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1 Experimental implementation of a two-gene flux match-
ing system based on negative autoregulation: Materials
and methods

1.1 Reactions and domains design

A graphical sketch of the domain-level design for the self-repression interconnection is shown in
Figure S1 A. The RNA outputs of each genelet are designed so that:
1) Each RNA output has a domain complementary to its activator strand.
2) The two RNA species are also complementary.
These specifications introduce a binding domain between Ti and Rj, which is considered another
off state, as shown in Figure S1 B. Such a complex is a substrate for RNase H and the RNA
strand is degraded by the enzyme, releasing the genelet activation domain. We assume that the
transcription efficiency of an RNA-DNA promoter complex is very low. This hypothesis was not
experimentally challenged for this specific system; however data shown in Franco et al. [2011],
Supplementary Information, show that this assumption is valid for other genelets with the same
promoter domain.

The design of a self-inhibiting genelet was first characterized in Kim [2007]. The circuit design
proposed here, with two-domain RNA transcripts, was originally presented in Franco et al. [2008].

DNA strands were designed by thermodynamic analysis using the Winfree lab DNA design
toolbox for MATLAB, Nupack Zadeh et al. [2011] and Mfold Zuker and Stiegler [1981]. The
strands were optimized to yield free energy gains favoring the desired reactions, and to avoid
unwanted secondary structures and crosstalk. Further constraints on the length and structure
of the strands, which can affect the transcription efficiency and fidelity, were taken into account
referring to Kim [2007], Chapter 3.4.

1.2 Oligonucleotide sequences

Due to technical constraints of the supplier IDT DNA, T1 − nt and T2 − nt were shortened with
respect to the nominal design to have a length of 125 bases. The strands used in the experiments
are those denoted below as “Short”. These modifications did not alter the regulatory domains
of the transcripts R1 and R2. Also the full length of the main transcription products was not
affected, as verified by gel electrophoresis in Figure S2 B.
T1-nt Full (134-mer) 5’-CTA ATG AAC TAC TAC TAC ACA CTA ATA CGA CTC ACT ATA
GGG AGA AAC AAG AAC GAC ACT AAT GAA CTA CTA CTA CAC ACC AAC CAC AAC TTT
ACC TTA ACC TTA CTT ACC ACG GCA GCT GAC AAA GTC AGA AA-3’ (not synthesized)
T1-nt Short (125-mer) 5’-Tamra-CT AAT GAA CTA CTA CTA CAC ACT AAT ACG ACT CAC
TAT AGG GAG AAA CAA GAA CGA CAC TAA TGA ACT ACT ACT ACA CAC CAA CCA CAA
CTT TAC CTT AAC CTT ACT TAC CAC GGC AGC TGA CAA-3’
T1-t (107-mer) 5’-TTT CTG ACT TTG TCA GCT GCC GTG GTA AGT AAG GTT AAG GTA
AAG TTG TGG TTG GTG TGT AGT AGT AGT TCA TTA GTG TCG TTC TTG TTT CTC
CCT ATA GTG AGT CG-3’
A1 (35-mer) 5’-TAT TAG TGT GTA GTA GTA GTT CAT TAG TGT CGT TC-3’
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Figure S1: General reaction scheme representing a transcriptional circuit implementation of the
two-gene negative feedback scheme for flux matching. Complementary domains have the same
color. Promoters are in dark gray, terminator hairpin sequences in light gray. The RNA output of
each genelet is designed to be complementary to its corresponding activator strand. The two RNA
species are also complementary. A. Desired self-inhibition loops. B. Undesired cross-hybridization
and RNase H mediated degradation of the RNA-template complexes.
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T2-nt Full (126-mer) 5’-GGT TAA GGT AAA GTT GTG GTT GTA ATA CGA CTC ACT ATA
GGG AGA AAC AAG TAA GTA AGG TTA AGG TAA AGT TGT GGT TGG TGT GTA GTA
GTA GTT CAT TAG TGT CGT TCC TGA CAA AGT CAG AAA-3’ (not synthesized)
T2-nt Short (126-mer) 5’-TexasRed-GG TTA AGG TAA AGT TGT GGT TGT AAT ACG ACT
CAC TAT AGG GAG AAA CAA GTA AGT AAG GTT AAG GTA AAG TTG TGG TTG GTG
TGT AGT AGT AGT TCA TTA GTG TCG TTC CTG ACA AAG TCA GAA-3’
T2-t (99-mer) 5’-TTT CTG ACT TTG TCA GGA ACG ACA CTA ATG AAC TAC TAC TAC
ACA CCA ACC ACA ACT TTA CCT TAA CCT TAC TTA CTT GTT TCT CCC TAT AGT GAG
TCG-3’
A2 (35-mer) 5’-TAT TAC AAC CAC AAC TTT ACC TTA ACC TTA CTT AC-3’
R1 (95-mer) 5’ - GGG AGA AAC AAG AAC GAC ACU AAU GAA CUA CUA CUA CAC ACC
AAC CAC AAC UUU ACC UUA ACC UUA CUU ACC ACG GCA GCU GAC AAA GUC AGA AA
-3’
R2 (87-mer) 5’-GGG AGA AAC AAG UAA GUA AGG UUA AGG UAA AGU UGU GGU UGG
UGU GUA GUA GUA GUU CAU UAG UGU CGU UCC UGA CAA AGU CAG AAA -3’

