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Abstract

We consider the flow control problem for a general class of compartmental nonlinear systems, which can be associated with a graph
whose nodes represent subsystems with their own internal dynamics, and whose arcs represent flow links among them. We consider a
network–decentralized control: each agent controls a link between two nodes and decides its actions based on the states of these nodes
only. We first provide general necessary and sufficient stabilizability conditions, proving that suitable network–decentralized strategies
assure robust stability. We also show that, if all the subsystems at the nodes are marginally stable, a proper network–decentralized strategy
asymptotically assures the minimum–norm flow, without requiring communication among agents.
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1 Introduction

The control of large networks is relevant in many con-
texts, including data transmission (Moss & Segall 1978;
Moreno & Papageorgiou 1995; Ephremides & Verdú 1989;
Iftar & Davison 1990, 2002), flow networks (Bauso, Blan-
chini, & Pesenti 2010; Atamturk & Zhang 2007; Ordóñez
& Zhao 2007; Wei & van der Schaft 2013; Danielson, Bor-
relli, Oliver, Anderson, & Phillips 2013), inventory and pro-
duction systems (Bertsimas & Thiele 2006; Blanchini, Ri-
naldi, & Ukovich 1997; Blanchini, Miani, & Ukovich 2000;
Boukas, Yang, & Zhang 1995; Sarimveis, Patrinos, Taran-
tilis, & Kiranoudis 2008; Silver & Peterson 1985), water
distribution networks (Larson & Keckler 1969; Bauso, Blan-
chini, Giarré, & Pesenti 2013), transportation (Ataslar & If-
tar 1998; Mudchanatongsuk, Ordóñez, & Liu 2008) and traf-
fic networks (Iftar 1996, 1999). Global communication is of-
ten impossible in large networks; hence, control agents must
act based on locally available information. We say that a
controller is network–decentralized if the control is actuated

by agents: 1) each governing a network link (arc) that affects
two subsystems (nodes of a graph), and 2) each making its
decision exclusively based on local information (i.e., on the
states of the nodes to which it is directly connected). This
type of control was considered by Iftar & Davison (1990,
2002); Iftar (1999); Blanchini, Miani, & Ukovich (2000) for
buffer systems, where the subsystems are first–order integra-
tors; for this class of systems, as shown by Bauso, Blanchini,
Giarré, & Pesenti (2013), a proper constrained decentralized
control law assures asymptotic optimality in the minimum–
norm sense. A network–decentralized control is proposed
by Blanchini, Franco, & Giordano (2013, 2015) for linear
systems where nodes represent non–interacting subsystems,
coupled by the control action; it is shown that, if the sub-
systems do not share unstable eigenvalues, any stabilizable
system can be stabilized by a decentralized control.

In this paper we consider the problem of stabilization for a
more general class of compartmental nonlinear systems, pos-
sibly interacting, in the presence of an external uncontrolled
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flow. Compartmental systems (Jacquez & Simon 1993) are
monotone (Angeli & Sontag 2003; Smith 2008; Chisci &
Falugi 2006) and are fundamental in many flow control prob-
lems. Our general approach takes into account decentraliza-
tion, control constraints and robustness (i.e., effectiveness of
the control regardless of the system parameters). The main
contributions of the paper are the following.

• We formulate the network–decentralized control problem
for a broad class of nonlinear compartmental systems and
we find a stabilizing network–decentralized control.
• Under flow constraints, we provide necessary and suf-

ficient stabilizability conditions, in terms of network
connectivity, adopting the saturated control proposed by
Bauso, Blanchini, Giarré, & Pesenti (2013).
• We show that such a control, applied tout court, may

not be stabilizing if the steady state corresponding to the
current demand is not known.
• For a vast class of compartmental systems, we propose

a modification of the strategy by Bauso, Blanchini, Gi-
arré, & Pesenti (2013), assuring that the controlled flow
converges to the optimum (minimum Euclidean norm),
without requiring communication among agents.
• We investigate the special case (preliminarily presented

by Blanchini, Giordano, & Montessoro (2014)) in which
the nodes represent linear subsystems with an internal
flow splitting represented by Markov chains, and we pro-
pose, as an example, a problem of data flow control.

2 Model description

We consider a class of models of the form

ẋ(t) = Sg∗(x(t))+Rh∗(x(t))+Bu(t)+d(t), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
d(t) ∈ Rn is an exogenous signal. We refer to u j(t) ∈ R as
control agents and to d(t) as demand. A graph N with n
nodes can be associated with the system; we assume that S,
R and B are incidence matrices for N : each of their columns
has either two non–zero entries, equal to 1 and −1, or a sin-
gle non–zero entry, equal either to 1 or to −1.
Vector functions g∗ and h∗ represent flows between two
nodes within the system (application examples include flow-
ing of data, fluids, or currents) and have a different physical
meaning: g–type flows, associated with g∗, depend on the
difference between the corresponding states, while h–type
flows, associated with h∗, depend on the state of the start-
ing node only. For instance, in fluid systems, g–type flows
between tanks depend on the fluid level in both tanks, while
h–type flows depend on the fluid level in the upper tank only
(the two cases are illustrated in Fig. 1). Formally, we have:

• g∗j = g∗j(xk− xl), where Sk j =−1 and Sl j = 1;
• h∗j = h∗j(xk), where Rk j =−1.

Denoting by M j the jth column of a matrix M, we can write

g∗j = g∗j(−S>j x) and h∗j = h∗j(−R̃>j x),
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Figure 1. g–type (left) and h–type (right) flows in a fluid system.
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Figure 2. Graph of a network with natural dynamics (Example 1).

where [R̃]i j = min{Ri j,0}. Matrix [S R B] is the overall in-
cidence matrix of the graph representing the network.
In the network graph, we distinguish between g–type, h–
type, u–type and d–type arcs, associated respectively with
the components of vector g∗ (i.e., with the columns of S),
of vector h∗ (with the columns of R), of the control vector
u (with the columns of B) and of the demand vector d.

