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1 Analysis of the inhibited and activated modules

The oscillator and the bistable systems considered in the main paper can be analyzed following the theory
proposed in [1, 2], which allows us to show that they structurally have (by design) the capacity to respectively
exhibit oscillations and bistability.

On the one hand, it can be shown that a system given by the feedback interconnection of an inhibitor module
and an activator module is the negative feedback interconnection of two monotone systems, and is therefore
a strong candidate oscillator according to [2] (if driven to instability, the system necessarily exhibits sustained
oscillations). On the other hand, a system given by the feedback interconnection of mutually inhibiting modules
is the positive feedback interconnection of two monotone systems, and is therefore a strong candidate bistable
system according to [2] (if the system is driven to instability, bistable phenomena necessarily arise).

Here we demonstrate the same properties following an alternative, simplified route. We begin by analyzing
the properties of the inhibited and the activated modules individually.

1.1 Analysis of the inhibited module

1.1.1 Analysis in the absence of direct titration reaction

We recall the model for the inhibited module:

ẋT = α(xtotT − xT )xA − δxT rI (1)

ẋA = κ(xtotA − xA − xT )− α(xtotT − xT )xA (2)

ṙI = βuI − δxT rI − φrI . (3)

Assumption 1. We assume that xtotA ≥ xtotT .

Additionally, we make an assumption that relates parameters κ, α, and the total concentrations of target and
constitutive activator.

Assumption 2. We assume that xtotA − xtotT −
κ
α ≥ 0.

Proposition 1. For a given concentration of inhibitor source ūI , system (1)–(3) has unique equilibrium values
x̄T , x̄A and r̄I . The equilibrium x̄T is a monotonic, strictly decreasing function of ūI .

Proof. We first find an expression of x̄A as a function of x̄T . From ẋA = 0, we obtain:

x̄A(x̄T ) =
κ(xtotA − x̄T )

α(xtotT − x̄T ) + κ

.
= gA(x̄T ).

It can be verified that under Assumptions 1 and 2, ∂gA(x̄T )/∂x̄T ≥ 0. Thus gA(x̄T ) is a continuous, monoton-
ically increasing function of x̄T , and, for a given value of uI , x̄T , there is a unique equilibrium x̄A.

Now we find r̄I as a function of x̄T . From ẋT = 0, We obtain:

r̄I(x̄T ) =
α(xtotT − x̄T )x̄A(x̄T )

δx̄T
=
α(xtotT − x̄T )

δx̄T

κ(xtotA − x̄T )

α(xtotT − x̄T ) + κ

=
κ

δ

(xtotA − x̄T )

x̄T

(xtotT − x̄T )

(xtotT − x̄T ) + κ
α

.
=
κ

δ
A(x̄T )B(x̄T ),

where A(x̄T )
.
=

(xtotA −x̄T )
x̄T

and B(x̄T )
.
=

(xtotT −x̄T )

(xtotT −x̄T )+ κ
α

. Since ∂A/∂x̄T = −xtotA
x̄2
T
< 0, ∂B/∂x̄T = −

κ
α

(xtotT −x̄T+ κ
α

)2 < 0,

and both A(x̄T ) and B(x̄T ) are positive for arbitrary parameter values (except at x̄T = xtotT , where B(x̄T ) = 0),
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we can conclude that the partial derivative ∂r̄I(x̄T )/∂x̄T = κ
δ [(∂A/∂x̄T )B(x̄T ) +A(x̄T )(∂B/∂x̄T )] < 0, thus

r̄I is a monotonic, strictly decreasing function of x̄T .
Finally, from ṙI = 0 we find

ūI =
1

β
(δx̄T + φ)r̄I(x̄T )

.
=h(x̄T ).

To verify that the introduced function h(x̄T ) is a strictly decreasing monotonic function of x̄T , we rewrite it as
h(x̄T ) = 1

β [δx̄T r̄I(x̄T ) + φr̄I(x̄T )] = 1
β [C(x̄T ) + φrI(x̄T )]. Because β and φ are positive constants, and we

already verified that ∂r̄I(x̄T )/∂x̄T < 0, we only need to check that ∂C(x̄T )/∂x̄T < 0. It is sufficient to note
that C(x̄T ) = κ(xtotA − x̄T )B(x̄T ) (see definition of B(x̄T ) above). Since (∂B/∂x̄T ) < 0, ∂(xtotA − x̄T )/∂x̄T < 0,
and both B(x̄T ) > 0 and (xtotA − x̄T ) > 0, we have that ∂C(x̄T )/∂x̄T < 0.

Being h(x̄T ) a continuous, monotonic, strictly deceasing function of x̄T , its inverse is also a continuous,
monotonic, decreasing function: x̄T = g(ūI) = h−1(ūI). We conclude that the equilibrium x̄T for a given ūI is
unique, and so are the other equilibria x̄A and r̄I . In particular, the higher the concentration of input UI , the
smaller the equilibrium concentration of XT .

We can show that a suitable set is positively invariant for the system: namely, any trajectory starting in this
set is confined in the set for all time instants.

Proposition 2. The set

0 ≤ xT ≤ xtotT ,
κ

α
≤ xA ≤ xtotA , rI ≥ 0 (4)

is positively invariant [3] for the system (1)–(3) for any uI .

Proof. Since all the variables are non–negative and the variables xT and xA cannot exceed their total values, all
the constraints are obvious with the exception of xA ≥ κ/α. We show that this constraint cannot be violated: if
we start with xA(0) ≥ κ/α, then the constraint is satisfied for all t > 0. In fact, for xA = κ/α we have

ẋA = κ(xtotA − κ/α− xT )− α(xtotT − xT )(κ/α) = κ(xtotA − xtotT − κ/α) ≥ 0

due to Assumption 2.

Proposition 3. The solutions of system (1)–(3) are bounded.

Proof. Species xT and xA are bounded by assumption. The dynamics of the regulator satisfies the inequality
ṙI(t) ≤ βumaxI − φrI . By applying the comparison principle [6], we conclude that

rI(t) ≤ rI(0)e−φt + βumaxI (1− e−φt)/φ,

which ensures rI(t) ≤ max{rI(0), βumaxI /φ} at any point in time.

Proposition 4. The unique equilibrium of system (1)–(3) is locally stable.

