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Abstract— We consider a traffic control problem defined on
a network graph, whose nodes represent buffers and whose
arcs represent flow channels. We consider network models with
a peculiar aspect: each element of the flow arriving at each
node must be redirected towards a precise other node of the
network, hence each buffer is naturally split in several queues,
characterized according to statistics about the flow splitting at
the nodes. Precisely, each node is modelled as a Markov chain,
in which some states are specifically associated with the arcs
leaving the node: state j represents the amount of traffic waiting
to be directed through arc j. We show that such a network can
be stabilized by means of a network–decentralized control, in
which the flow through each arc is controlled by an agent which
only knows the congestion situation at the nodes it connects.

The main result is that the proposed network–decentralized
strategy is robust (namely it assures stability under all possible
values of the Markov chain parameters) provided that zero is
a simple eigenvalue for all the Markov chains, which includes
the irreducible case.

I. INTRODUCTION AND MOTIVATION

Traffic and congestion control is fundamental in many
different applications: vehicle congestion on highways [12],
[13], large data communication networks [11], [14],
[15], [17], [18], inventory management and production–
distribution systems [5], [6], [9], [10], [21], [22], water
distribution networks [3], [16], transportation networks [2],
[19] and network flows in general [1], [4], [20], [23].

Typically, a flow control problem is formalized on a
network in which the nodes represent buffers, while the arcs
represent flow channels. The flow through an arc can be
either controlled or non–controllable. One fundamental issue
in network control is that the traffic at each node is formed
by elements which have to be forwarded towards different
directions. This is typical in traffic and data networks, in
which buffers include packets or vehicles which have to be
routed towards different adjacent nodes. Thus, an appropriate
modelling framework should take into account the different
queues populating each node: each queue is related to a
stream with a different direction.

The main problem is that the partition of the node traffic
in queues, associated with different directions, is not a
controlled variable. Here we assume that, for each node,
a statistical distribution is available about the exit direc-
tions of the node population. We model this statistics as
a continuous–time Markov matrix, which corresponds to
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a Metzler matrix with zero–sum columns. We seek lin-
ear network–decentralized [3], [9], [13], [14], [15] state–
feedback controllers, such that each control agent (arc) can
use information only from the subsystems (nodes) it con-
nects. This is equivalent to imposing that the state feedback
matrix has the same structure as the transpose of the input
matrix.

In [7], [8], a network–decentralized control strategy has
been proposed which can be applied when the nodes are
arbitrary subsystems (with their own, possibly unstable,
dynamics) and each control agent knows the states of the
nodes it directly affects. Such a control strategy requires the
knowledge of the node dynamics as well: this may be a
problem, since the coefficients of the Markov chains are
likely to be uncertain and can even depend on external
factors. Here we present a network–decentralized strategy
which is robust: agents do not need to know exactly the
situation of each of the nodes they affect and can simply rely
on cumulative information about the total congestion at each
node. The main contributions of this paper are summarized
next.
• We formulate the problem of node traffic splitting, in

which each node is represented by a Markov matrix, and
we show to what extent the theory developed in [7], [8]
applies.

• As a first main result, if zero is a simple eigenvalue
for all the Markov chains (which is always true if they
are irreducible), we propose a network–decentralized
control strategy which is robust: it assures stability
regardless of the coefficients of the Markov chain.
Indeed, the control agents do not need to know such
coefficients.

• As a second main result, we show that each agent needs
to have information only about the total amount of
congestion in each of the nodes it influences. It can
thus ignore the actual distribution at the nodes.

• We show that such a stabilizing control is effective even
in the presence of flow constraints, so extending the
results in [3].

• We discuss the case in which zero is a multiple eigen-
value for at least one Markov chain.

A. Modelling node dynamics

Consider a large network in which the nodes represent
buffers and the arcs represent flow channels connecting the
buffers. In Fig. 1 we sketch a portion of a typical network.
Each connection between two nodes, including one or two
arcs denoted by uk, is controlled by an agent (we will denote
by vh). The presence of double arcs indicates that the same
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Fig. 1: An example of network with node dynamics.

agent can control the flow in the two opposite directions.
Arcs denoted by dj represent an exogenously determined
flow, such as information packets introduced into a routing
system or vehicles entering a viability system.