Definition 1 If in a column of matrix R or of matrix B there
is a single non–zero entry, we say that the corresponding
link connects the network with the external environment,
associated with the external node (node 0).

In general, any arc connected with a single node of the graph
represents a connection with the external environment. This
is the case, for instance, of arcs associated with vector d.

Example 1 In the network graph in Fig. 2 there are g–
type flows: g∗(x) = [g1(x1− x3) g2(x1− x2) g3(x2− x4)]

>;
h–type flows: h∗(x) = [h1(x3) h2(x3)]

>; controlled flows:
u = [u1 u2]

> and exogenous flows: d = [d1 d2]
>. The cor-

responding system has matrices

S =


−1 −1 0

0 1 −1

1 0 0

0 0 1

 , R =


0 0

1 0

−1 −1

0 0

 , B =


1 0

0 0

0 −1

0 1

 .

We work under the following assumptions.

Assumption 1 The control is componentwise bounded as

u− ≤ u≤ u+. (2)

Assumption 2 Functions g∗j and h∗j are smooth and have
positive derivative.

Assumption 3 There are no g–type flows from/to node 0. 1

1 There is no point in considering g–type flows from/to node 0,
since there are no state variables associated with it.
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Definition 2 A path on the graph is an oriented 2 sequence
of distinct arcs, connecting two distinct nodes (and not in-
cluding node 0 as an intermediate node). A path is admis-
sible if: 1) it does not include d–type arcs; 2) whenever it
includes h–type arcs, they have path–consistent orientation;
other arcs can be included with arbitrary orientation. 3

In the graph in Fig. 2, for example, the path 4–3–2–1 is
admissible, while 2–3–4 is not (because it includes h–type
arc h1, whose orientation is opposite to that of the path).

Definition 3 The graph is connected if an oriented path
exists connecting each pair of nodes (excluding node 0). The
graph is strongly connected if an oriented admissible path
exists connecting each pair of nodes (excluding node 0). The
graph is externally connected if, for each node, an oriented
admissible path exists leading to node 0.

The graph in Fig. 2 is both strongly connected and exter-
nally connected. If we swap g–type and h–type arcs, we get
a graph which is not strongly connected (node 1 cannot be
reached from the other nodes), but is still externally con-
nected (from each node, an admissible path leads to node 0).
If, instead, in Fig. 2 we remove the arcs u1 and h2, the graph
is still strongly connected, but not externally connected.

3 Stabilizability conditions

Consider the following definition.

Definition 4 A feedback control is network–decentralized
if any agent u j decides its strategy based just on the state
variables to which it is directly connected. Precisely, if
p and q index the non–zero elements of column B j, then
u j = Φ j(xq,xp).

In the example in Fig. 2, u1 depends on x1 only, while u2
depends on x3 and x4 only.

Assumption 4 The demand is constant, d(t) = d, and an
equilibrium vector x̄ exists corresponding to a control ū that
strictly satisfies (2), i.e., u− < ū < u+:

0 = Sg∗(x̄)+Rh∗(x̄)+Bū+d.

Denoting by v = u− ū and z = x− x̄, without restrictions we
can consider the stabilization problem for the shifted system

ż = Sg(z)+Rh(z)+Bv, (3)

where g, h are the shifted functions g(z) = g∗(z+ x̄)−g∗(x̄),
h(z) = h∗(z + x̄)− h∗(x̄), such that g(0) = 0, h(0) = 0.
Hence, stability is now referred to the nominal equilibrium
z̄ = v̄ = 0. Accordingly, the constraints are

v− ≤ v≤ v+, (4)

2 Oriented means that the two paths from node i to node j and
from node j to node i are different.
3 Equivalently, we can replace each g–type and u–type arc by two
arcs in opposite directions, and consider directed paths only.

where v− = u−− ū < 0 and v+ = u+− ū > 0.

We assume that the equilibrium (x̄, ū) is given and we do not
consider the problem of regulating the steady–state value.
For set–point regulation, the reader is referred for instance
to Haddad, Hayakawa, & Bailey (2006); Lee & Ahn (2015)
and the references therein.

Remark 1 Assuming that ū satisfies the constraints is cru-
cial (Blanchini, Miani, & Ukovich 2000). Conversely, the re-
quirement that d is constant can be removed. Moreover, due
to parameter uncertainties, the equilibrium condition might
not be known exactly, so that Sg∗(x̄)+Rh∗(x̄)+Bū+ d =
∆ 6= 0 and equation (3) becomes ż = Sg(z)+Rh(z)+Bv−∆.
These issues will be discussed in Section 5.

Definition 5 Given the vector bound v− ≤ v≤ v+, the sat-
uration function is componentwise defined as

[sat(v)] j =


v+j if v j > v+j
v j if v−j ≤ v j ≤ v+j
v−j if v j < v−j

(5)

We consider the following saturated network–decentralized
control (Bauso, Blanchini, Giarré, & Pesenti 2013):

v = sat(−γB>z), (6)

where γ is a positive gain (the higher γ , the stronger the
control action).

A control similar to (6) is

v = sat(−γB̃>z), (7)

where B̃ = min{B,0}, componentwise. This control is suit-
able for applications in which the controlled flow in each link
is decided based on the departure node only (e.g., data com-
munication networks), and will be considered in Remark 3.

We now state the main result of this section.

Theorem 1 Under Assumptions 1–4, if the system graph is
strongly connected, the following statements are equivalent.

i) System (3) can be globally uniformly stabilized 4 to z = 0.
ii) Matrix [S R B] has row rank n.

iii) The system graph is externally connected.
iv) System (3) can be globally uniformly stabilized (to z = 0)

by the network–decentralized control (6).