Proof. For a given input uI , the system admits a unique equilibrium (see Proposition 1). The Jacobian matrix

JI =

−(αx̄A + δr̄I) α(xtotT − x̄T ) −δx̄T
−κ+ αx̄A −[κ+ α(xtotT − x̄T )] 0
−δr̄I 0 −(δx̄T + φ)


can be recast as a Metzler matrix (namely, a matrix whose non–diagonal entries are nonnegative) by changing
the sign to the last row and column; in fact term αx̄A − κ > 0 in view of Proposition 2. A Metzler matrix has
exclusively eigenvalues with negative real part (hence, is stable) if and only if all the coefficients of its characteristic
polynomial det(λI − JI) are positive. A computation of the characteristic polynomial of JI shows that all its
coefficients are positive.
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Remark 1. Systems whose Jacobian is (or is similar, up to a change of sign, to) a Metzler matrix are called
monotone. As we will show later, in the absence of titration both the oscillator and the bistable system can be
seen as the interconnection of two monotone components (corresponding to the modules).

1.1.2 Analysis in the presence of direct titration reactions

When titration reactions are present, the equations describing the system become:

ẋT = α(xtotT − xT )xA − δxT rI (5)

ẋA = κ(xtotA − xA − xT )− α(xtotT − xT )xA − νxArI (6)

ṙI = βuI − δxT rI − φrI − νxArI . (7)

Proposition 5. The solutions of system (5)–(7) are globally bounded.

Proof. All of the variables are non–negative and the variables xT and xA are upper–bounded by their total values
xtotT and xtotA . The boundedness of rI can be proved resorting to the comparison principle, as previously done for
the system in the absence of titration.

Equilibria: First we find an expression for x̄A as a function of x̄T . From ẋT + ẋA = 0, we obtain:

κ(xtotA − x̄A − x̄T ) = (δx̄T + νx̄A)r̄I ,

and from ẋT = 0,
α(xtotT − x̄T )x̄A = δx̄T r̄I .

Then

r̄I =
α(xtotT − x̄T )x̄A

δx̄T
=
κ(xtotA − x̄A − x̄T )

δx̄T + νx̄A
.

We obtain a second order polynomial of the following form: axx̄
2
A + bxx̄A + cx = 0, where

ax =
αν(xtotT − x̄T )

δx̄T
, bx = α(xtotT − x̄T ) + κ, cx = −κ(xtotA − x̄T ).

Since cx is always negative, there is a unique positive and acceptable solution:

x̄A(x̄T ) =
−bx +

√
b2x − 4axcx

2ax
.

With this expression we can find r̄I as a function of x̄T . From ẋT = 0, we obtain:

r̄I(x̄T ) =
α(xtotT − x̄T )x̄A(x̄T )

δx̄T
.

From ṙI = 0,

ūI =
1

β
(δx̄T + φ+ νx̄A(x̄T ))r̄I(x̄T ).

Jacobian analysis: The Jacobian matrix becomes:

JI =

−(αx̄A + δr̄I) α(xtotT − x̄T ) −δx̄T
−κ+ αx̄A −[κ+ α(xtotT − x̄T ) + νr̄I ] −νx̄A
−δr̄I −νr̄I −(δx̄T + νx̄A + φ)

 .
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Proposition 6. The unique equilibrium of (5)–(7) is locally stable.

Proof. Let p(s) = det(sI−JI) = p3s
3 +p2s

2 +p1s+p0 be the characteristic polynomial of the linearized system.
The polynomial is:

p(s) = det

 s+ (a+ b) −c d
κ− a s+ (κ+ c+ n) m
b n s+ (d+m+ φ)

 .
We have p3 = 1, p2 = a+ b+ c+ d+ n+m+ φ+ κ,

p1 = det

[
−(a+ b) c
a− κ −(κ+ c+ n)

]
+ det

[
−(a+ b) −d
−b −(d+m+ φ)

]
+ det

[
−(κ+ c+ n) −m

−n −(d+m+ φ)

]
,

and finally p0 = det(−JI). Some simple and tedious computations show that pk > 0, k = 0, 1, 2, 3. This is
necessary, yet not sufficient for stability. According to the Routh–Hurwitz criterion, a polynomial has roots with
negative real part if and only if the elements of the first column of the Routh–Hurwitz table are positive. Such a
table is:

p3 p1

p2 p0
p2p1−p0p3

p2
0

p0 0

Then p3 = 1 > 0, p2 > 0 and p0 > 0. It can be verified analytically that also p2p1 − p0p3 > 0, for all positive
values of the coefficients.

1.1.3 Parameter sensitivity

We numerically solved the ODEs describing the behavior of the inhibited module when each reaction rate is varied
in a range. ODEs were integrated using MATLAB ode23s routine. The results are shown in Fig. S1.

1.2 Analysis of the activated module

1.2.1 Analysis in the absence of direct titration reaction

We recall the model for the activated module:

ẋT = α(xtotT − xT )rA − δxTxI (8)

ẋI = κ(xtotI − xI − (xtotT − xT ))− δxTxI (9)

ṙA = βuA − α(xtotT − xT )rA − φrA (10)

Assumption 3. We assume that xtotI ≥ xtotT .

Additionally, we make an assumption that relates parameters κ, δ, and the total concentrations of target and
constitutive inhibitor.

Assumption 4. We assume that xtotI − xtotT −
κ
δ ≥ 0.

Proposition 7. For a given concentration of activator source ūA, system (8)–(10) has unique equilibrium values
x̄T , x̄I and r̄A. The equilibrium x̄T is a monotonic, strictly increasing function of ūA.
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Figure S1: Numerical simulation showing the dependence of the normalized target concentration of the
inhibited module (xT (t)/xtotT ) when the reaction rates are varied.
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Proof. We begin by finding an expression for x̄I as a function of x̄T . From ẋI = 0, we obtain:

x̄I(x̄T ) =
κ(xtotI − (xtotT − x̄T ))

δx̄T + κ
.

The equilibrium x̄I is a monotonic decreasing function of x̄T , as can be seen by checking the sign of the partial
derivative:

∂x̄I
∂x̄T

= − δ
κ

xtotI − xtotT −
κ
δ

( δκ x̄T + 1)2
≤ 0,

in view of Assumption 4.
We continue by finding r̄A as a function of x̄T . From ẋT = 0, we obtain:

r̄A(x̄T ) =
δx̄T

α(xtotT − x̄T )
x̄I(x̄T ).