1.3 DNA oligonucleotides and enzymes

All the strands were purchased from Integrated DNA Technologies, Coralville, IA IDT. T1− nt is
labeled with TAMRA at the 5′ end, T2−nt is labeled with Texas Red at the 5′ end, both activators
A1 and A2 are labeled with the IOWA black RQ quencher at the 3′ end. The transcription buffer
mix was prepared prior to each experiment run (two to four samples) using the T7 Megashortscript
kit (#1354), Ambion, Austin, TX which includes the T7 RNA polymerase enzyme mix, the
transcription buffer, and rNTPs utilized in the experiments. E. coli RNase H was purchased from
Ambion (#2292).

1.4 Transcription protocol

The templates were annealed with 10% (v/v) 10× transcription buffer from 90◦C to 37◦C for 1
h 30 min at a concentration 5–10× the target concentration. The DNA activators were added
to the annealed templates from a higher concentration stock, in a solution with 10% (v/v), 10×
transcription buffer, 7.5 mM each NTP, 4% (v/v) T7 RNA polymerase, and .44% (v/v) E. coli
RNase H. Each transcription experiment for fluorescence spectroscopy was prepared for a total
target volume of 70 µl. Samples for gel studies were quenched using a denaturing dye (80%
formamide, 10 mM EDTA, 0.01g XCFF).

1.5 Data acquisition and processing

The fluorescence was measured at 37◦C every two minutes with a Horiba/Jobin Yvon Fluorolog 3
system. Excitation and emission maxima for TAMRA were set to 559 nm and 583 nm, respectively,
according to the IDT recommendation; for Texas Red the maxima for the spectrum were set to
598–617 nm. Slit widths were set to 2 nM for excitation and 4 nM for emission. The raw
fluorescence data Φ(t) were converted to estimated switch activity by normalizing with respect
to maximum fluorescence Φmax(measured before adding activators and enzymes) and to minimum
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fluorescence Φmin (measured after adding activators and before adding enzymes):

[TiAi](t) = [T toti ] ·
(

1− Φ(t)− Φmin

Φmax − Φmin

)
.