Proof iv) ⇒ i) is obvious.
i)⇒ ii): if rank[S R B]< n, then a left kernel exists. Consider

4 System ż(t) = f (z(t),v(t)), f (0,0) = 0, is globally uniformly
asymptotically stabilizable if a control law v(z) can be chosen so
that: (a) ∀ε , ∃δ such that ‖z(0)‖ ≤ δ ⇒‖z(t)‖ ≤ ε ∀t ≥ 0; and (b)
∀µ > ε > 0, ∃Tµ,ε such that ‖z(0)‖ ≤ µ ⇒‖z(t)‖ ≤ ε ∀t ≥ Tµ,ε .
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ζ ∈ Rn, ζ 6= 0, such that ζ>[S R B] = 0. We have

d
dt

ζ
>z = ζ

>[Sg(z)+Rh(z)+Bv] = 0,

hence ζ>z(t) = ζ>z(0) = const. Then if ζ>z(0) 6= 0, z(t)
cannot converge to 0.
ii)⇒ iii): since the graph is strongly connected by assump-
tion, rank[S R B] = n implies connection with the external
node 0, i.e., the existence of at least one column having a
single non–zero element.
For instance, if in Example 1 (Fig. 2) we remove u1 and h2
(corresponding to columns with a single non–zero element),
the system is no longer externally connected and

rank[S R B] = rank


−1 −1 0 0 0

0 1 −1 1 0

1 0 0 −1 −1

0 0 1 0 1

= 3 < 4.

Proving iii)⇒ iv) requires a Lemma.

Lemma 1 Given functions g(z) and h(z) as in our assump-
tions, and matrices B, S and R, there exist positive definite
diagonal matrix functions Dv(z), Dh(z) and Dg(z) such that

Bsat(−γB>z) =−γBDv(z)B>z, (8)
Sg(z) =−SDg(z)S>z, (9)

Rh(z) =−RDh(z)R̃>z, (10)

where R̃ = min{R,0}, componentwise. Moreover, in any
bounded neighborhood of z = 0, ‖z‖ ≤ µ , there exist two
numbers 0 < δ− < δ+ such that

δ
− ≤ [Dg(z)]ii, [Dh(z)]ii, [Dv(z)]ii ≤ δ

+, ∀ i. (11)

Proof Equation (8) is a standard property of the saturation
function: componentwise sat(vi) = [Dv]iivi, where [Dv]ii is a
suitable number (see for instance Blanchini & Miani 2015).
To prove (9), first note that any strictly increasing function
f with f (0) = 0 can be written as

f (ξ ) =
∫

ξ

0
f ′(σ)dσ =

[∫ 1

0
f ′(λξ )dλ

]
ξ ,

where we have changed variable ξ λ = σ . Consider the
generic column S j of S and the corresponding term g j. As
we have seen, g j is of the form g j = g j(−S>j z) and then

S jg j(−S>j z) =−S j

[∫ 1

0
g′j(λS>j z)dλ

]
︸ ︷︷ ︸

.
=D j j(z)

S>j z.

D j j(z) is strictly positive (being the integral of a positive
function on a non–zero interval), lower and upper bounded
in any bounded domain. The proof for (10) is analogous. �

Then, in view of Lemma 1, we can write system (3) with
the control (6) as

ż =−[SDg(z)S>+RDh(z)R̃>+ γBDv(z)B>]z =

[
S R B

] 
−Dg(z) 0 0

0 −Dh(z) 0

0 0 −γDv(z)




S>

R̃>

B>

z .
= A(D)z.

In Example 1, with D = −diag(D1,D2, . . . ,D7) and γ = 1,
we obtain A(D) =


−(D1 +D2 +D6) D2 D1 0

D2 −(D2 +D3) D4 D3

D1 0 −(D1 +D4 +D5 +D7) D7

0 D3 D7 −(D3 +D7)

 .

Note that A(D) can be non–symmetric due to h–type arcs.

We can now prove iii)⇒ iv). Matrix A(D), which has strictly
negative diagonal entries and non–negative off–diagonal en-
tries, is column diagonally–dominant:

−[A(D)] j j ≥
n

∑
i=1, i 6= j

[A(D)]i j.

Indeed A(D) is the sum of rank–one matrices of the form
−S j[Dg] j jS>j , −R j[Dh] j jR̃>j or −γB j[Dv] j jB>j , which we
name components. Each component has at most four non–
zero elements, all of equal magnitude ([Dg] j j, [Dh] j j or
γ[Dv] j j), and is (at least weakly) diagonally dominant. There
are three types of components.

• Components of the form−γB j[Dv] j jB>j (or−S j[Dg] j jS>j ),
where B j (or S j) connects two nodes. Two of the non–
zero entries, negative, are on the diagonal; the other two,
positive, are on the corresponding two columns and rows.

• Components of the form−R j[Dh] j jR̃>j , where R j connects
two nodes. There are two non–zero entries, of opposite
sign; the negative one is on the diagonal, the positive one
on the same column.

• Components of the form−γB j[Dv] j jB>j (or−R j[Dh] j jR̃>j ),
where B j (or R j) connects with node 0. There is a single
negative diagonal entry.