With the same approach followed in the proof of Proposition 1, we can show that the equilibrium r̄A is a
monotonic, strictly increasing function of x̄T . Finally, from ṙA = 0 we find:

ūA =
1

β

(
α(xtotT − x̄T ) + φ

)
r̄A(x̄T ) =

1

β
(δx̄T x̄I(x̄T ) + φr̄A(x̄T ))

.
= w(x̄T ).

To identify structural trends between ūA and x̄T , we check the sign of the partial derivative ∂(x̄T x̄I(x̄T ))/∂x̄T ;
some tedious computations show that this partial derivative is always strictly positive, except for x̄T = 0. Therefore
w(x̄T ) is a monotonic, strictly increasing function of x̄T ; its inverse x̄T

.
=k(ūI) = w−1(ūI) is thus also a strictly

increasing function. We conclude that the equilibrium x̄T for a given ūA is unique, and so are the other equilibria
x̄I and r̄A. In particular, the higher the concentration of input UA, the smaller the equilibrium concentration of
XT .

Proposition 8. The set

0 ≤ xT ≤ xtotT ,
κ

δ
≤ xI ≤ xtotI , rA ≥ 0 (11)

is positively invariant [3] for (8)–(10).

Proof. Since all the variables are non–negative and the variables xT and xI cannot exceed their total values, all
the constraints are obvious with the exception of κ/δ ≤ xI . We show that this constraint cannot be violated:
if we start with xI(0) ≥ κ/δ, then the constraint is satisfied for all t > 0. In fact, due to Assumption 4, for
xI = κ/δ we have

ẋI = κ(xtotI −
κ

δ
− xtotT + xT )− δxT

κ

δ
= κ(xtotI − xtotT −

κ

δ
) ≥ 0.

Proposition 9. The solutions of system (8)–(10) are bounded.

Proof. Species xT and xI are bounded by assumption. The dynamics of the regulator satisfies the inequality
ṙA(t) ≤ βumaxA − φrA. In view of the comparison principle, rA(t) ≤ rA(0)e−φt + umaxA β(1 − e−φt)/φ, which
ensures rA(t) ≤ max{rA(0), umaxA β/φ} at any point in time.

Proposition 10. The unique equilibrium of system (8)–(10) is locally stable.
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Proof. We follow the proof of Proposition 4. The Jacobian matrix is

JA =

 −(αr̄A + δx̄I) −δxT α(xtotT − x̄T )
κ− δx̄I −(κ+ δx̄T ) 0
αr̄A 0 −α(xtotT − x̄T )− φ


and, since δx̄I − κ > 0 (Proposition 8), it can be recast as a Metzler matrix by changing sign to its second
row and column. As can be shown by direct computation, all the coefficients of the characteristic polynomial
det(λI − JA) are positive.

1.2.2 Analysis in the presence of direct titration reactions

When titration reactions are present, the model becomes:

ẋT = α(xtotT − xT )rA − δxTxI (12)

ẋI = κ(xtotI − xI − (xtotT − xT ))− δxTxI − νxIrA (13)

ṙA = βuA − α(xtotT − xT )rA − φrA − νxIrA (14)

Proposition 11. The solutions of system (12)–(14) are globally bounded.

Proof. Analogous to that of Proposition 5.

Equilibria: First we find an expression for x̄I as a function of x̄T . From ẋT − ẋI = 0, we obtain:

κ(xtotI − x̄I − (xtotT − x̄T )) = (α(xtotT − x̄T ) + νx̄I)r̄A,

and from ẋT = 0,
α(xtotT − x̄T )r̄A = δx̄T x̄I .

Then

r̄A =
κ(xtotI − x̄I − (xtotT − x̄T ))

α(xtotT − x̄T ) + νx̄I
=

δx̄T x̄I
α(xtotT − x̄T )

and we obtain a second order polynomial of the following form: axx̄
2
I + bxx̄I + cx = 0, where

ax =
δνx̄T

α(xtotT − x̄T )
, bx = αx̄T + κ, cx = −κ(xtotI − (xtotT − x̄T )).

Since cx is always negative, the unique positive and acceptable solution is

x̄I(x̄T ) =
−bx +

√
b2x − 4axcx

2ax
.

Then, we find r̄A as a function of x̄T . From ẋT = 0, we obtain:

r̄A(x̄T ) =
δx̄T x̄I(x̄T )

α(xtotT − x̄T )
.

Finally from ṙA = 0:

ūA =
1

β
(α(xtotT − x̄T ) + φ+ νx̄I(x̄T ))r̄A(x̄T ).

Jacobian analysis: The Jacobian matrix is now:

JA =

−(αr̄A + δx̄I) −δx̄T α(xtotT − x̄T )
κ− δx̄I −(κ+ δx̄T + νr̄A) −νx̄I
αr̄A −νr̄A −(α(xtotT − x̄T ) + νx̄I + φ)
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Proposition 12. The unique equilibrium of (12)–(14) is locally stable.

Proof. Analogous to that of Proposition 6.

1.2.3 Parameter sensitivity

Fig. S2 shows the behavior of the activated module when each reaction rates is varied in a range. ODEs were
integrated using MATLAB ode23s routine.

Figure S2: Numerical simulation showing the dependence of the normalized target concentration of the
activated module (xT (t)/xtotT ) when the reaction rates are varied.

2 Oscillator

As discussed in the main text, we build an oscillator via the feedback interconnection of an inhibited module and
an activated module. The reactions occurring in the system are:
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Activated subsystem Inhibited subsystem

Activation: XR,A + Z∗T
αz−−→ ZT + Z∗I XA +X∗T

αx−−→ XT

Output production: ZT
βz−−→ ZR,I + ZT XT

βx−−→ XR,A +XT

Inhibition: ZT + ZI
δz−−→ Z∗T ZR,I +XT

δx−−→ X∗T +X∗A

Conversion: Z∗I
κz−−→ ZI X∗A

κx−−→ XA

Direct titration: XR,A + ZI
νz−−→ Z∗I ZR,I +XA

νx−−→ X∗A.

