore, in view of Theorem 1, the solution of system (1),
with u; as in (3) and p > n — 1, converges to the positive
equilibrium z;.

Remark 1: In general, for values of 1 smaller than n—1 or
for initial conditions outside S, the proposed control law (3)
may drive z; to negative values. In this case, to avoid negative

T; = >0, a1

values, one has to saturate the control law in (1) according to
the following rule:

i(t) = {

D. Gain adaptation

;i (t) if ;> 0,

max{0,u;(t)} if xz;=0. (12)

We can improve the scheme by allowing (%) to be time—
varying in an adaptive way (high gain adaptation [27]). To
this aim, we temporarily drop Assumption 1 and state the
following.

Theorem 3: Consider the linear time—varying system gov-
erned by matrix

A(t) = —al(X(t) + 1) + A?)],

where Y (t) = diag{p1(t), u2(t),...,pun(t)} and the entries
A;j(t) of A(t) can switch in {0,1}. A value i exists such
that, if p;(t) > i for all t > ¢ for some ¢, then the system is
asymptotically stable.

Proof: Denote the whole state of the network by x =
(z1...2,)". The claim surely holds for any i > n — 1, since
in this case the matrix is diagonally dominant for all ¢t > 0,
hence the system admits the piecewise—linear function

U(x)

as a Lyapunov function [28], [29], [30], [31] (see [32],
Proposition 4.33). However, the diagonal dominance could
hold also for p < n — 1. ]

Remark 2: For the case of a constant topology and constant
14, stability could be proved through the Gershgorin circle the-
orem, which provides a bound for the eigenvalues. Yet, since
we have found a common Lyapunov function independent of
the considered topology and of the value of p, the result holds
even when topology switchings occur and when p is time—
varying.

Based on Theorem 3, an adaptive scheme, in which the
value of p; is increased over time, can be designed as follows.
Each node is initialized with a (small) value y;(0) > 0. Under
full connection, this would ensure stability. If instability is
detected, for instance evidenced by transmission fluctuations,
then each node independently starts rising its gain p;(t)
according to the adaptive law

. di

i ={ o
where 6; > 0, while 6, ; > 0 is a time at which instability is
not detected anymore by node ¢. We show the effectiveness of
this adaptive scheme with an example.

Example 1: To detect instability at each node, we mon-
itor the derivative of the aggregate transmission rate w;,
suitably filtered, and compare it with a threshold value
€. More precisely, we define the filtered signal wl'(t) =
L1 {s = L{w; (t)}} where £ denotes the Laplace transform
and o is a positive constant, and we apply the rule (13):
fi(t) = max{0, p(jwf (t)|—¢€)} for some positive p.* Figure 1
reports the simulation results for a randomly generated graph

= max ] = [x]

if t> 0,y (13

“In this way adaptation stops (i.e., f; = 0) when |w} ()| < e.



with n = 100 and occlusion probability P[A;; = 0] = 0.3.
The initial values for the gain are y;(0) = 10 for all ¢, while
the values of the constants are € = 0.05, p = 50 and 0 = 1. It

50

40f
30t . =

20

0.5 1 15 2 25 3

Fig. 1: An example of gain adaptation for n = 100. Top: transmission rates
x;(t); bottom: gains su;(t).

can be noted that the steady state values of the gains remain
well below the value n —1 = 99 used, as worst case value, in
the proof of Thorem 3.

III. SWITCHING—ROBUSTNESS VERSUS STEADY—STATE
PERFORMANCE

In this section, we resume Assumption 1 and we investigate
the trade—off in the choice of .

A. Band exploitation under uniform connectivity degree

We have shown that the control scheme is robust with
respect to occlusions (partial connection), at the cost of a
reduced band exploitation. The trade—off between robustness
and performance can be investigated by considering an ideal
case in which all the nodes have the same connectivity degree.