For example, in Fig. 1 there are three nodes, denoted by A,
B and C. At each node, the traffic is split in queues having
different destinations. In node A, for instance, the different
queues are represented by subnodes 1 (traffic directed to the
north), 2 (traffic directed to south–east) and 3 (traffic directed
to the west).

We model traffic splitting among different directions as
a dynamic process, represented by a stochastic matrix. For
instance, node A in Fig. 1 could be represented by the matrix

MA =

 −(α+ β) γ ε
α −(γ + δ) φ
β δ −(ε+ φ)

 ,
which means that each unit arriving at subnode 1 is directed
either to subnode 2 or to subnode 3, with splitting rates α > 0
and β > 0 respectively, and so on. If we assume, for the
moment being, that γ = δ = ε = φ = 0, then all the units at
subnode 1 are transferred to subnodes 2 and 3. If we consider
x1(0) = ξ, x2(0) = x3(0) = 0, and no external arc flow,
asymptotically we have

[x1(∞) x2(∞) x2(∞)] =
ξ

α+ β
[0 α β].

The arc flows u9 and u3 redirect to other nodes the units
in subnodes 2 and 3. Note that we admit that the transfer
process is not instantaneous but exponential, with mode
e−(α+β)t. Then the magnitude of α + β is associated with
the process speed and the relative magnitudes α/(α+β) and
β/(α+ β) are associated with the traffic distribution.

Of course, by considering positive α, β, γ, δ, ε and φ, we
can model the overall traffic distribution at node A.

II. MODEL AND ASSUMPTIONS

We consider a class of linear, interconnected subsystems:

ẋi(t) = A(i)xi(t) +
∑
j∈Ci

Bijvj(t) +Did(t),

where xi(t) ∈ Rni is the state of the ith buffer or subsystem;
Ci is the set that indexes the control subvectors vj(t) ∈ Rmj ,
j = 1, . . . ,M , named agents, affecting the ith subsystem;
Bij represents the effect of control vj on the ith subsystem;
d(t) is an external signal, bounded in a compact and con-
vex set D, affecting the ith subsystem through matrix Di.
Matrices A(i) are stochastic matrices.

Assumption 1: Matrix A(i) is a Metzler matrix,

A
(i)
kj ≥ 0, k 6= j,

with zero sum columns:
ni∑
k=1

A
(i)
kj = 0.

The last condition can be synthetically written as

1̄>ni
A(i) = 0,

where
1̄>ni

= [ 1 1 . . . 1 ]︸ ︷︷ ︸
ni times

.

The overall system can be written as ([7], [8])

ẋ(t) = Ax(t) +Bu(t) +Dd(t), (1)

where x(t) ∈ Rn includes the state variables associated with
each subsystem, u(t) ∈ Rm is the control vector including
all the agents vj(t), d(t) ∈ Rn is the vector representing
an external, non–controllable signal affecting the system, D
is a generic matrix, while A and B are block–structured:
A ∈ Rn×n is the block–diagonal matrix

A = blockdiag{A(1), . . . , A(i), . . . , A(N)}, (2)

while matrix B ∈ Rn×m is a suitably structured matrix.
System (1) can be naturally represented by a hypergraph,

where the N subsystems are associated with nodes and
control agents are associated with hyperarcs. For simplicity,
we will speak of graphs and arcs.

Each control agent vj , j = 1, . . . ,M is a vector in Rmj

associated with a block column of B. Matrix B has a special
structure: each column has zero blocks Bij ∈ Rni×mj

corresponding to all the nodes not directly affected by agent
vj . Formally, since Ci is the set that indexes the agents
directly affecting node i, we have

Bij = 0 if and only if j 6∈ Ci.