The fact that the system can be written as ż= A(D(z))z, with
A(D(z)) diagonally dominant having negative diagonal en-
tries, implies that the function V (z) = ‖z‖1, the 1–norm, is a
(weak) Lyapunov function (Willems 1976; Maeda, Kodama,
& Ohta 1978; Blanchini & Miani 2015). This proves Lya-
punov stability, but unfortunately not asymptotic stability.
Since our graph is strongly connected, matrix A(D(z)) is
irreducible: no ordering of the variables exists such that
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A(D(z)) assumes a block–triangular form:

A(D(z)) =

[
A11(D(z)) 0

A21(D(z)) A22(D(z))

]
. (12)

By contradiction, assume that the system can be brought
in the block–triangular form (12), with A11(D(z)) ∈ Rr×r

and A22(D(z))∈R(n−r)×(n−r). Clearly, this would imply that
there is no directed path from any of the nodes r+1, . . . ,n to
any node among 1, . . . ,r, thus contradicting the assumption
of strong connectivity. In view of the assumption of exter-
nal connection, matrix [S R B] has at least one column with
a single non–zero element, hence there will be at least one
component with a single (negative) diagonal entry.
Since A(D(z)) is irreducible, column diagonally dominant
with at least one strictly dominant diagonal entry, and has
negative diagonal entries, the 1–norm is a strong Lyapunov
function and z̄ = 0 is a globally asymptotically stable equi-
librium (Willems 1976; Maeda, Kodama, & Ohta 1978; for
further details, see Theorems 1 and 2 and the following re-
marks by Willems (1976) and Theorem 4.60 by Blanchini
& Miani (2015), where a thorough proof is provided). �

To ensure more flexibility in the control design, different
gains can be chosen for different control components:

v = sat(−ΓB>z), (13)

with Γ= diag(γ1, . . . ,γm) a positive definite diagonal matrix.

Corollary 1 Theorem 1 equivalently holds if the control (6)
is replaced by the control (13).

Proof From Lemma 1, Bsat(−ΓB>z) = −(BDvΓB>z) =
−(BD̃vB>z), where D̃v is still a positive definite diagonal
matrix. Hence, all the derivations can be carried out as in
the case of a scalar γ . �

If the graph is not strongly connected, the theorem holds
in a weaker form: in general, stabilizability and network–
decentralized stabilizability are not equivalent.

�
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Figure 3. The graph in Example 2.

Example 2 Consider the graph in Fig. 3, which is connected
([S R B] has row rank n = 3), but not strongly connected
(there is no admissible path leading from nodes 2 and 3
to node 1). Hence the assumptions of Theorem 1 are not
satisfied. If we assume a linear model ż = Fz+Bv, we get

F(D) =


−D2 0 0

D2 −D1 D1

0 D1 −D1

 , B =


1

0

0

 .
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Figure 4. A graph where maximal strongly–connected clusters are
encircled (left) and the corresponding aggregate graph (right).

The results in Theorem 1 cannot be applied to this case.
Indeed, although the graph is not externally connected, the
system is stabilizable (in fact it is reachable), but not in a
decentralized way. A decentralized choice of v1 should be a
function of z1 only, but no stabilization would be possible,
since the system is undetectable from output y = z1; hence,
agent v1 needs information also from z2 and z3.

We now relax the assumption of strong connectivity.

Theorem 2 Under Assumptions 1–4, consider a system of
the form (3), whose graph is not strongly connected. Then
the system can be globally uniformly stabilized (to z = 0)
by the network–decentralized control (6) if and only if the
system graph is externally connected.

Proof Sufficiency. If the system is not strongly connected,
then we can consider maximal strongly connected clusters
of nodes C1,C2, . . . ,CN , such that: (a) for each pair of nodes
i, j ∈ Ck, admissible paths exist in both directions; (b) for
each pair of nodes with i∈Ck and j 6∈Ck, an admissible path
in at least one direction is missing (see Fig. 4). Consider the
aggregate oriented graph formed by the clusters, as in Fig. 4:
a directed arc connects cluster l to cluster k if an admissi-
ble path leads from a node in l to a node in k. This aggre-
gate graph is acyclic. Indeed, the presence of a directed cy-
cle, say, C1,C2, . . . ,CN ,C1, would imply that C1,C2, . . . ,CN
form a strongly connected cluster, in contradiction with the
fact that Ci are maximal.
The clusters can be associated with diagonal blocks of A(D).
Since the aggregate graph is acyclic, if we consider the con-
trol (6) as before, these blocks can be arranged so that A(D)
has a lower triangular form. In the case of Fig. 4 we have

A(D(z)) =


A11(D) 0 0 0

A21(D) A22(D) 0 0

A31(D) 0 A33(D) 0

0 0 A43(D) A44(D)

 .

All the diagonal blocks Aii(D) are irreducible matrices, be-
cause they correspond to strongly connected clusters, and
weakly diagonally dominant. Moreover, the matrices Aii(D),
i = 1,2, . . .N−1, must have a diagonal entry that is strictly
diagonally dominant, referred to Aii(D). Indeed there is a
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connection either with another block (i.e., there is a non–
zero entry in a non–diagonal block, hence the correspond-
ing diagonal element in the diagonal block is dominant), or
with the external node; otherwise we would not have exter-
nal connection. Finally, ANN(D) must have a strictly domi-
nant diagonal entry due to the assumed connection with the
external node. Then all the Aii(D) are irreducibly diagonally
dominant and, since their diagonal entries are negative, all
the corresponding subsystems are asymptotically stable. In
view of the block–triangular form, this implies asymptotic
stability of the overall system (Blanchini & Miani 2015).
Necessity. Assume that the system is not externally con-
nected: nodes 1,2, . . . ,r, forming the subset C , are connected
to node 0 (i.e., a path leading to 0 starts from each of them),
while nodes r+1,r+2, . . . ,n, forming the subset D , are not
connected to 0 (i.e., no path starting from them leads to 0).
Then [S R B] can be partitioned as

[S | R | B] =

[
S1 0 R11 0 B1 0

0 S2 R21 R22 0 B2

]
,

with R21 non–negative. The zero blocks in S and B are due to
the absence of u–type or g–type arcs (which can be crossed
in both directions) connecting a pair of nodes belonging one
to C and one to D . The structure of R is motivated by the
fact that no h–type arc can start from a node in D and reach
a node in C . Since no node in D is connected with node
0, all the columns of the sub–matrices S2, R22 and B2 have
two non–zero elements, equal to −1 and 1. In particular, the
sum of the entries in each column is 0.
Now we partition the control in two vectors, v1 and v2,
corresponding to B1 and B2. If the control is decentralized,
v1 can be a function of z1 only and v2 of z2 only: v1 = v1(z1),
v2 = v2(z2). The overall system can be written as

ż1 = S1g1(z1)+R11h1(z1)+B1v1(z1)

ż2 = S2g2(z2)+R21h1(z1)+R22h2(z2)+B2v2(z2),

where g1(z1) and h1(z1) depend on z1 only, while g2(z2) and
h2(z2) on z2 only.
Assume by contradiction that the closed–loop system is sta-
ble. If z1(0) = 0, we would have z1(t) = 0 and v1(t) = 0
∀ t ≥ 0. The second equation would become

ż2 = S2g2(z2)+R22h2(z2)+B2v2(z2).