Degradation: ZR,I
φz−−→ 0 XR,A

φx−−→ 0

The regulators interconnecting the modules are xR,A, which is the output of the inhibited module and works as
an activator for the activated module, and zR,I , which is the output of the activated module and works as an
inhibitor for the inhibited module. We recall that we assume mass conservation for species ZT , ZI , XT , and XA:
ztotT = zT + z∗T , ztotI = zI + z∗I + z∗T , xtotT = xT + x∗T , xtotA = xA + x∗A + xT . Using the law of mass action we
derive the differential equations:

żT = αz(z
tot
T − zT )xR,A − δzzT zI , (15)

żI = κz(z
tot
I − zI − (ztotT − zT ))− δzzT zI − νzxR,A zI , (16)

ẋR,A = βxxT − αz(ztotT − zT ) xR,A − νzxR,A zI − φxxR,A, (17)

ẋT = αx(xtotT − xT )xA − δxxT zR,I , (18)

ẋA = κx(xtotA − xA − xT )− αx(xtotT − xT ) xA − νxxA zR,I , (19)

żR,I = βzzT − δxxT zR,I − νxxA zR,I − φzzR,I . (20)

Throughout our analysis, we assume that ztotI ≥ ztotT and xtotA ≥ xtotT .
As a preliminary result, we notice that the interconnection does not change the boundedness property of the

solution.

Proposition 13. The solutions of system (15)–(20) are bounded.

Proof. The proposition follows from the fact that each subsystem has bounded solution for bounded inputs.
Then we notice that the inhibited subsystem (xT –xA–zR,I) has input βzzT ≤ βzz

tot
T , which is bounded, while

the activated subsystem (zT –zI–xR,A) has input βxxT ≤ βxxtotT , bounded as well.

2.1 Analysis in the absence of direct titration reactions

2.1.1 Equilibrium conditions

In this section, we consider the oscillatory system (15)–(20) in the absence of titration reactions, i.e., with
νx = νz = 0. We derive equilibrium conditions that are consistent with those derived for the inhibited and
activated module. First, we find an expression for x̄T as a function of z̄T . From żI = 0, we obtain:

z̄I(z̄T ) =
κz(z

tot
I − (ztotT − z̄T ))

δz z̄T + κz
.

From żT = 0, we obtain:

x̄R,A(z̄T ) =
δz z̄T z̄I(z̄T )

αz(ztotT − z̄T )
.
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From ẋR,A = 0,

x̄T =
1

βx
(αz(z

tot
T − z̄T ) + φx)x̄R,A(z̄T )

.
= w(z̄T ).

As shown in Proposition 1, x̄T is a monotonically decreasing function of z̄T .
We now find an expression for z̄T as a function of x̄T . From ẋA = 0, we obtain:

x̄A(x̄T ) =
κx(xtotA − x̄T )

αx(xtotT − x̄T ) + κx
.

From ẋT = 0, we obtain:

z̄R,I(x̄T ) =
αx(xtotT − x̄T )x̄A(x̄T )

δxx̄T
.

From żR,I = 0,

z̄T =
1

βz
(δxx̄T + φz)z̄R,I(x̄T )

.
= h(x̄T ).

As shown in Proposition 7, z̄T is a monotonically increasing function of x̄T . The functions h(x̄T ) and w(z̄T )
found above, because of their opposite trend, can admit a single intersection in the plane (x̄T , z̄T ). These
equilibrium conditions will be used to find numerically or graphically the unique equilibrium point of the system.

2.1.2 Structural oscillations

The equilibrium conditions derived earlier show that there exists a single equilibrium, around which we linearize
the system. It is convenient to change the sign of some of the variables: −zI , −xT , −xA. The Jacobian matrix
of system (15)–(20) with νz = νx = 0 becomes:

J =


−αz x̄R,A − δz z̄I δz z̄T αz(ztotT − z̄T ) 0 0 0
−κz + δz z̄I −κz − δz z̄T 0 0 0 0
αz x̄R,A 0 −αz(ztotT − z̄T )− φx 0 −βx 0
βz 0 0 −δxx̄T − φz δxz̄R,I 0
0 0 0 δxx̄T −αxx̄A − δxz̄R,I αx(xtotT − x̄T )
0 0 0 0 −κx + αxx̄A −κx − αx(xtotT − x̄T )

 (21)

We call strong candidate oscillator [1, 2] a system which can be locally unstable exclusively due to the
existence of complex conjugate eigenvalues with nonnegative real part (in other words, the system does not admit
real nonnegative eigenvalues).

Proposition 14. Under Assumptions 1, 2, 3, and 4, system (15)–(20) is a strong candidate oscillator.

Proof. The computation of the characteristic polynomial det(λI −J) reveals that all the coefficients are positive
(note that we assume −κz + δz z̄I > 0 and −κx + αxx̄A > 0). A polynomial with positive coefficients cannot
have nonnegative real roots.

2.1.3 Linear analysis

The Jacobian (21) clearly shows that the system is the feedback interconnection of two subsystems of the third
order. To simplify the notation we define:

a1
.
= δz z̄T , a2

.
= δxx̄T ,

b1
.
= δz z̄I , b2

.
= δxz̄R,I ,

c1
.
= αzx̄R,A, c2

.
= αxx̄A,

d1
.
= αz(z

tot
T − z̄T ), d2

.
= αx(xtotT − x̄T ),

e1
.
= κz, e2

.
= κx,

h1
.
= φx, h2

.
= φz,
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Then, defining vectors ξ1 =
[
zT −zI xR,A

]>
and ξ2 =

[
zR,I −xT −xA

]>
, the linearized system can be

rewritten as the feedback interconnection of:

ξ̇1 = A1ξ1 + βxB1ω2, ω1 = C1ξ1,

and
ξ̇2 = A2ξ2 + βzB2ω1, ω2 = C2ξ2,

where:

A1 =

−(c1 + b1) a1 d1

−e1 + b1 −(e1 + a1) 0
c1 0 −(d1 + h1)

 , B1 =

 0
0
−1

 , C1 =
[

1 0 0
]

(22)

and

A2 =

 −(a2 + h2) b2 0
a2 −(c2 + b2) d2

0 −e2 + c2 −(e2 + d2)

 , B2 =

 1
0
0

 , C2 =
[

0 1 0
]
. (23)

By applying the Laplace transform method, we can obtain an input-output representation of the two sub-
systems in terms of their transfer functions1: F1(s) = −n1(s)

d1(s) and F2(s) = n2(s)
d2(s) . Since the overall feedback

loop is negative and all the coefficients of the numerator and denominator polynomials n1(s), d1(s), n2(s), d2(s)
are positive, the closed–loop characteristic polynomial also has positive coefficients. Therefore it cannot admit
non-negative real roots, as stated in the following proposition, hence the system is a strong candidate oscillator.