Proposition 4: Assume that ;4 > 0 assures stability and that
each node of the graph has the same connectivity degree, ¢; =
c. Then the total steady—state transmission rate is given by

pn

. 14
p+c+1 14

7=

O

Proof: If 1 assures stability, then all the transmission

rates admit a single steady—state value which, by symmetry,

is the same for all nodes. Let Z denote this value. The i-th
equilibrium condition becomes

Oz—(u+1)i—2§t+p,
kec;

hence
_— P
r=—"-7.
p+c+1
Since § = Y., Z, we obtain the above expression (14). W
In the case of full connection (¢ = n — 1) and assuming
> n but not too large (for instance p = n + 1), we obtain
m
¢ , (15)

V=

NI

hence about half of the bandwidth is lost. Conversely, for low
connectivity (c small compared to n), ¥ is approximately equal
to the whole bandwidth p.

B. Worst—case analysis

Expression (15) shows that the performance, in terms of
bandwidth exploitation, might be compromised to ensure
switching—robust stability. The analysis in this subsection will
enlighten the role of the network topology, revealing that there
is a worst case: the bipartite graph. We will also show that
stronger results can be obtained for undirected graphs (i.e.,
symmetric connections: the communication between a pair of
nodes, if it occurs, is in both directions). In this case, time—
varying (switching) and constant topologies are equivalent,
and the problem reduces to an eigenvalue analysis. We begin
precisely by investigating the case of symmetric connections,
in which 0;;(t) = d;;(t) for all ¢, and we consider any
family of topologies fulfilling some abstract requirement R;
the corresponding set of adjacency matrices is

T={A : Afulfills R}.

The closed-loop system that has to be considered is described
by the equation

x(t) = —af(1 + p)I + A@)]x(t) + apl, (16)

where A(t) € T for all ¢. Under these assumptions we have
the following result.
Theorem 4: In the case of symmetric connections, the fol-
lowing conditions are equivalent:
i) any matrix S = —[(1+p)I + A] with A € T is Hurwitz
(i.e., has negative eigenvalues);
ii) the system is stable under arbitrary switching among the
topologies in 7
iii) for each fixed A, the system admits the Lyapunov func-
tion

U(x —x(A)) = (x —%(A))" (x = x(A)),

where X(A) is the equilibrium value. O

Proof: The equivalence between ii) and iii) is guar-
anteed by the theory of common Lyapunov functions (see,
for instance, [33], Theorem 2.1). ii) = i): if the system is
stable under arbitrary switching among topologies, of course
each matrix corresponding to a particular topology is Hurwitz
stable. i) = 1ii): if any S is Hurwitz, the identity matrix [
is a solution of the Lyapunov equation STX + XS = 28,
in which the term 2S5 is negative definite (being S Hurwitz),
hence we can provide a common Lyapunov function which
ensures stability under arbitrary switching. [ |

The following corollary points out the role of the smallest
eigenvalue of the adjacency matrix.

Corollary 2: In the case of symmetric connections, stability
of system (16) is ensured if and only if, denoting by \;, i =
1,2,...,n, the (obviously real) eigenvalues of A, we have

Vi. a7
O

A > —(1 + M),



Remark 3: Equation (17) shows an interesting connection
between the protocol performance (related to the choice of )
and the topology of the network on which the protocol runs
(related to the eigenvalues A;).

As a consequence of the above results, the stability problem
for a network with symmetric connections, whose adjacency
matrix switches among the matrices of a given family 7, may
be reduced to the determination of the smallest eigenvalue of
all the matrices of the family.

It is immediate to examine the two extreme cases, namely,

the no—connection case (A = 0), for which \; = 0 for all
i =1,...,n, and the full connection case (A;; = 1, for all
i,j7=1,...,m,1# j, A;; =0 otherwise). In this latter case,

matrix A becomes —aful + O] and, since the eigenvalues of
O are \; =n—1and \; = —1 for i # 1, stability is ensured
for any p > 0, as previously seen. The intermediate topologies
are obviously much more interesting.

Since (17) holds for all eigenvalues provided it holds for
the minimum, it is reasonable to investigate the worst case,
i.e., to give an answer to the following question.

Question: Given the dimension of the network, i.e., the
number n of nodes, which is the symmetric topology having
the smallest eigenvalue?

We associate such a topology with the choice pt = ftsymm.
To the best of our knowledge, the problem of characterizing
the minimum eigenvalue of the adjacency matrix of a graph
is still open, even though several works have been published
on the topic [34], [35], [36], [37], [38], [39], [40], [41]. In
the following, we present two particular cases that are easy to
analyze and worth being discussed.