Denoting by Nj the set that indexes the nodes affected by
agent j, we also have

Bij = 0 if and only if i 6∈ Nj .

All the block dimensions must be compatible with the block
structure of A, namely

∑N
i=1 ni = n and

∑M
i=1mi = m.

Example 1: In the case of Fig. 1, there are 3 nodes (A is
labeled as node 1, B as node 2 and C as node 3) and 6 agents:
v1 = [u>1 u>2 ]>, v2 = [u>3 u>4 ]>, v3 = [u>5 u>6 ]>, v4 =
[u>7 u>8 ]>, v5 = u9, v6 = u10. We have C1 = {1, 2, 5},
C2 = {3, 4}, C3 = {2, 3, 6}. The agents control the following
nodes: N1 = {1}, N2 = {1, 3}, N3 = {2, 3}, N4 = {2},
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N5 = {1}, N6 = {3}. Matrices B and D are

B =

 B11 B12 0 0 B15 0
0 0 B23 B24 0 0
0 B32 B33 0 0 B36

 ,
D =

 0 0
D21 0

0 D32

 .
We clearly work under the following assumption.
Assumption 2: (A,B) is stabilizable.
Along the lines in [7], [8], we consider controls restricted

to the following class.
Definition 1: A control is network–decentralized if each

agent vj can have information from nodes in Nj only:

vj = φ(xi, i ∈ Nj).
In the case of a linear state feedback, a control of the

form u = −Kx is network–decentralized if K has the same
structural zero blocks as B>. In Example 1, K should have
the structure

K =

 K>11 K>12 0 0 K>15 0
0 0 K>23 K>24 0 0
0 K>32 K>33 0 0 K>36

> .
III. A ROBUST SOLUTION (MAIN RESULT)

Denote by en = 1̄n/
√
n the averaged unit vector with n

components:

en = [
1√
n

1√
n
. . .

1√
n

]>.

As usual, we refer to 0 as the system equilibrium, which in
the case of buffers corresponds to the desired set–point.

Assumption 3: The eigenvalue λ = 0 of A(i) is simple for
all i and all other eigenvalues have a strictly negative real
part.

Note that the assumption holds if the stochastic matrices
A(i) are irreducible1. The opposite is not true. For instance,

A(i) =

 −(α+ β) 0 0
α −γ δ
β γ −δ

 , with α, β > 0,

is a reducible matrix, whose spectrum is σA(i) = {−(α +
β),−(γ + δ), 0}. Hence the eigenvalue 0 has multiplicity 2
if γ = δ = 0, otherwise it is simple.

In view of Assumption 3, the following proposition is
immediate.

Proposition 1: (A,B) is stabilizable iff rank[A|B] = n.
We now consider the candidate control

u(t) = −κB>Hx(t) (3)

where κ > 0 and

H = blockdiag{en1e
>
n1
, . . . , enie

>
ni
, . . . , enN

e>nN
}. (4)

The following theorem is our main result.

1a Metzler matrix M̃ is irreducible if there is no variable permutation

such that M̃ =

[
M11 0
M21 M22

]

Theorem 1: Under Assumptions 2 and 3, the network–
decentralized control (3)–(4) robustly stabilizes the system.

Before proving the theorem, we point out some relevant
properties of the candidate control (3)–(4).
• Claim 1: the control is network–decentralized.
• Claim 2: the control is robust, i.e. independent of the

parameters of the stochastic matrices.
• Claim 3: each control agent needs to know only the

cumulative buffer content, and not its distribution.
The last claim needs to be further explained. First, notice
that eni

e>ni
= (1̄ni

/
√
ni) (1̄>ni

/
√
ni) = 1̄ni

/ni, where 1̄ni

is an ni × ni matrix of ones. Then

u(t) = −κB>


1̄n1

n1
0 . . . 0

0 1̄n2

n2
. . . 0

...
...

. . .
...

0 0 . . .
1̄nN

nN




y1(t)
y2(t)

...
yN (t)

 ,
(5)

where
yi(t) = 1̄>ni

xi(t)

is the cumulative stock of buffer i, namely the sum of all
the state variables of the ith subsystem (node).