For the adaptation experiments, normalization was done by measuring maximum and minimum
fluorescence levels at the beginning of the experiment, and assuming that the maximum flu-
orescence level scales linearly with the change in total fluorescently labeled strands, while the
minimum is not significantly affected by that variation. We used the formula:

[TiAi](t) = α[T toti ] ·
(

1− Φ(t)− Φmin

αΦmax − Φmin

)
,

where α is a factor that scales the total amount of template as it varies in the experiment.
Denaturing polyacrylamide gels (8% 19:1 acrylamide:bis and 7 M urea in TBE buffer, 100 mM

Tris, 90 mM boric acid, 1 mM EDTA) were run at 67◦C for 45 min with 10 V/cm in TBE buffer.
Samples were loaded using Xylene Cyanol FF dye. For quantitation, denaturing gels were stained
with SYBR Gold (Molecular Probes, Eugene, OR; #S-11494). In the control lane a 10-base
DNA ladder (Invitrogen, Carlsbad, CA; #1082-015) was utilized. The DNA ladder 100 bp band
was used as a control to roughly estimate the concentrations of the RNA species in solution in
Figure S5 E and F. Gels were scanned using the Molecular Imager FX (Biorad, Hercules, CA)
and analyzed using the Quantity One software (Biorad, Hercules, CA).

1.6 Characterization assays

This section reports experimental results and numerical fits. All experiments were run in trip-
licates: mean and error bars (standard deviation) are shown in each figure, together with the
simulated traces (dashed lines) from our fitted model. The full derivation for the model fitted to
the data is in Section 2.2.

1.6.1 Genelets in isolation

Figure S2 A shows the behavior of the two genelets in isolation: we can verify that each genelet
self-inhibits after the enzymes are added. (For details on the data normalization procedure,
refer to Section 1.5.) The concentration of RNA present in solution can be measured through
gel electrophoresis, as shown in Figure S2 B: lanes 1 and 2 show that free RNA in solution is
effectively absent.

1.6.2 Interconnected genelets

When the two genelets are present in solution in stoichiometric amount, their RNA outputs bind
quickly to form a double-stranded complex, and therefore the feedback loops become a secondary
reaction (by design thermodynamically less favorable than the R1 · R2 complex formation). As
shown in Figure S2 C, the two genelets only moderately self-repress. The total RNA concentration
in solution is high, as shown in the denaturing gel in Figure S2 B, lanes 3 and 4.

When the templates [T tot1 ] and [T tot2 ] are in different ratios, the system behavior is shown
in Figure S3. We can plot the resulting initial active template ratio (which corresponds to the
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Figure S2: A. Experimental data showing the isolated active genelet concentrations as a function
of time: the self-inhibition reaction turns the switches off, and the RNA concentration in solution
is negligible, as verified in the gel electrophoresis data in panel B, lanes 1 and 2 (samples taken at
steady-state after 2 h). Dashed lines represent numerical trajectories of equations (5), using the
fitted parameters in Table S2. B. Denaturing gel image: lanes 1 and 2 show that the switches in
isolation self-inhibit and no significant transcription is measured. Lanes 3 and 4 show the total
RNA amount in samples from the experiment shown at panel C, taken at steady-state after 2 h.
When the genelets are in stoichiometric amount, their flow rates are already balanced and there
is only moderate self-inhibition.
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total template ratio) versus the steady-state one: we find that the system behaves symmetrically
and the steady-state ratio is close to one across all the initial ratios. Therefore, given open loop
transcription rates that differ across a factor of 1–3, these results suggest that the system robustly
matches the flux of R1 and R2.