Proposition 5: Assume n even. The eigenvalues of matrix

_ 0 071/2
A_[OW2 0 y

where 0 € R"/2%"/2 is a null matrix and O,,j, € R"/2x"/2
is a ones matrix, are Ay = —n/2, Ay = -+ = A1 = 0,
An =n/2. O
Proof: The vectors [1T 1T]T and [-17 1T7]T are
eigenvectors associated with the eigenvalues n/2 and —n/2,
respectively. Since rank(A) = 2, the other eigenvalues are
ZETO0. |
Proposition 5 together with (17) implies that a safe value
of p for symmetric topologies is

n
Nsymm > — — 1 . (18)

2
The bipartite topology considered in Proposition 5 is indeed
the worst case, as shown by the following result, hence the
provided bound is tight.
Theorem 5: [41] If A is the adjacency matrix of a graph of
order n, then the smallest eigenvalue of A, denoted by A1 (A),
satisfies the inequality?

n|rn
SOESEIH
and the equality holds if and only if the graph is bipartite into

>We denote by |-| and by [-] the floor and the ceiling functions,
respectively.

two subgraphs of orders |n/2| and [n/2].5 O

The bound previously found for all (possibly non—symmetric)
topologies, i.e., & > n — 1, may be considered conservative,
but it is not more than twice bigger than necessary.

Consider now the band exploitation in the ideal case when
all nodes are connected. Using (4) and selecting for ;. the
minimum value fulfilling (18), namely, p = n/2 — 1 4 € for
some (small) ¢ > 0, we obtain the following common limit
value for all the nodes:

P P _ 2%
" ntp n+Z—-1+e 3n—2+2€

19)

If ¢ < 1, we obtain Z; > 2p/3n; hence, under symmetry
assumption, the band exploitation is larger than the general
value p/2 guaranteed by (15).

It is interesting to note that, also in the case of non—
symmetric connections, we can provide the same bound for
1 obtained in (18), as shown next.

Proposition 6: Stability of system (16) is ensured for any
matrix A, possibly non—-symmetric, if

u>§—1- (20)
O
Proof: Consider the matrix S = —[(1 + p)I + A] with
A € T and the Lyapunov equation
XT+X=qQ. (1)

Stability is guaranteed if S is a solution of (21) for some
negative definite matrix ). We have

STHS==2pu+1I—- (AT +A)=—=2(u+1)I+ M,

where M = —(AT + A). Since —M € R™*" is a symmetric
matrix whose entries are in the interval [0, 2|, the results in
[41], [42] apply and provide a lower bound for the small-
est eigenvalue of —M: A\(—M) > —n. This implies that
An(M) < n, where A, (M) is the largest eigenvalue of M.
If w > n/2 — 1, then the matrix Q = —2(p + 1)1 + M is
negative definite. ]

Remark 4: Note that the bound ¢ > n/2 — 1 cannot be
improved, since it is tight in the symmetric—connection case.

There are particular topologies that may be stabilized with
very small values of p, thus providing a good performance.
This is the case, for instance, of topologies formed by isolated
clusters. The isolated cluster topology consists of a finite set
of sub-graphs, called clusters, which are (internally) fully
connected, but are not connected to one another. This means
that the corresponding state matrix is block—diagonal.

Proposition 7: Assume that the matrices in 7 correspond
to topologies formed by isolated clusters. Then p > 0 assures
stability of system (16).

6The argument about the eigenvalues holds because the matrix is symmetric.



Proof: The state matrices belonging to this class of
topologies have the following structure:

ul+04 0 ‘.- 0
0 ul+0y - 0
— . . . . )
0 0 ul 4Oy
where O; are ones matrices of possibly different dimension.
If 1 > 0, all these matrices have negative eigenvalues. [ ]

The previous proposition explains also why the simulations
carried out in [15] evidence a very good performance even for
small values of ;2 > 0 in the cases in which topology changes
preserving an isolated cluster structure are imposed.

The condition ¢ > n/2 — 1 is less conservative than (8)
and has been proved to be sufficient for stability. Yet it does
not guarantee that all the transmission rates are positive at the
equilibrium, as shown by the following example.

Fig. 2: An example of a graph admitting a stable equilibrium in which not
all the transmission rates are positive.