In principle, in order to check whether Assumption 2 is
satisfied, according to Proposition 1 we should know the
matrices A(i). Yet this is not necessary if Assumption 3
holds, according to the next corollary.

Corollary 1: Under Assumption 3, stabilizability is equiv-
alent to

rank




1̄>n1
0 . . . 0

0 1̄>n2
. . . 0

...
...

. . .
...

0 0 . . . 1̄>nN

B
 = N.

The proof of Corollary 1 will be given along with the
proof of Theorem 1.

A. Proof of the main result
Given vector en = [1/

√
n . . . 1/

√
n]>, we denote by En

its orthonormal complement:[
e>n
E>n

] [
en En

]
= In.

Since any matrix A(i) has zero sum columns, we have[
e>ni

E>ni

]
A(i)

[
eni

Eni

]
=[

0 0
E>ni

A(i)eni E>ni
A(i)Eni

]
,

where E>ni
A(i)Eni

has only negative real part eigenvalues,
because 0 is a simple eigenvalue by assumption.

Proof: Consider the orthonormal transformation

T =


en1

0 . . . 0 En1
0 . . . 0

0 en2 . . . 0 0 En2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . enN

0 0 . . . EnN
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and notice that T is square and T>T = In. Then, with easy
computations we get

T>AT =

[
0 0
G F

]
,

where both G and F are block–diagonal,

G = blockdiag{E>n1
A(1)en1

, . . . , E>nN
A(N)enN

},
F = blockdiag{E>n1

A(1)En1
, . . . , E>nN

A(N)EnN
},

and F is stable. The transformed input matrix is then

T>B =

[
B0

BS

]
,

where S stands for stable. In order to express control (3)
accordingly, we first notice that

HT =


en1

0 . . . 0 0 0 . . . 0
0 en2 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . enN

0 0 . . . 0

 ,
thus we get

û = −κB>HTx̂ = −κ
[
B>0 0

]
x̂ (6)

and the closed–loop matrix is

T>AT − κT>BB>HT =

[
−κB0B

>
0 0

G− κBSB>0 F

]
. (7)

To complete the proof, we show that B0 has rank N and
thus the N ×N matrix −κB0B

>
0 is negative definite. This

implies stability in view of the fact that F is a stable matrix.
If we apply the Popov criterion for stabilizability, bearing

in mind that 0 is the only unstable eigenvalue, stabilizability
implies that

rank[A|B] =

[
0 0 B0

G F BS

]
= n,

which in turn implies that B0 has rank N .
Note that the last claim proves Corollary 1.

IV. IN THE PRESENCE OF FLOW CONSTRAINTS

Along the lines in [3], we can show that the proposed
network–decentralized stabilizing control is effective also in
the presence of flow constraints.

Suppose that control flows are subject to capacity con-
straints in a box, thus each component of the control must
be within a lower and an upper bound:

u(t) ∈ U .
= {u ∈ Rm : u−i ≤ ui ≤ u

+
i , ∀i}.

The saturation function sat(·) : Rm → Rm is component-
wise defined as follows [3]:

ui = sat(φi)
.
=


u−i ifφi < u−i ,

φi ifu−i ≤ φi ≤ u
+
i ,

u+
i ifφi > u+

i .

We consider the network–decentralized saturated control

u(t) = sat[−κB>Hx(t)], (8)

with H as in (4).
Proposition 2: Under the assumptions of Theorem 1, the

network–decentralized saturated control of the form (8), such
that u(t) ∈ U , robustly stabilizes system (1) in presence of
a constant vector d ∈ D, with DD ⊂ −int(BU).

Proof: In presence of a saturated control and a suitable
disturbance vector, the closed–loop system becomes[
ẋ0

ẋS

]
=

[
B0sat(−κB>0 x0)

Gx0 +BSsat(−κB>0 x0) + FxS

]
+

[
d̂0

d̂S

]
.