Proposition 15. Consider system (15)–(20), where νx = νz = 0, linearized around its only equlibrium point.
Its characteristic polynomial has no real nonnegative roots. If instability occurs, it is oscillatory, namely due to
complex roots with positive real part.

The fact that the system is a candidate oscillator in the strong sense does not mean that the system oscillates
for any choice of the parameters. In fact, numerical simulations show that oscillations occur only in a limited
region in the plane defined by βz and βx.

It is worth noticing that in the absence of titration reactions, being c2 − e2 and b1 − e1 positive quantities,
the system is the negative feedback interconnection of two monotone subsystems, associated with the modules
(see [1, 2] and the references therein): this structurally explains its oscillatory nature.

2.2 Analysis in the presence of direct titration reactions

2.2.1 Equilibrium conditions

We consider in this section the oscillatory system (15)–(20) in the presence of non–zero νx and νz. We begin by
finding two expressions of x̄R,A as a function of the other variables. This can be done by setting żT − żI = 0
and żT = 0. Then, we equate the two expressions for x̄R,A and we achieve:

δz z̄T z̄I
αz(ztotT − z̄T )

=
κz(z

tot
I − z̄I − (ztotT − z̄T ))

αz(ztotT − z̄T ) + νz z̄I
,

1Given a linear system with an input u(t) and an output y(t), its transfer function F (s) is the ratio between the Laplace transform

of the output and the Laplace transform of the input: F (s) = Y (s)
U(s)

.
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which defines a relationship between z̄T and z̄I at steady state. The equilibrium z̄I can thus be derived as the

solution of the second order equation az z̄
2
I + bz z̄I + cz = 0, where az =

(
δzνz
αz

)
z̄T

ztotT −z̄T
, bz = (δz z̄T + κz) and

cz = −κz(ztotI − (ztotT − z̄T )). Assuming ztotI > ztotT , since azcz < 0, the only admissible positive solution is:

z̄I(z̄T ) =
−bz +

√
b2z − 4azcz

2az
.

Then,

x̄R,A =
δz z̄T z̄I(z̄T )

αz(ztotT − z̄T )
.

Finally, we can find x̄T as a function of z̄T , by setting ẋR,A = 0:

x̄T =
1

βx
(αz(z

tot
T − z̄T ) + φx + νz z̄I(z̄T ))x̄R,A(z̄T ).

We can proceed similarly to derive z̄T as a function of x̄T . Setting ẋT + ẋA = 0 and ẋT = 0, we find two
different expressions for z̄R,I . Equating these expressions we find:

αx(xtotT − x̄T ) x̄A
δxx̄T

=
κx(xtotA − x̄A − x̄T )

δxx̄T + νxx̄A,

so we can isolate the relationship between x̄T and x̄A at steady state. As done before, we derive the equi-

librium x̄A as the solution of the second order equation axx̄
2
A + bxx̄A + cx = 0, where ax =

(
αxνx
δx

)
xtotT −x̄T
x̄T

,

bx =
(
αx(xtotT − x̄T ) + κx

)
and cx = −κx(xtotA − x̄T ). Assuming xtotA > xtotT , since again axcx < 0, the only

admissible positive solution is:

x̄A(x̄T ) =
−bx +

√
b2x − 4axcx

2ax
.

Then,

z̄R,I =
αx(xtotT − x̄T ) x̄A(x̄T )

δxx̄T
.

Finally, we can find z̄T as a function of x̄T , by setting żR,I = 0:

z̄T =
1

βz
(δxx̄T + φz + νxx̄A(x̄T ))z̄R,I(x̄T ).

Once we find the only admissible equilibrium values z̄T , z̄I , x̄T and x̄A we can find z̄R,I and x̄R,A.

żR,I = 0 =⇒ z̄R,I =
βz z̄T

δxx̄T + νxx̄A + φz
,

ẋR,A = 0 =⇒ x̄R,A =
βxx̄T

αz(ztotT − z̄T ) + νz z̄I + φx
.

2.2.2 Structural oscillations

As done before, we change the sign to some of the variables, which become −zI , −xT , −xA; the Jacobian of
the system in the presence of titration reactions becomes matrix Jν

Jν = (24)

−αz x̄R,A − δz z̄I δz z̄T αz(ztotT − z̄T ) 0 0 0
−κz + δz z̄I −κz − δz z̄T − νz x̄R,A νz z̄I 0 0 0

αz x̄R,A νz x̄R,A −αz(ztotT − z̄T ) − νz z̄I − φx 0 −βx 0

βz 0 0 −δxx̄T − νxx̄A − φz δxz̄R,I νxz̄R,I
0 0 0 δxx̄T −αxx̄A − δxz̄R,I αx(xtotT − x̄T )

0 0 0 νxx̄A −κx + αxx̄A −κx − αx(xtotT − x̄T ) − νxz̄R,I
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2.2.3 Linear analysis

As done earlier, we simplify the notation defining:

a1
.
= δz z̄T , a2

.
= δxx̄T ,

b1
.
= δz z̄I , b2

.
= δxz̄R,I ,

c1
.
= αzx̄R,A, c2

.
= αxx̄A,

d1
.
= αz(z

tot
T − z̄T ), d2

.
= αx(xtotT − x̄T ),

e1
.
= κz, e2

.
= κx,

f1
.
= νzx̄R,A, f2

.
= νxx̄A,

g1
.
= νz z̄I , g2

.
= νxz̄R,I .

h1
.
= φx, h2

.
= φz

Then, defining ξ1 =
[
zT −zI −xR,A

]>
and ξ2 =

[
zR,I −xT −xA

]>
, the linearized system can be

rewritten as the feedback interconnection of two linear systems:

ξ̇1 = A1ξ1 + βxB1ω2, ω1 = C1ξ1,

and
ξ̇2 = A2ξ2 + βzB2ω1, ω2 = C2ξ2,

where:

A1 =

 −(c1 + b1) a1 d1

−e1 + b1 −(e1 + a1 + f1) g1

c1 f1 −(d1 + g1 + h1)

 , B1 =

 0
0
−1

 , C1 =
[

1 0 0
]

(25)

and

A2 =

 −(a2 + f2 + h2) b2 g2

a2 −(c2 + b2) d2

f2 −e2 + c2 −(e2 + d2 + g2)

 , B2 =

 1
0
0

 , C2 =
[

0 1 0
]
. (26)

The transfer functions associated with the two subsystems (25) and (26) are:

F1(s) = −d1s+ a1g1 + d1e1 + d1a1 + d1f1

p1(s)

and

F2(s) =
a2s+ a2e2 + a2d2 + a2g2 + d2f2

p2(s)
,

where p1(s) and p2(s) are third order polynomials having positive coefficients.
As in the case without titration reactions, the interconnection of the two subsystems is a negative feedback

loop. The polynomials of the numerator and denominator of both the transfer functions have positive coefficients.
As a consequence, the closed–loop characteristic polynomial has positive coefficients. A polynomial with positive
coefficients cannot have nonnegative real roots. Therefore, instability can occur only with complex conjugate
poles with positive real part, thus it can only be oscillatory. This confirms the result of our previous structural
analysis.

Proposition 16. Consider system (15)–(20), where νx > 0, νz > 0, linearized around its only equlibrium point.
Its characteristic polynomial has no real nonnegative roots. Instability can only occur due to complex roots with
positive real part.
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2.3 Numerical simulations

2.3.1 Randomized parameter search

Table S1: Nominal parameters for the oscillator model (15)–(20)

Rate Value Rate Value

αz (/M/s) 75 · 103 αx (/M/s) 3 · 105

δz (/M/s) 3 · 105 δx (/M/s) 3 · 105

νz (/M/s) 3 · 105 νx (/M/s) 3 · 105

βz (/s) 5 · 10−3 βx (/s) 2 · 10−2

κz (/s) 1 · 10−3 κx (/s) 1 · 10−3

φz (/s) 1 · 10−3 φx (/s) 1 · 10−3

ztotT (nM) 250 xtotT (nM) 120
ztotI (nM) 700 xtotA (nM) 300

We numerically searched parameters that yield an oscillatory behavior in model (15)–(20). We generated
random parameter values starting from the nominal parameter set listed on Table S1. We generated several
hundreds of random parameter sets; reaction rates were varied in the range from 10−3 to 103 times their nominal
values; ztotT , ztotI , xtotT and xtotA were changed in the range from 10−1 to 10 times their nominal values . For each
parameter set, the differential equations (15)–(20) are solved using the deterministic integrator RADAU, included
in the software PyDSTool [4]. A parameter set is classified as “oscillatory” if at least 3 oscillations are detected,
their average period is beween 0.5h and 10h, and their average amplitude is larger than 10 nM. Each trajectory
was integrated to have a duration of 20 h. Our method follows the approach proposed in [5].

Period and amplitude were computed by identifying minima and maxima of oscillations, as shown in the
inset of Fig. S3. For each three consecutive points of a trajectory, we define d1 and d2 as shown in Fig. S3 B:
d1 = pn − pn−1 and d2 = pn − pn+1. If the product d1 · d2 is positive and d1 is positive, then pn is classified as
a local maximum; if d1 is negative, then pn is classified as a local minimum. Period and amplitude are computed
from the identified maxima and minima, as sketched in Fig. S3 C. Period and amplitude are averaged over all the
different measured peaks and wells and compared to the aforementioned thresholds.

Fig. S3 A shows the correlations among pairs of parameters that yield oscillations in the absence of direct
titration reactions. Fig. S4 shows the results in the presence of titration reactions: the probability of oscillation
is significantly increased. Some of the correlation plots show clear patterns. For example the plots clearly show
that ztotI should be larger than ztotT and xtotA larger than xtotT . Both βz and βx should be sufficiently large (relative
to the nominal value).

2.3.2 Classification of dynamic behaviors in a region of the parameter space

We now classify equilibria as oscillatory or not by checking the eigenvalues of the Jacobian matrix (24) for a given
parameter set (we recall that the system has a unique equilibrium for arbitrary choices of parameters). Starting
from the nominal parameters listed in Table S1; all parameters were changed in the range from 10−1 to 10
times their nominal values. Two parameters were varied at a time, while others were held constant, to generate
each subplot of Fig. S5 and S6. Equilibria were computed as the intersections of the analytical equilibrium
expressions found at Section 2.2.1. Then, the stability properties of the equilibrium points are computed by
finding the eigenvalues of the Jacobian evaluated at the equilibrium. When the Jacobian has at least one pair of
complex conjugate eigenvalues with positive real part, it is classified as oscillatory; otherwise, it is classified as
non-oscillatory and thus stable.
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Figure S3: A: Absence of direct titration reactions. Correlation between randomly chosen parameters that
yield oscillatory behavior. B: Points required for the identification of period and amplitude. C: Period and
amplitude were measured as shown here and averaged over the trajectory.
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Figure S4: Presence of direct titration reactions. Correlation between randomly chosen parameters that
yield oscillatory behavior. The probability of oscillation for a randomly chosen set of parameters significantly
increases relative to Fig. S3.
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We summarize our results in Fig. S5 and S6, which show the influence of the parameters on the stability
properties of the unique equilibrium of the system; we consider the case where titration reactions are absent
(Fig. S5), and the case where titration reactions are comparable to the inhibition/activation rates of the regulators
that interconnect the two modules (Fig. S6). The classification is color coded as follows: points where at least
one pair of eigenvalues is complex with positive real part are shown in orange color; points at which we find real
and negative eigenvalues or complex with negative real part are shown in blue color. These plots show some linear
correlations among parameters that yield oscillations: (βz, xtotA ) and (βx, ztotI ) are positively correlated; (κx, xtotA )
and (κz, xtotI ) are negatively correlated in order to guarantee an oscillatory behavior. The presence of titration
reactions considerably expands the oscillatory regions for all pairs of parameters.