1.6.3 Flux adaptation

If the concentration of [T toti ] and [Atoti ] is changed over time, the steady-state concentration of
active genelets adjusts as shown in Figure S5 A and B. Samples from this set of experiments were
analyzed using a denaturing gel: the results are shown in Figure S5 C and D (corresponding to
the traces in Figure S5 A and B, respectively) and show the total RNA amount in solution and
that [Rtot

1 ] ≈ [Rtot
2 ], as desired (Figure S5 E and F). The RNA concentrations were estimated

using the DNA ladder as a reference. We are aware that this method may result in inaccurate
absolute concentration estimates for RNA: however, our objective here is to compare the evolution
over time of the relative RNA concentrations. Thus, inaccuracy in the determination of the
absolute amount of RNA produced does not affect the measured outcome of our experiments.
The adjustment of genelet activity becomes progressively slower over time: the third round of
adaptation is consistently slower than the previous two. We attribute this slower adaptation to
various phenomena: 1) Decrease of activity of enzymes over time; 2) Accumulation of incomplete
degradation products from RNase H hydrolization of RNA in RNA-DNA hybrids: these products
can be up to 7–8 bases long, and may interfere with the desired inhibition pathways; 3) Abortive
transcription of RNA, which could also potentially bind to regulatory domains of DNA activators.
Our hypothesis of accumulation of short products over time is validated by the gels shown in
Figure S5 C and D (below 60 bases, part of the gel that is not shown, a similar smear is visible).

1.6.4 Data fitting

We derived a system of ordinary differential equations (ODEs) starting from mass action kinetics,
as described in Section 2.2. The ODE system was numerically fitted using MATLAB (The Math-
Works) to fluorescence data in Figures S2 and S3. Only a subset of the parameters was fit using
the MATLAB fmincon routine. We fit the total RNA polymerase and RNase H concentrations
and the rates kTiAi

, kTiAiRi
, kAiRi

, kR1R2 , kRiTj , and the parameters kcatONii
and kcatHij

. This
specific subset of parameters was chosen because experimental outcomes are chiefly affected by
branch migration rates (which are tunable by design of the toehold lengths), enzyme concentra-
tion, and enzyme catalytic rates. The concentration and composition of the transcription enzyme
mix for the T7 Megashortscript kit are not disclosed by Ambion, but available literature suggests
that additional enzymes, such as pyrophosphatase, are present in the mix, Milburn et al. [U. S.
Patent 5256555, 1993]. We neglected reactions associated with the possibly unknown amount
of pyrophosphatase in the mix. The concentration of RNase H is also not disclosed by Ambion;
we did not run separate experiments to fit exclusively the degradation rate parameters. A table
reporting all the parameters is in Section 2, Tables S1 and S2.
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Figure S3: Concentration of active genelets over time at different total templates concentration.
The concentration of activators is always stoichiometric to the amount of corresponding template.
Dashed lines in all the figures correspond to numerical simulations for model (5), using the
parameters in Table S2.
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Figure S4: A: Plot summarizing the data shown at Figure S3, overlaid with the predictions of the
numerical model (5), using fitted parameters shown in Table S2. B: Predicted initial versus final
genelets activity for ratios up to 10:1, according to our model (5) and parameters at Table S2.

2 Modeling and numerical analysis: two-gene flux match-
ing system

2.1 Simple model system: derivation of nullclines and rate matching
conditions

T1 T2
R1

R2

Figure S6: Our two-gene
negative feedback architec-
ture

We consider a system composed of two generating species T1
and T2, whose products R1 and R2 interact to form a complex
P = R1 · R2. We introduce negative autoregulation to minimize
the concentration of product that is not used to form the output
complex (Figure S6). Free molecules of Ri, i = 1, 2, bind to active
Ti, thereby inactivating it:

Ri + Ti
δi
⇀T ∗i ,

T ∗i
αi
⇀ Ti,

where T ∗i is an inactive complex. We assume that T toti = Ti + T ∗i , and that T ∗i naturally reverts
to its active state with a first-order rate αi. The total amount of Ri is [Rtot

i ] = [Ri] + [T ∗i ] + [P ].
The corresponding differential equations are:

d[Ti]

dt
= αi ([T

tot
i ]− [Ti])− δi [Ri][Ti],

d[Ri]

dt
= βi [Ti]− k [Ri][Rj]− δi [Ri][Ti]. (1)