Example 2: Consider the star graph in Figure 2, where node
1 is connected to nodes 2 to 7, which do not communicate
among them. Consider system (16) with o = p = 1. Direct
calculations yield, for u = 3,

41 1 1
1 4 0 0

—S=(14+pml+a=| 1 0 4 -0
10 - 0 4

from whichx = —S~!1 =[-0.20.30.3 --- 0.3]". Clearly in
this case the central node would not transmit, due to the lower
saturation, and the total bandwidth exploited by the external
nodes would be much greater than the allowable p = 1. This
example points out that, for completely unbalanced situations,
a value . > n is desirable. However, unbalanced situations as
in Figure 2 are unrealistic.

C. Statistical evaluation of the minimum eigenvalue

To further investigate the connection between the topology
and the minimum eigenvalue of the adjacency matrix of
random graphs [43], we have considered sets of Erd6s—Rényi
graphs [44], [45] G(n,p) with n = 20, 40, 60, 80, 100 (one
set for each order), where the connection between any couple
of nodes is occluded with a probability ¢ = 1 —p € [0, 1]

and connections are symmetric (if ¢ is connected to j, j is
connected to 7). We have computed the average minimum
eigenvalue, whose absolute value is plotted in Figure 3 (with
dots) as a function of ¢q. The simulations are consistent with
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Fig. 3: Red dots: absolute value of the average minimum eigenvalue for
random Erd6s-Rényi graphs (symmetric connection) as a function of the
occlusion probability; blue line with asterisks: theoretical estimate.

the theoretical results in [46] (in particular with Theorem
5.1, referred to [47]), which provide the bound —X\, <
(240(1))y/np(1 — p), where o(1) is a first—order infinitesimal
for n — oo. The theoretical estimate, shown by the solid line
with asterisks in Figure 3, holds in principle for very large
graphs (see [46] for details), but it is approximately matched
as well by the graphs we have considered. As expected,
the minimum eigenvalue is zero in the extreme cases of no
connection (isolated nodes) and fully connected graphs, while
its minimum value occurs when the connection probability is
about 0.5. However, the average minimum eigenvalue is much
less than that obtained for the bipartite graph: for n = 100,
for instance, the average minimum eigenvalue in the case of
symmetric connections is minimized in the case of occlusion
probability 0.5 and corresponds to —10, while the minimum
eigenvalue for a bipartite graph is —50.

Stronger results under switching topology are expected if
one imposes dwell-time constraint, i.e., the requirement that
the configuration of the system must remain constant for a
minimum time—interval [48], [49] (see [50] for a survey). The
only question is how reasonable is the assumption of a dwell-
time in systems that can be of a very large scale.

IV. THE MULTIPLE CHANNEL CASE

We now consider the case in which, instead of a single
channel, there are N independent channels with the same
bandwidth p. We assume p = 1 for simplicity (p # 1 would
be just a scaling factor). Each node has the knowledge of
the existence of all the channels, but it does not have any
information about the number of nodes transmitting in each of
them or about the level of occupancy. Each node may decide to
jump randomly from one channel to another on the basis of its
current transmission rate. The approach proposed here is based



on a decentralized resource allocation (see for instance [51]
and references therein). We assume a time—scale separation:
the process of deciding whether to remain in the current
channel or to jump to another channel is much slower than
the process of adjusting the transmission rate within a channel
according to the control law described above. Typically each
node is expected to wait until it reaches its steady—state before
considering the possibility of jumping. Hence, the dynamics
of jumps can be modeled in its own time—scale, slower than
the time—scale of the processes considered in the previous
sections. We assume that the jump probability, denoted by
p(z;), is a strictly decreasing function of the transmission rate
x;. Suppose, to begin, that it is affine, namely, that

p(z;i) = po(1 —z3),

where po is a constant such that pg € [0,1]. A reasonable
choice for pg is po = 1, so that when the transmission rate is
zero, the node jumps with probability one. On the other hand,
also the choice of a value less than one may be justified, with
the aim of “giving a chance” to the current channel even if
it is fully occupied. However, the actual value of pg is not
crucial for the following reasoning and may be left unspecified.
Since we have assumed that all the channels have the same
bandwidth and that the nodes do not have information about
the level of occupancy of the other channels, we assume also
that, when a node decides to jump, it may choose with the
same probability any other channel.