Since matrix B0 has full row rank, according to the results
in [3], x0 converges to an arbitrarily small neighborhood of
the origin, Bκ, for κ > 0 large enough. Then, since matrix
F is stable, the overall system is stable, regardless of the
Markov chain parameters.

V. THE CASE OF λ = 0 MULTIPLE

If we cannot assume that λ = 0 is simple for all A(i),
in general we might not be able to find a robust network–
decentralized control. We can find a control depending on
the A(i):

u(t) = −κB>Wx(t), (9)

where κ > 0 and

W = blockdiag{Vn1V
>
n1
, . . . , VniV

>
ni
, . . . , VnN

V >nN
}. (10)

We have denoted by Vni any orthonormal basis of the left
eigenspace of the 0 eigenvalue of matrix A(i):

V >ni
A(i) = 0.

Theorem 2: The network–decentralized control (9)–(10)
stabilizes the system.

The proof is analogous to that of Theorem 1, yet now the
bases Vni are functions of the parameters: the previous robust
control is no more suitable. To explain this “pathology” we
can consider the very simple example of a single node with
a single control:

A =

 −(α+ β) 0 0
α −γ δ
β γ −δ

 , B =

 1
0
0

 , α, β > 0.

This system is stabilizable iff either γ or δ are positive. If
γ = δ = 0, independently of u we have

βx2 − αx3 = constant,

hence the distribution of queued traffic between nodes x2 and
x3 is an invariant (uncontrollable) variable. It is also easy to
see that, if we take as output variable

y = 1̄>3 x = x1 + x2 + x3,

which is the total stock at the node, then, independent of the
chosen output–feedback control, stabilizability is impossible.

Indeed, 0 being a simple eigenvalue is not only a sufficient,
but also a necessary condition for the control (5) to work.
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Theorem 3: Under Assumption 2, control (5) is stabilizing
if and only if Assumption 3 holds.

Proof: Sufficiency has already been proved. To prove
necessity, consider the system with output y, which we
rewrite for convenience as

ẋ = Ax+Bu, y = Cx,

where
y1(t)
y2(t)

...
yN (t)

 =


1̄>n1

0 . . . 0
0 1̄>n2

. . . 0
...

...
. . .

...
0 0 . . . 1̄>nN




x1(t)
x2(t)

...
xN (t)

 .
Stabilizability implies detectability (i.e., observability of all
the unstable eigenvalues). From the Popov observability
criterion applied to the unstable eigenvalue 0, we must have

rank
[
C
A

]
= n.

In view of the diagonal structure of both C and A, we can
reorder the blocks and get

rank
[
C
A

]
= rank



1̄>n1
0 . . . 0

A(1) 0 . . . 0
0 1̄>n2

. . . 0
0 A(2) . . . 0
...

...
. . .

...
0 0 . . . 1̄>nN

0 0 . . . A(N)


= n.

A necessary (and sufficient) condition for detectability is that,
for each i,

rank
[

1̄>ni

A(i)

]
= ni. (11)

Assume ab absurdo that, for one of the subsystems, the
eigenvalue 0 has multiplicity greater than 1. We remind that,
in a Metzler matrix with zero sum columns, the ascent of the
eigenvalue 0 is necessarily 1 (i.e., the largest Jordan block
associated with 0 has dimension 1), because the system is
marginally stable. Therefore, there exists a right eigenvector
v which is orthogonal to 1̄>ni

2. Then we have[
1̄>ni

A(i)

]
v = 0,

in contradiction with (11).

VI. EXAMPLE OF APPLICATION

In order to test the proposed control scheme, we generated
random instances of large networks, as already proposed
among the examples in [8]. The progress with respect to [8],
in which a suitable LMI was solved, is that here we propose
a robust solution, based on the control (5).

We considered systems of the form (1), with D = I , and
carried out numerical experiments as follows.

2taken any right eigenvector ṽ, A(i)ṽ = 0, consider its orthogonal
component to 1̄>ni

: v = ṽ − (ṽ>eni )eni , where eni = 1̄ni/
√
ni

A B

C D E

F G

inflow inflow

inflowinflow

outflow

outflow outflow

Fig. 2: A traffic problem.