For illustrative purposes, these differential equations are solved numerically. The parameters
chosen are: α1 = α2 = 3 · 10−4 /s, β1 = β2 = 0.01 /s, δ1 = δ2 = 5 · 102 /M/s, and
k = 2 · 103/M/s. An imbalance in the production rates of R1 and R2 is created by setting
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Figure S5: A and B. Fluorescent traces showing the adaptation of the active fraction of genelets,
when the total amount of templates is varied over time. C and D. Samples from the experiments
shown in panels A and B, respectively, were analyzed with gel electrophoresis. E and F show the
concentrations of RNA species, estimated from the gel samples.
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[T1](0) = [T tot1 ] = 100 nM and [T2](0) = [T tot2 ] = 200 nM, while [R1](0) = [R2](0) = 0. The
overall result of this feedback interconnection is that the mismatch in the flow rate of R1 and
R2 is reduced, as shown in Figure S7. The flow rate is defined as the derivative of [Rtot

i ]. The
flow rate mismatch is defined as the absolute value of the difference between the two flows. The
effect of changing the feedback strength, for simplicity chosen as δ1 = δ2, is shown in Figure S8:
the figure shows the mean active fraction of [Ti] and the mean flow mismatch, averaged over the
last two hours of a trajectory simulated for 10 hours.
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Figure S7: Numerical simulation showing the solution to the two-gene negative feedback archi-
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for the negative feedback parameter δ.

It is possible to examine the nullclines relating T1 and T2, and find the equilibria T̄1 and T̄2
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as intersection of these nullclines:

Ṫi = 0 =⇒ Ri =
αi(T

tot
i − Ti)
δiTi

,

Ṙi = 0 =⇒ Ri =
βiTi

kRj + δiTi
.

To simplify the derivation, we set δ1 = δ2 = δ, β1 = β2 = β, α1 = α2 = α. Equating the two
expressions for Ri, we get the following equations (for i = 1, 2 and j = 1, 2):(α

δ

)2
k

(
T toti − Ti

Ti

)(
T totj − Tj

Tj

)
+ α(T toti − Ti)− βTi = 0.

We can find an expression of the nullclines by introducing a change of variables u =
(
T tot
1 −T1
T1

)
and v =

(
T tot
2 −T2
T2

)
, and defining φ1 = ψ1 =

(
α
δ

)2
k, φ2 = αT tot1 , ψ2 = αT tot2 , φ3 = βT tot2 , and

finally ψ3 = βT tot1 :

u2(φ1v) + u(φ1v + φ2 − φ3
1

1 + v
)− φ3

1

1 + v
= 0, (2)

v2(ψ1u) + v(φ1u+ ψ2 − ψ3
1

1 + u
)− ψ3

1

1 + u
= 0. (3)

The roots of the equations above represent the nullclines of the system. Because all the
parameters in these equations are positive, there is always a single root. The nullclines are
numerically solved, for varying δ, in Figure S9.

A condition for flow matching at steady-state can be derived as follows:

Ṙ1 − Ṙ2 = 0,

β1T1 − δ1T1R1 = β2T2 − δ2T2R2.

Substituting the expressions for R1 and R2 that can be derived by setting Ṫ1 = 0 = Ṫ2, we get:

β1T̄1 − α1(T
tot
1 − T̄1) = β2T̄2 − α2(T

tot
2 − T̄2).

Taking α1 = α2 = α, β1 = β2 = β we get:

T̄2 = T̄1 +
α

α + β
(T tot2 − T tot1 ). (4)

The flow matching condition above is shown in Figure S9, orange line (also shown in the main
paper). If β � α, i.e., the production of Ri is much faster than the generating species Ti
inactivation rate, then the condition can be rewritten as:

T̄1 ≈ T̄2.
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Figure S9: Nullclines computed for different values of negative feedback rate δ, and flux matching
condition (orange)

2.2 Differential equations modeling the experimental implementation

Based on our design specifications and the resulting molecular interactions, we built a model for
the system starting from the list of occurring chemical reactions. The switches Ti and Tj can have
three possible states: the on state where activator and template are bound and form the complex
TiAi; the off state given by free Ti; the off state represented by Rj bound to Ti forming TiRj.
An off state still allows for RNAP weak binding and transcription. Throughout this derivation,
the dissociation constants are omitted when assumed to be negligible. It is hypothesized that
the concentration of enzymes is considerably lower than that of the DNA molecules, allowing the
classical steady-state assumption for Michaelis-Menten kinetics.