Consider the function sum(z2) = 1̄>z2; its derivative is
1̄>ż2 = 1̄>[S2g2 +R22h2 +B2v2] = 0, because S2, R22 and
B2 have zero–sum columns. Then, if sum(z2(0)) = κ 6= 0,
sum(z2(t)) = κ 6= 0 ∀ t ≥ 0, hence z2(t) does not converge
to 0. �

Remark 2 The control in the original variables has the
form u = ū + sat[−γB>(x− x̄)]. The control agents must
know the local equilibrium values of ū and x̄ associated with
the arcs they control and with the nodes to which they are
directly connected. The control u = sat(−γB>x), considered

by Bauso, Blanchini, Giarré, & Pesenti (2013), may not be
stabilizing (see Example 3 in Section 5).

In the absence of a control action, we recover the stability
result provided by Maeda, Kodama, & Ohta (1978); Jacquez
& Simon (1993) for compartmental systems of the form ż =
Sg(z)+Rh(z). For these systems, the condition rank[S R] = n
is equivalent to the existence of a “path to the outside world”
according to Theorem 7 by Maeda, Kodama, & Ohta (1978).

Corollary 2 If B = 0, then the system (3) is asymptotically
stable (in z = 0) if and only if rank[S R] = n.

Remark 3 In the case of control (7), the theory is essentially
unchanged, apart from Definition 2 that must be revised:
a path can be considered admissible only if both u–type
and h–type arcs, whenever included, have path–consistent
orientation. Then, along the same lines, it can be proved
that (7) is stabilizing if and only if the overall system is
externally connected. We omit the details for brevity.

4 Asymptotic flow optimality via decentralized control

In this section we propose a network–decentralized strategy,
inspired by (6), that considers just the marginally stable part
of the system and achieves optimality at steady state for any
d compatible with the flow constraints (as in Assumption 4).
Given a system of the form (1), we assume that the nodes are
grouped into macro–nodes. Each macro–node is a subsystem
with compartmental dynamics:

ẋi = Sig∗i (xi)+Rih∗i (xi)+ ∑
j∈Ci

Bi ju j +di, (14)

i = 1,2, . . . ,N, where xi(t) ∈ Rni and Ci is the set that in-
dexes control agents u j ∈ Rmi affecting macro–node i. Let

[S R] =
[
[S1 R1]

> [S2 R2]
> . . . [SN RN ]

>]>. This model ac-
counts for the case in which there is no shared dynamics
between the macro–nodes, except that pairs of them can be
influenced by the same control agent ui. It is relevant, for
instance, to model traffic between nodes, in each of which
the traffic splits in several direction according to some dy-
namic model (Blanchini, Giordano, & Montessoro 2014; see
Fig. 5, illustrating the example in Section 6).

Assumption 5 The uncontrolled system (1), composed of
subsystems of the form (14) with u j = 0, is input–to–state
stable within the left kernel of [S R]: for each perturba-
tion d̄ that is orthogonal to the left kernel of [S R] (i.e.,
E>[S R] = 0 implies E>d̄ = 0), there exist a unique steady
state x̄ such that 0 = Sg∗(x̄)+Rh∗(x̄)+ d̄. Moreover, for all
δ ∈ ker[S R]>, ‖δ‖ ≤ δ̄ , such that d(t) = d̄+δ , and all ini-
tial conditions x(0) = x̄+ z, with z ∈ ker[S R]>, we have

‖x(t)− x̄‖ ≤C1δ̄ +C2φ(t)‖x(0)− x̄‖,

where C1 and C2 are positive constants, while φ(t) is a con-
tinuous positive function, strictly decreasing and converging
to 0 as t→ ∞.
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For linear systems, this is equivalent to requiring that A is
asymptotically stable, or marginally stable without purely
imaginary eigenvalues (cf. Definition 7 in Section 4.1).

Here we are reconsidering the original variable x; we assume
that 0 is the reference level, which is not necessarily the
steady state x̄. Note that, being the demand d unknown to
the controller, we cannot assure exact convergence to the
desired value.

Lemma 2 Under Assumptions 1–5, denote by E> a basis
of the left kernel of [S R]: E>[S R] = 0. Then the control

u = sat(−γB>EE>x) (15)

assures that from any initial condition the system converges
to a finite ball ‖x‖ ≤ µ , for some µ > 0, if and only if

u− <−E>d < u+. (16)

Proof Applying the transformation e = E>x and f = F>x,
with [E F ] invertible, the system can be represented as

ė = E>Bu+E>d (17)
ḟ = F>Sĝ(e, f )+F>Rĥ(e, f )+F>Bu+F>d (18)

The subsystem (17) can be stabilized iff u− <−E>d < u+
(Blanchini, Miani, & Ukovich 2000) and the control u =
sat(−γB>Ee) assures convergence of e to some ē. Equation
(18) asymptotically becomes

ḟ = F>Sĝ(ē, f )+F>Rĥ(ē, f )+F>δ (t),

where the perturbation δ = [S(ĝ(e, f )− ĝ(ē, f ))+R(ĥ(e, f )−
ĥ(ē, f ))+Bū+d] is bounded and directed along the kernel
of the transformed matrix [Ŝ R̂] = F>[S R]. Then, in view of
Assumption 5, f (t) converges to a bounded equilibrium. �

The set of all equilibrium conditions x̄ and ū is parameterized
by the equation Sg(x̄)+Rh(x̄)+Bū+d = 0, or

Sigi(x̄i)+Rihi(x̄i)+ ∑
j∈Ci

Bi jū j +di = 0, ∀ i. (19)

Based on Lemma 2 and the decomposition (17)–(18), the
following result holds.