Given a channel C used by m nodes, we define the total
channel message rate as yc = ZZL x;. The migration flow
from channel C, i.e., the traffic leaving C and moving to other
channels, is

m
m
1—2x;) = polm — ~ m—-—
;leo( ) = polm — yc] po[ m+u+1}
w1
=polm — 1] + ——— | >~ pom,
Pol ]+ po [m+u+1} Po

where we have introduced two approximations: we have
considered the steady state value of y¢ (cf. equation (15)) and
we have assumed m large.

In a more general context, the probability may be not affine;
however, it is reasonable to assume that the transmission rate
associated with each node in a channel is a decreasing function
of the number of nodes using the channel (the higher the
number of nodes, the lower the bandwidth that can be occupied
by each of them). Henceforth we assume that the migration
flow from a channel is generally given by a strictly increasing
function of the number of nodes using the channel (the higher
the number of nodes, the higher the probability that some of
them leave the channel). Moreover, even though the number
of nodes in a channel may be only discrete, for large numbers
of nodes it is allowable, and much easier, to associate it with a
continuous variable. Let v, denote this number associated with
the channel &, and let ¢(vy(t)), for a function ¢ : Ry — RT,
denote the number of nodes leaving the k-th channel at time ¢.
For the aim of the following results, we choose ¢ to be even.

The ¢(vi(t)) nodes leaving the k-th channel distribute
uniformly among the other channels; as a consequence, the

amount of nodes (leaving the k-th channel and) entering, say,
the j-th one is ¢(vk(t))/(IN — 1). Hence the overall time—
variation of the number of nodes using the k-th channel is

n(t) = ol (0) + 3 A
g
Introducing the notations
vn]", @) = [6(n) ¢(ve) ... (uw)]T,

the node distribution dynamics can be represented by

v=1[v v ...

p(t) = (v), (22)
where II is the symmetric matrix

1 o 1 1
N—1 ©N-1 N—1
I U T 1
N—1 N—1 N_1

1 1 -1 1
II=| ¥~ ¥~ N—1

¥~ 1 o = L

Note that this equation implies that no node leaves the system.
Indeed, the total number of nodes can be expressed as

n(t) =1Tv(t) (23)

and hence

%n(t) =1"p(t) =1"TId(v) =0, (24)
where the last equality follows from the structure of the matrix
II. We now show that, asymptotically, the node distribution
among the channels is uniform.

Theorem 6: The trajectory v(t) asymptotically converges to
the average value 7 = n/N1, i.e., vy = n/N for all k. O

Proof: Let ¥ : [0, +00) — R be the function defined by

13
b(E) = /O o(n)d,

which is zero for £ = 0 and strictly positive increasing for
& > 0. Consider the candidate Lyapunov function

Y(r) = w(m).
k=1

U is co—positive (i.e. positive for v, > 0) and its time-
derivative is

U(v) =d(v) ' Id(v) <0.

In view of the La Salle principle, the trajectory v converges
to the set N = {v : W(r) = 0}. Matrix TI is negative semi—
definite and has rank N — 1. Its kernel is given by the set
of vectors whose components are all equal, i.e., IIv = 0 (or
v Il = 0 or v'Iv = 0) if and only if v = A1 for some
real A. Since the components ¢(vy) of ®(v) are invertible,
v(t) converges to the set N = {v : vy = vy =--- = vy}
On the other hand, in view of (23)-(24) the common value is
v; =n/N. |

Remark 5: The previous result is due to the doubly—
stochastic nature of matrix II. We point out that channel



commutation can be subject to constraints. For instance, a
node could be allowed to jump only from a channel to one
of the two channels which are adjacent in frequency (jumping
“up” and “down”). If the probability of jumping up and that
of jumping down are the same, then the resulting matrix II
has a tridiagonal (and still doubly—stochastic) form:

1 1
_15 3 (1) cwe )
5 _11 - 0
M= | ® & =1 == @
0 o 0 - -1

Using the same arguments as before, we can conclude that the
asymptotic distribution is uniform.