Figure S5: Absence of direct titration reactions: the log plots show the influence of variations of parameters
on the stability of the equilibrium. Each parameter was varied between one tenth to ten times the nominal
value (black diamond). Orange regions are oscillatory; blue regions indicate stable equilibria.
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Figure S6: Presence of direct titration reactions: the log plots show the influence of variations of parameters
on the stability of the equilibrium. Each parameter was varied between one tenth to ten times the nominal
value (black diamond). Orange regions are oscillatory; blue regions indicate stable equilibria. The orange
(oscillatory) regions are considerably larger than those in Fig. S5, where titration is absent.
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3 Bistable system

We build a bistable system via the feedback interconnection of two inhibited modules. The reactions describing
the bistable system are:

Subsystem 1 Subsystem 2

Activation: ZA + Z∗T
αz−−→ ZT XA +X∗T

αx−−→ XT

Output production: ZT
βz−−→ ZR,I + ZT XT

βx−−→ XR,I +XT

Inhibition: XR,I + ZT
δz−−→ Z∗T + Z∗A ZR,I +XT

δx−−→ X∗T +X∗A

Direct titration: XR,I + ZA
νz−−→ Z∗A ZR,I +XA

νx−−→ X∗A

Conversion: Z∗A
κz−−→ ZA X∗A

κx−−→ XA

Degradation: ZR,I
φz−−→ 0 XR,I

φx−−→ 0

The regulators interconnecting the modules are xR,I and zR,I ; both work as inhibitors. We assume mass conserva-
tion for species ZT , ZA, XT , and XA: ztotT = zT +z∗T , ztotA = zA+z∗A+zT , xtotT = xT +x∗T , xtotA = xA+x∗A+xT .
The corresponding ODEs are:

żT = αz(z
tot
T − zT )zA − δzzTxR,I , (27)

żA = κz(z
tot
A − zA − zT )− αz(ztotT − zT )zA − νzxR,IzA , (28)

ẋR,I = βxxT − δzzTxR,I − φxxR,I − νzxR,IzA , (29)

ẋT = αx(xtotT − xT )xA − δxxT zR,I , (30)

ẋA = κx(xtotA − xA − xT )− αx(xtotT − xT )xA − νxxAzR,I , (31)

żR,I = βzzT − δxxT zR,I − φzzR,I − νxxAzR,I . (32)

Boxes highlight the terms corresponding to titration reactions. The two modules correspond to the subsystems
zT –zA–xR,I and xT –xA–zR,I .

Proposition 17. The solutions of the two separated modules, as well as those of the interconnected system
(27)–(32), are globally bounded.

Proof. Analogous to the proofs of Propositions 5, 11 and 13.

3.1 Analysis in the absence of direct titration reactions

3.1.1 Equilibrium conditions

We consider system (27)–(32) in the absence of titration reactions, i.e., with νx = νz = 0. We begin by setting
equations ẋT + ẋA = 0 and we combine them with ẋT = 0. From here z̄R,I is isolated as:

z̄R,I =
αx(xtotT − x̄T ) x̄A

δxx̄T
=
κx(xtotA − x̄A − x̄T )

δxx̄T
.

We then find a relationship between x̄T and x̄A at steady state:

x̄A =
κx(xtotA − x̄T )

αx(xtotT − x̄T ) + κx
.
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Finally, setting equations ẋT + ẋA = 0 and żR,I = 0 we get:

z̄T =
κx
βz

(xtotA − x̄A(x̄T )− x̄T ) +
φz
βz
z̄R,I(x̄T ). (33)

The system is symmetric, so we now use the same procedure to obtain x̄T (z̄T ). We start setting żT + żA = 0
and equation ẋR,I = 0. We find:

x̄T =
κz
βx

(ztotA − z̄A(z̄T )− z̄T ) +
φx
βx
x̄R,I(z̄T ). (34)

Both equilibrium conditions are monotonically decreasing, which guarantees uniqueness of the equilibrium.

3.1.2 Structural bistability

The Jacobian matrix of system (27)–(32) with νx = νz = 0 is:

Jν =



−αz z̄A − δz x̄R,I αz(ztotT − z̄T ) δz z̄T 0 0 0

−κz + αz z̄A −κz − αz(ztotT − z̄T ) 0 0 0 0
δz x̄R,I 0 −δz z̄T − φx −βx 0 0

0 0 0 −αxx̄A − δxz̄R,I αx(xtotT − x̄T ) δxx̄T
0 0 0 −κx + αxx̄A −κx − αx(xtotT − x̄T ) 0

−βz 0 0 δxz̄R,I 0 −δxx̄T − φz

 (35)

Here, the sign of the third and the sixth rows and columns has been changed (corresponding to a sign change
for variables xR,I and zR,I).

We say that a system is a strong candidate bistable system [1, 2] if it can become unstable exclusively due to
a real eigenvalue that becomes positive.

Proposition 18. Under Assumptions 1, 2, 3, and 4, system (27)–(32) is a strong candidate bistable system.

Proof. We remind that, under our assumptions, −κz + αzzA > 0 and −κx + αxxA > 0. Then a similarity
transformation Ĵν = T−1JνT can be applied, with T = diag{−1, − 1, − 1, 1, 1, 1}, such that Ĵν has
non–negative off–diagonal entries, namely is a Metzler matrix, and negative diagonal entries. It is known (see for
instance [3]) that a Metzler matrix has a real dominant eigenvalue: in this case, this means that an eigenvalue
λ1 exists such that Re(λi) ≤ λ1, for i = 2, 3, . . . , 5. Hence the proof follows.

The bistable nature of this system can be explained as follows. The transition to instability, if it happens, is
due to a real eigenvalue which crosses the origin (0), becoming positive. This implies that the determinant of
the matrix changes sign. Being the overall solution bounded, this implies that other two equilibria, both locally
stable, necessarily appear (see [1, 2] for details).

3.2 Analysis in the presence of direct titration reactions

3.2.1 Equilibrium conditions

To derive z̄T as a function of x̄T , we set equations ẋT + ẋA = 0 and ẋT = 0, and we find two different expressions
for z̄R,I . Equating these expressions we obtain:

z̄R,I =
αx(xtotT − x̄T ) x̄A

δxx̄T
=
κx(xtotA − x̄A − x̄T )

δxx̄T + νxx̄A
,



Molecular titration promotes oscillations and bistability in minimal networks with monomeric regulators 23

and we find a relationship between x̄T and x̄A at steady state. As done before, we derive the equilibrium of x̄A as

the solution of the second order equation axx̄
2
A+bxx̄A+cx, where ax =

(
αxνx
δx

)
xtotT −x̄T
x̄T

, bx =
(
αx(xtotT − x̄T ) + κx

)
and cx = −κx(xtotA − x̄T ). Assuming xtotA > xtotT , since axcx < 0, the only admissible positive solution is:

x̄A(x̄T ) =
−bx +

√
b2x − 4axcx

2ax
.