1) Fix a number of nodes N and a maximum node size n̄.
2) Randomly generate a graph in which each pair of

nodes i–j is connected with probability Pc, and each
node i is connected with the external environment with
probability Pe.

3) For each pair of connected nodes i–j, generate a control
by adding to matrix B a column k whose elements are
all null except for Bik and Bjk, which are nonnegative
and nonpositive respectively.

4) Apply the proposed control to the randomly generated
network and simulate the closed–loop system.

Since the matrices A(i) are randomly generated, we can
rely on the fact that they have distinct eigenvalues, hence
0 is a simple eigenvalue. We can thus apply the control (5),
which turns out to be stabilizing, as expected, whenever the
system is stabilizable (i.e. rank[A B] = n). In general, a
random instance could be not stabilizable, due to a lack of
connectivity.

These simulations are specific for a traffic congestion
problem (see for example Fig. 2): traffic units, each having
its own destination, enter the network at some nodes, through
inflow arrows, and leave the network through outflow arrows.
At each node, the traffic is logically (not necessarily physi-
cally) split in queues of elements having different directions.
For instance, at node D there are three queues, composed of
units directed to nodes C, E and F . Under Assumption 3,
any control arc can perform its action based only on the
knowledge of the total congestion at the nodes it connects.
For instance, the control governs the flow along the arc
connecting D to F without any knowledge of the internal
splitting, yet the actual controlled flow transfers elements of
node D exclusively from the queue directed to F (the green
buffer inside node D, in Fig. 2).

Here we present the results of a numerical experiment.
Matrices A and B were randomly generated. The external
disturbance vector d, randomly generated as well, was held
constant. The fixed number of nodes was N = 10 and the
maximum node size was n̄ = 5. The randomly generated
system had overall dimension n = 42, with n1 = 4, n2 =
4, n3 = 4, n4 = 5, n5 = 2, n6 = 5, n7 = 4, n8 = 4, n9 =
5, n10 = 5. The number of controlled arcs was m = 31.
We applied the control (5), with κ = 0.8. The simulation
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Fig. 3: Simulation results for the example in Section VI.

results, in Fig. 3, show the evolution of the controlled system
starting from random initial conditions in the range [0 1].
Zero is the reference level for the buffers. Due to the presence
of the persistent disturbance d, the desired set–point is not
exactly reached. However, convergence to the steady state
is smoothly and quite fast assured, without requiring the
knowledge of the internal dynamics of the nodes.

VII. CONCLUSIONS

We have considered a traffic control problem defined on
a network graph: arcs represent flow channels and nodes
represent buffers, which can be partitioned into different
queues associated with streams having different directions.
Each node is modelled as a Markov chain. We have seen
that stabilization can always be achieved with a network–
decentralized control, in which the flow through each arc
is governed by an agent having information only about the
nodes that the arc connects.

The main result is that, when zero is a simple eigen-
value for all the Markov chains, the proposed network–
decentralized strategy is robust: stability is assured indepen-
dently of the specific values of the Markov chain param-
eters. Furthermore, we have shown that each agent simply
needs information about the total amount of congestion at
each of the nodes it connects. Hence, the proposed control
works without requiring any knowledge of the internal traffic
splitting statistics and of the actual distribution of node
traffic among the different queues. The proposed network–
decentralized control assures robust stabilization even when
control flows are subject to capacity constraints.

Further developments of this work include the case in
which constraints are present on both state and flow control
variables. In particular, dealing with positivity constraints
and with upper bounds due to the buffer size would be
important. Another interesting question is whether, under
special assumptions, we can find more specific but stronger
results. For instance, if B is an incidence matrix associated
with a network, we could investigate a control of the form

u = −κBTx, considered in [3] for systems without node
dynamics, and try to establish if such a control is stabilizing,
or optimal in some way, for networks with traffic splitting
at the nodes.
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