V. IMPLEMENTATION AND EXAMPLE

In order to be effective, the provided scheme must be of
simple implementation. To this aim, some details have to
be considered. First of all, the scheme has to be digitally
implemented and a sampling time has to be fixed. We assume
for brevity that the sampling time is approximately the same
time which is necessary for the transmission of a packet.

A fundamental aspect in our method is that the value of
the variable z; cannot be transmitted (by the j-th node) and
hence each node must estimate the aggregate transmission rate
w; of the nodes in C; (see Section I) which cannot be measured
directly. An accurate way to estimate w; is to count the packets
transmitted by the other nodes and to take their average in a
certain time—window of length 7,,:

. 1
JEC;
where ¢; is the number of packets transmitted by the (adjacent)

node j and received by node i. The resulting discrete—time
scheme, for « = 1, p = 1 and for a sampling period of 7 is

zi((k 4+ 1)7) = 2i(k7) + 7[=(p + Dai(k7) — @i + 1] .

Note that the value of 7, should be a multiple of 7 and that
the averaging operation introduces a delay in the process.

To illustrate the results of the method, we have considered
a system with n = 300 nodes and N = 3 channels. The
nodes are spatially randomly distributed on a square with edge
1000 meters. The case of a partial connection is simulated by
assuming that each node can receive packets transmitted by
other nodes within the maximum distance of 500 meters.

We have assumed that the distribution of the nodes among
the channels is eventually uniform (about 100 nodes per
channel) and we have chosen ;1 = 110. We have performed
a simulation in which initially all the nodes use channel 1.
The simulation length is 0.5 seconds, with a sampling period
of 0.001 seconds. The desired transmission rate is 1 packet
for each time sample. At each sampling time, each node
jumps to another channel with probability po(1 — z;), with
po=5x 1072,

Figure 4 represents packet transmission with respect to time,
which is uniformly distributed among the nodes. In Figure 5

300 X x
XX %k xB x RKOR O e o X K
X xx xg X & XF xX XXX E g R KX
X Tk X T o Xy XX Ky x wxE X% g x
Pl * x % x X X%
250 [x, X X P3 x xx X XK X X x
o XX My W x X% x Y x x P .
X Xy K X we o KX X .
Kok X X B x x X¥ o st oK Xy ExX
o g RO K e x X TRE xR KX X %
200 ¢ & £ x x| x w5TH T, B
T X w g KX Rope X o ) FT R e R
R SR R R e et & ool The, Xt x
x x
180 & % x50 R XX 0 Xoeox xSk 0 L
X ox P xRN NS % o R« P < XX X XX
TR ER X Kx ko Fx x X Folk X XTI
Lox XX g™ x % S U O S T
100 x XERK x EX X Xy’ X g X % x xx X XX
x B Mk x X X X x % X x X F%x x X%
XX X X XX X % % %% x ¥ ox x X X (X% x
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Fig. 4: Packet transmission vs. time (seconds): transmitting nodes are marked
with ‘x’.

we see that, after a transient of about 0.1 seconds, the nodes
become almost equally distributed among the three channels.

300 -
DB - -

200 -

150 -

0
0 0.05 0.1 015 02

025 03 035 04 045 05

Fig. 5: The time evolution of node distribution among the available channels:
number of nodes in each channel vs. time (seconds).

The average transmission rate of the whole system is 1.87
packets per sampling time, thus we have 1.87/3 = 0.62
packets per channel, which is clearly smaller than the ideal
value of 1 packet. This is the price to pay for a high value of
1, chosen to robustify the system. With the less conservative
value ;1 = 70, the average transmission rate, obtained in
simulations whose detailed results are not shown, is larger,
i.e., 2.59 packets for the overall system and 0.86 packets per
channel.

VI. CONCLUSIONS

We have analyzed the property of a distributed algorithm for
a set of nodes sharing the same channel. We have shown that
the algorithm is robust against occlusions, delays, O—saturation
and switching, provided that a certain parameter is taken large
enough. Bounds are provided. Under symmetry assumptions,
the parameter has to be larger than the absolute value of the
smallest eigenvalue of the adjacency matrix of the network. We
have extended the method to the scenario of multiple channels,
showing that a fair situation is reached not only with respect
to the transmission rate of each node in each single channel,
but also with respect to the number of nodes per channel.
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