Branch migration and hybridization reactions among nucleic acids are, for i ∈ {1, 2}, j ∈ {2, 1}:

Activation Ti +Ai
kTiAi
⇀ Ti ·Ai

Inhibition Ri + Ti ·Ai
kTiAiRi
⇀ Ri ·Ai + Ti

Annihilation Ri +Ai
kAiRi
⇀ Ri ·Ai

Output formation Ri +Rj
kRiRj
⇀ Ri ·Rj

Undesired hybridization Rj + Ti
kRjTi
⇀ Rj · Ti.



Supplementary Information Appendix - Experiments, Data Processing and Modeling 15

The enzymatic reactions are, for i ∈ {1, 2}, j ∈ {2, 1}:

Transcription: on state RNAP + Ti ·Ai
k+ONii
⇀
↽

k−ONii

RNAP · Ti ·Ai
kcatONii

⇀ RNAP + TiAi +Ri

Transcription: off state RNAP + Ti
k+OFFii
⇀
↽

k−OFFii

RNAP · Ti
kcatOFFii

⇀ RNAP + Ti +Ri

Transcription: off state RNAP +Rj · Ti
k+OFFji
⇀
↽

k−OFFji

RNAP ·Rj · Ti
kcatOFFji

⇀ RNAP +Rj · Ti +Ri

Degradation RNaseH +Ri ·Ai
k+Hii
⇀
↽
k−Hii

RNaseH ·Ri ·Ai
kcatHii
⇀ RNaseH +Ai

RNaseH +Rj · Ti
k+Hji
⇀
↽
k−Hji

RNaseH ·Rj · Ti
kcatHji
⇀ RNaseH + Ti.

Using the law of mass action, we derive the following ODEs:

d

dt
[Ti] =− kTiAi

[Ti] [Ai] + kTiAiRi
[Ri] [Ti · Ai]− kRjTi [Rj] [Ti] + kcatHji [RNaseH ·Rj · Ti],

d

dt
[Ai] =− kTiAi

[Ti] [Ai]− kAiRi
[Ri] [Ai] + kcatHii [RNaseH ·Ri · Ai],

d

dt
[Ri] =− kRiRj

[Ri] [Rj]− kTiAiRi
[Ri] [Ti · Ai]− kRiTj [Ri] [Tj]− kAiRi

[Ri] [Ai]

+ kcatONii [RNAP · Ti · Ai] + kcatOFFii [RNAP · Ti] + kcatOFFji [RNAP ·Rj · Ti],
d

dt
[Ri ·Rj] = + kRiRj

[Ri] [Rj],

d

dt
[Rj · Ti] = + kRjTi [Rj] [Ti]− kcatHji[RNaseH ·Rj · Ti].

(5)

The molecular complexes appearing at the right-hand side of these equations can be expressed
using mass conservation:

[Ti · Ai] = [T toti ]− [Ti]− [Rj · Ti], [Ri · Ai] = [Atoti ]− [Ai]− [Ti · Ai].