Lemma 3 Let d and x̄ be as in Assumption 5. Then, ū is an
admissible steady–state control input if and only if

ū ∈Ω(d) = {u ∈U : E>Bu+E>d = 0}. (20)

The next property from Bauso, Blanchini, Giarré, & Pesenti
(2013) is valid for pure buffer systems (ẋ = Bu+d).

Theorem 3 Assume E = I (the identity), S = 0, R = 0 and
the set Ω(d) in (20) has a non–empty interior. Then the
(network–decentralized) control (15) assures convergence to

some equilibrium x̄ and the corresponding control value at
steady state has minimum Euclidean norm:

lim
t→∞

u(t) = ū = arg min
u∈Ω(d)

‖u‖. (21)

We now show that the asymptotic minimum–norm property
holds as well in the case of compartmental systems.

Theorem 4 If condition (16) of Lemma 2 is satisfied and
Assumptions 1–5 hold, then the control (15) is asymptoti-
cally optimal, i.e., converges to the vector in Ω(d) having
minimum Euclidean norm in the sense of (21).

Proof We have u(t)→ ū, where ū is a finite value, because
the control is stabilizing and continuous. Indeed, from (17)–
(18), we have that e(t) converges to some finite ē and, by
assumption, f (t) converges to some finite f̄ .
The control u is a function of e = E>x only:

u = sat(−γB>EE>x) = sat(−γB>Ee).

Consider equation (17) to get

ė = E>Bsat(−γB>Ee)+E>d.

In view of Theorem 3 (considering B̃ = E>B and d̃ = E>d),
the control u converges to the minimum norm control ū
inside Ω(d). �

A suitable choice of matrix E allows us to achieve asymp-
totic optimality in a network–decentralized way, according
to the following definition that extends Definition 4 to the
macro–node case.

Definition 6 Denote by S j the set that indexes macro–
nodes directly affected by agent u j, i.e., subsystems associ-
ated with the non–zero components of the block–column B j.
The control is network–decentralized if any agent u j ∈ Rmi

decides its action based on the state variables in S j only:
u j = Φ j(xk, k ∈S j).

For instance, if B j = [ 0 B>2 j 0 B>4 j B>5 j ]>, then u j is
a function of vectors x2, x4, and x5. The control (15) is
network–decentralized if matrix E is chosen of a proper
block–diagonal form.

Proposition 1 Given the system composed by decoupled
subsystems of the form (14), take matrix E as

E> = blockdiag{E>1 ,E>2 , . . . ,E>N }, (22)

where E>i is a left kernel of Si: E>i Si = 0. Then the control
(15) is network–decentralized.

Remark 4 The proposed control choice minimizes the con-
trolled flow (not the overall flow). Optimality with respect
to the weighted norm u>Σ2u, with diagonal Σ, can be eas-
ily achieved by scaling the columns of matrix B as BΣ−1.
Achieving a minimum overall flow is not a simple task in our
structural setup, since the functions g and h are not known.
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4.1 The linear case

When g and h are linear, (14) becomes

ẋi = Aixi + ∑
j∈Ci

Bi ju j +di, (23)

where Ai are Metzler matrices ([Ai]pq ≥ 0 for p 6= q).

Definition 7 System (23) is a buffer system if Ai = 0. It is an
extended buffer system if Ai is either asymptotically stable
or marginally stable with marginally stable eigenvalue λ = 0
(of any multiplicity).

Proposition 2 An extended buffer system of the form (23)
is stable in the left kernel, i.e., satisfies Assumption 5.

Proof Any basis E> of the left kernel of A can be written
as in (22), where E>i is a left kernel of Ai (E>i Ai = 0). Take
a complementary basis F>i such that [E F ] is invertible, and
consider the transformation

T = blockdiag


 E>1

F>1

 ,
 E>2

F>2

 , . . . ,
 E>N

F>N

 .

The transformed matrix Â = T−1AT is block–diagonal and
each of its blocks has zero sub–blocks of the same dimen-
sion of the left kernel of Ai (since the system is stable by
assumption, the eigenvalue 0 does not have Jordan blocks
of dimension greater that 1):

Â = blockdiag


 0 0

P1 Q1

 ,
 0 0

P2 Q2

 , . . . ,
 0 0

PN QN

 ,

where matrices Qi have no zero eigenvalues, hence are
asymptotically stable. If d is orthogonal to the left kernel of
A, then the transformed d̂ has zero components correspond-
ing to the zero blocks of Âi and the system d

dt x̂(t) = Âx̂(t)+ d̂
is the parallel of systems of the form

d
dt

x̂i(t) =

 0 0

Pi Qi

 x̂i(t)+

 0

d̂i

 ,
which satisfy Assumption 5 (because their state is bounded).
Hence the overall system satisfies the assumption. �

The following proposition is a special case of Theorem 1.

Proposition 3 An extended buffer system is stabilizable iff
rank[A B] = n.

If Ai are continuous–time Markov matrices, a candidate
network–decentralized control is

u(t) = sat[−γB>Hx(t)], (24)

with γ > 0 and, denoting by en =
[

1√
n

1√
n . . .