Finally, setting equations ẋT + ẋA = 0 and żR,I = 0 we get:

z̄T =
κx
βz

(xtotA − x̄A(x̄T )− x̄T ) +
φz
βz
z̄R,I(x̄T ). (36)

With a similar procedure we can get the equilibrium condition for x̄T (z̄T ) and the remaining equilibria.
Once we find the admissible equilibrium values z̄T , z̄A, x̄T and x̄A we can find z̄R,I and x̄R,I .

ẋR,I = 0 =⇒ z̄R,I =
κx(xtotA − x̄A − x̄T )

δxx̄T + νxx̄A
,

żR,I = 0 =⇒ x̄R,I =
κz(z

tot
A − z̄A − z̄T )

δz z̄T + νz z̄A
.

3.2.2 Structural bistability

In the presence of direct titration reactions the Jacobian becomes:

Jν = (37)

−αz z̄A − δz x̄R,I αz(ztotT − z̄T ) δz z̄T 0 0 0

−κz + αz z̄A −κz − αz(ztotT − z̄T ) − νz x̄R,I νz z̄A 0 0 0
δz x̄R,I νz x̄R,I −δz z̄T − νz z̄A − φx −βx 0 0

0 0 0 −αxx̄A − δxz̄R,I αx(xtotT − x̄T ) δxx̄T
0 0 0 −κx + αxx̄A −κx − αx(xtotT − x̄T ) − νxz̄R,I νxx̄A

−βz 0 0 δxz̄R,I νxz̄R,I −δxx̄T − νxx̄A − φz



As done earlier, the sign of the third and the sixth rows and columns has been changed (corresponding to a
sign change for variables xR,I and zR,I).

In the presence of direct titration reactions it is more difficult to formally show that the feedback of the two
subsystems is a candidate bistable system. We can however note that:
a) For “small” νx and νz, the two subsystems are “almost” in the same condition of Proposition 18, hence
bistability occurs. Also, if we can assume that z̄A > κz/αz and x̄A > κx/αx, then the same considerations as in
the case of no titration apply and a bistable behavior is expected.
b) More than one equilibrium point may appear for suitable choice of the parameters. When three equilibria
appear, if the Jacobian is invertible, then necessarily one of the equilibria is unstable with a real positive unstable
eigenvalues; this can be explained with the so called degree theory; we refer the reader to reference [1] for
additional details. The other two equilibria are expected to be stable.
c) Numerical simulations on a wide range of parameters confirm that this system can be bistable.

3.3 Numerical simulations

3.3.1 Probability of bistable behavior

As done for the oscillator, we explored the probability of obtaining a bistable behavior for random choices of the
parameters around the nominal set in Table S2. The reaction rate parameters were randomly selected in the range
from 10−2 to 102 their nominal value; parameters ztotT , xtotA , xtotT , xtotA were instead varied between one tenth and
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ten times their nominal value. A set of parameters is classified as bistable if a) three equilibria are identified by
numerically finding the intersections of the equilibrium conditions derived earlier, and b) two of these equilibria
are stable (all eigenvalues have negative real part) and one is unstable (at least one eigenvalue has positive real
part). Fig. S7 and S8 show that the system can exhibit bistability in a wide range of parameters, however large
titration reaction rates (Fig. S8) significantly increase the probability of bistable behavior.

Figure S7: Absence of direct titration reactions. Log plot showing the correlation between randomly chosen
parameters that yield bistable behavior. Nominal parameters (Table S2) are shown in the orange diamond;
reaction rate parameters were varied between a factor 10−2 and 102 of their nominal value (with ν = 0),
while total concentrations were varied between one tenth and ten times their nominal value.

3.3.2 Bistable behavior in a region of the parameter space

We use parameters listed in Table S2 to explore numerically the bistability regions. As done for the randomized
parameter classification, a parameter set yields a bistable behavior if three equilibria, two stable and one unstable,
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Figure S8: Presence of direct titration reactions. Log plot showing the correlation between randomly chosen
parameters that yield bistable behavior. Nominal parameters (Table S2) are shown in the orange diamond;
parameters were varied between a factor 10−2 and 102 of their nominal value.

Table S2: Nominal parameters for the bistable circuit

Units: [nM] Units: [1/s] Units: [1/M/s]
ztotT = 100 βz = 0.0021 αz = 3× 104

xtotT = 100 βx = βz αx = αz

ztotA = 200 κz = 3× 10−4 δz = 3× 104

xtotA = 200 κx = κz δx = δz
φz = 0.001 νz = δz
φx = φz νx = νz
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are identified. Here, we vary only two parameters at a time, keeping the others fixed at their nominal value. In
Fig. S9 and S10 we show the bistability domains (orange regions), in the absence of direct titration reactions
(Fig. S9) and in the presence of titration (Fig. S10).

In the absence of titration reactions there are many pairs of parameters where the bistability region is very
narrow. This makes the system less robust over the parameter space since any change in the parameters will
cause the system to lose bistability. It also shows that there is a linear correlation in many pairs of parameters
for a bistable behavior: (βz, βx), (κz, κx), (κx, ztotA ), (βz, xtotA ), (κz, xtotA ), (δx,φz) and (δz, φx) show a positive
correlation, while (βz, κz), (βz, ztotA ), (κz, ztotA ), (βx, xtotA ) and (κx, xtotA ) show a negative correlation to present
bistable behavior. Fig. S10 clearly shows that all the regions of bistability are expanded when the titration reaction
are present.

Figure S9: Absence of direct titration reactions. Axes are in log scale. The orange areas are bistable regions.
Blue areas correspond to a unique stable steady state. Nominal parameters are shown as a black diamond.
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Figure S10: Presence of direct titration reactions. Axes are in log scale. The orange areas are bistable
regions, which are clearly expanded relative to Fig. S9. Blue areas correspond to a unique stable steady state.
Nominal parameters are shown as a black diamond
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