1√
n

]>
,

H = blockdiag{en1e>n1
, . . . ,enie

>
ni
, . . . ,enN e>nN

}. (25)

This strategy can stabilize the system robustly, i.e., without
any knowledge about the Markov chain parameters (Blan-
chini, Giordano, & Montessoro 2014).

Theorem 5 Assume that the dominant eigenvalue λ = 0 is
simple for all matrices Ai. 5 Then the network–decentralized
control (24)–(25) robustly stabilizes the system and is asymp-
totically optimal in norm.

5 Robustness and positivity constraints: some remarks

The proposed control is intrinsically robust, being functions
g∗ and h∗ unknown. It is robust even under switching topolo-
gies, since we have absorbed the closed loop system in a
linear differential inclusion ż = A(D)z. If matrices S, R, B
are switching inside a set {Sk,Rk,Bk}, and the conditions of
Theorems 1 or 2 are satisfied for each k, we have a set of
linear differential inclusions ż = Ak(D)z, all sharing the 1–
norm as a Lyapunov function, and asymptotic stability of the
closed loop system is preserved (Blanchini & Miani 2015).
As mentioned earlier, the unknown exogenous demand d can
be time varying, possibly due to uncertainties on the equi-
librium condition. This is not an issue in our setup. In fact,
assume that a perturbation is present; then

ż(t) = A(D(t))z(t)+∆(t).

Clearly, exact convergence to 0 cannot be assured. However,
if ‖∆(t)‖ ≤ ∆max, a robust asymptotic bound of the form

lim sup
t→∞

‖z(t)‖ ≤ Z

is guaranteed if the linear differential inclusion is stable.
The size of Z depends on ∆max and the specific parameters.
Therefore, stability/boundedness can be assured only if the
value of ∆max is compatible with the control constraints.

In some applications, positivity of the variables is required.
Since compartmental systems are positive (i.e., the posi-
tive orthant is positively invariant), a legitimate question is
whether the control action preserves positivity.
Consider for brevity the linear case, in which Ai are Metzler
matrices, and the control u = sat(−γB>x). Since the term
Bsat(−γB>x) can be written as [−γBDv(x)B>]x, for some
state–dependent positive diagonal Dv(x), we have

ẋ = Ax− γBDv(x)B>x+d.

If B is an incidence matrix, [−γBDv(x)B>] is Metzler. Hence,
if d is a positive vector, the overall system is positive.
Conversely, the control (15), u = sat(−γB>EE>x), destroys
the positivity of the system. In practical applications such as
flow systems, if a “buffer” becomes empty the control must
be inhibited if it tries to force an outgoing flow (this might
introduce chattering). A typical solution is to impose a non–
zero reference level, greater than the physical zero level.

5 A sufficient (but not necessary) condition is that Ai is irreducible.
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Unlike (6) (u = ū+ sat[−γB>(x− x̄)]) and (15), the con-
trol u = sat(−γB>x) by Bauso, Blanchini, Giarré, & Pesenti
(2013), asymptotically optimal if A = 0, is not optimal when
A 6= 0 and might even lead to instability, even if the demand
flow is compatible with the constraints.

Example 3 Consider the system[
ẋ1

ẋ2

]
=

[
0 1

0 −1

] [
x1

x2

]
−

[
1 0

0 1

][
u1

u2

]
+

[
d1

d2

]
,

with 0 ≤ ui ≤ 1, d1 = 0.8 and d2 = 1. This demand is
compatible with the constraints. The saturated control is
ui = sat(γxi). The variable x2 converges to the steady state
x̄2 =

1
1+γ

d2, with d2 = 1; the outgoing flow is ū2 =
γ

γ+1 < 1,
so there is no saturation. The equation for x1 is then

ẋ1 = d1 +
1

1+ γ
d2−u1 = 0.8+

1
1+ γ

−u1.

Since u1 ≤ 1, the buffer x1 diverges if γ is not large enough
(it must be γ > 4). The control (24) is instead

u1 = u2 = sat
[

γ

2
(x1 + x2)

]
.

Considering the variable y = x1 + x2, we get

ẏ = d1 +d2−u1−u2 = 1.8−2sat
(

γ

2
y
)
,

Then y→ 1.8/γ and the control converges to ū1 = ū2 = 0.9,
which satisfies the constraints and has minimum norm.
The control (6), ui = sat[γ(xi− x̄i)]+ ūi, is stabilizing (al-
though not optimal) for any admissible x̄ and ū.

6 Example

We consider data transmission systems (as in Fig. 5a) in
which the macro–nodes are routers, internally modeled as a
network with a central node, providing switching capabili-
ties, and border nodes, representing the queues and the in-
terfaces toward physical links. Data can be transmitted from
a macro–node to another (see Fig. 5b), so that the buffer
levels in each router vary due to three types of flows:

• the uncontrolled flow coming from the internal network
and directed elsewhere;
• the controlled flow coming from other routers and directed

to the internal network;
• the controlled transiting flow, coming from and directed

to other routers.
Plain arrows represent controlled flows, while dashed arrows
represent uncontrolled flows. The internal traffic in each
macro–node splits in buffers with different destinations ac-
cording to some probability distribution (see Fig. 5c): traffic
splitting in each macro–node is modeled as a continuous–
time Markov chain. Disk–headed arrows represent stochastic
splitting. Consider for instance the macro–node A in Fig. 5c.

All the traffic arriving at the central node, denoted by IA,
splits in several directions, namely from IA to AB, AC, AD,
and to AA, the buffer for the data directed into the local net-
work A. However, in case of congestion of some link, the
traffic directed to some node can be reconsidered, with a
probability originated by an unknown re–routing criterion.
This is represented by the arrows from AB, AC, AD to IA.
The internal dynamics of the macro–node are modeled by a
continuous–time Markov matrix:

AA =



−(αAA +αAB +αAC +αAD) αBA αCA αDA αAA′

αAB −αBA 0 0 0

αAC 0 −αCA 0 0

αAD 0 0 −αDA 0

αAA 0 0 0 −αAA′


.

The first variable represents the arrival node; αAA, αAB,
αAC, αAD are the probabilities that, in time dt, a packet is
transferred to AA, AB, AC, AD. Conversely, αBA, αCA, αDA,
αAA′ are the probabilities that, in time dt, a packet is sent
back to IA, from AB, AC, AD or AA, for re–routing. The
matrices for the other macro–nodes are determined likewise.
Matrix B is an incidence matrix: each column B j corresponds
to a controlled arc connecting two macro–nodes, or leaving
a macro–node. The columns are determined as follows.

• If an arc connects a macro–node to the local network,
there is a −1 in the row corresponding to the exit node of
the macro–node, directing the traffic to the local network
(node AA in Fig. 5c).

• If an arc connects two macro–nodes, say A to B , there is
a −1 in the row corresponding to the node AB of macro–
node A (directing the traffic to B) and a 1 in the arrival
node IB of macro–node B.

At each node, the probability distribution is unknown and
thus cannot be used for control purpose. Given the trans-
mission network in Fig. 5a, we compare the behavior of the
network when three different control strategies are applied:

• the saturated control u = sat(−γB>x) in (6);
• the H–saturated control u = sat(−γB>Hx) in (24)–(25);
• the control u = sat(−γB̃>x) in (7).

The control components were bounded in the interval
[0 1] Mpackets/s. In the simulations shown in Fig. 6, the
component of d affecting node D was suddenly increased
to three times its initial value, to represent the case in
which node D suddenly increases its traffic in all direc-
tions. In Fig. 6 we see that, with a suitable choice of γ ,
the H–saturated control guarantees the fastest convergence
and the shortest queues in the buffers. Buffer queues are
important, being related to delays in the network. The
asymptotic value of the control is optimal, as expected:
u= [0.776 0.68 0.817 1 0.926 0.096 0 0 0.041 0 0.230 0
0.137 0 0.246 0 0.189 0 0.108 0.081 0]> is the
minimum norm control (we checked it via CVX).
If γ is taken too large, the H–saturated control can no
longer ensure positivity of the state variables. To have non–
negative buffer levels, we need to stop the flow (forcing
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Figure 5. A communication network (a), in which packets flow among routers (b), each seen as a macro–node having splitting dynamics (c).
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(a) u = sat(−γB>x)
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(b) u = sat(−γB>Hx)
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(c) u = sat(−γB̃>x)

Figure 6. Simulations of the network in Fig. 5a. Given γ = 0.3 and common random initial conditions, the three considered control
strategies are compared: the evolution of the control action u is in the above row, of the buffer levels x in the bottom row. Parameter
values for macro–node A were αAA = αAB = αAC = αAD = 1, αBA = αCA = αDA = 0.25, αAA′ = 0.05, and analogously for the other
macro–nodes. The value of d was initially [0.6 0.2 0.7 0.5 1.2]>, then at t = 150 it was switched to d = [0.6 0.2 0.7 1.5 1.2]>.

u = 0) associated with arcs coming out from empty buffers;
this discontinuity in the control may cause chattering.
In the simulation in Fig. 7, the Markov parameters are sud-
denly changed: αDE ,αEB,αBB are switched from 0.05 to 1,
modeling the case in which node D increases the traffic to
node E and node E the traffic to node B, resulting in a large
traffic through nodes D–E–B. Again, the H–saturated con-
trol ensures a much faster convergence, lower buffer levels
and smoother transitions. The resulting asymptotic value
u= [0.8579 0.742 0.9 1 1 0.1158 0 0 0.0421 0 0.3316 0
0.1579 0 0.2684 0 0.2895 0 0.1105 0.1789 0]> is
optimal (CVX–tested).

7 Conclusions

We have considered the flow control problem for a class of
compartmental systems and investigated different saturated
control strategies that are decentralized in the sense of net-
works: to decide its flow, each control agent can rely only on
the state variables of the nodes to which it is directly con-
nected. We have provided necessary and sufficient structural
conditions for closed–loop asymptotic stability, in terms of
connectivity of a network graph. The proposed approach
is suitable for generic nonlinear and uncertain compart-
mental systems: under suitable assumptions on the network
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(a) u = sat(−γB>x)
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(b) u = sat(−γB>Hx)
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(c) u = sat(−γB̃>x)

Figure 7. Simulations of the network in Fig. 5a. Given γ = 0.01, d = [0.6 0.2 0.7 1.8 1.2]> and common random initial conditions, the
three considered control strategies are compared: the evolution of u is in the above row, of x in the bottom row. For all the macro–nodes
k ∈M = {A,B,C,D,E}, αkk′ = 0.05 and α∗k = 0.25 (∗ denotes any macro–node in M suitably connected to k). For macro–nodes A and
C, αA∗ = αC∗ = 1. For macro–nodes B, D and E, αB∗ = αD∗ = αE∗ = 0.05; then, at t = 2000, αBB = αDE = αEB = 1.

topology, stabilization can be achieved robustly (nothing is
known about the system functions, apart from smoothness
and monotonicity requirements) in a decentralized way.
Moreover, when the overall system is composed of inde-
pendent compartmental subsystems, we have shown that a
particular network–decentralized saturated control strategy,
based on the feedback of the total amounts of resource in
the subsystems, is asymptotically optimal in terms of the
Euclidean norm of the controlled flow.
Among the limits of the approach, we have considered a sta-
bilizability problem and we have not been concerned with
set–point regulation, an important issue for compartmental
systems. We believe that our techniques can be successfully
combined with existing results, such as those by Lee & Ahn
(2015); Haddad, Hayakawa, & Bailey (2006). Future re-
search directions can explore the possibility of exactly reach-
ing the desired set–point, at least for some of the variables,
by suitably equipping the control arcs with integrators.
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