We assume that binding of enzymes to their substrate is faster than the subsequent catalytic
step, and that the substrate concentration is larger than the total amount of enzyme. These
assumptions allow us to use the standard Michaelis-Menten quasi-steady-state expressions. The
Michaelis-Menten coefficients can be immediately defined; for instance, for the ON state of the

template, define: kMONii =
k−ONii+kcatONii

k+ONii

. Then we find:

[RNAP tot] =[RNAP ]

(
1 +

[T1 ·A1]

kMON11
+

[T1]

kMOFF11
+

[T2 ·A2]

kMON22
+

[T2]

KMOFF22
+

[R2 · T1]

kMOFF21
+

[R1 · T2]

kMOFF12

)
,

[RNaseHtot] =[RNaseH]

(
1 +

[R1 ·A1]

kMH11
+

[R2 ·A2]

kMH22
+

[R2 · T1]

kMH21
+

[R1 · T2]

kMH12

)
.
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We can easily rewrite these equations as [RNAP ] = [RNAP tot]
P

and [RNaseH] = [RNaseHtot]
H

,
with a straightforward definition of the coefficients P and H. Finally:

[RNAP · Ti · Ai] =
[RNAP tot] [Ti · Ai]

P · kMONii

,

[RNAP ·Rj · Ti] =
[RNAP tot] [Rj · Ti]

P · kMOFFji

,

[RNAP · Ti] =
[RNAP tot] [Ti]

P · kMOFFii

,

[RNaseH ·Ri · Ai] =
[RNaseH tot] [Ri · Ai]

H · kMHii

,

[RNaseH ·Rj · Ti] =
[RNaseH tot] [Rj · Ti]

H · kMHji

,

which can be substituted in equations (5). We note that our numerical fits result in an estimated
RNAP concentration of about 100 nM: thus, in a subset of our experiments the substrate and
enzyme concentrations are actually comparable, breaking down one of the assumptions required
for a quasi-steady-state approximation. Nevertheless, our model overall captures the system
dynamics satisfactorily.

The nonlinear set of equations (5) was solved numerically using MATLAB ode23 routine.

Preliminary numerical analysis Prior to designing DNA strands and testing the system with
wet lab experiments, we ran numerical simulations using equations (5) using parameters reported
in Table S1. These parameters are consistent with those in Kim et al. [2006], which were fitted
from data obtained on a transcriptional system with identical promoter/branch migration design
specifications and sequence content; thus, we refer the reader to Kim et al. [2006] for an accurate
discussion and comparison to other branch migration, transcription, and degradation parameters
found in the literature. Figure S10 shows the system trajectories that correspond to zero initial
conditions for [Ai] and [Ri], while the complexes [T1A1] = [T tot1 ] = 100 nM, [T2A2] = [T tot2 ] = 50
nM, [Atot1 ] = 100 nM and [Atot2 ] = 50 nM. (The simulation first allows for equilibration of all
the DNA strands in the absence of enzymes. Only the portion of trajectories after addition of
enzymes is shown.) The total concentration of enzymes was assumed to be [RNAP tot] = 80
nM and [RNaseH tot] = 8.8 nM, consistent with typical volumes used in our experiments and
with enzyme stock concentrations of about 1–1.25 µ M Kim and Winfree [2011], Franco et al.
[2011]. An example of our numerical simulation results is shown in Figure S10. The behavior of
the system proved to be consistent with the traces obtained for the simple model system shown
at Figure S7.

Data fitting results As already indicated in Section 1.6.4, equations (5) were fitted to all
fluorescence data in Figures S2 and S3 simultaneously, using MATLAB routine fmincon. Only
a subset of the parameters was fit: the total RNA polymerase and RNase H concentrations, and
the rates kTiAi

, kTiAiRi
, kAiRi

, kR1R2 , kRiTj , and the parameters kcatONii
and kcatHij

. Table S2
lists the results of the data fit; Table S3 reports the constraints used in the fitting procedure.
Our fits indicate that the hybridization and branch migration rates fitting these experiments are
higher than what found in Kim et al. [2006], Franco et al. [2011]. In particular, the binding rate of
the RNA species is higher than expected; hybridization rates for complementary RNA strands of



Supplementary Information Appendix - Experiments, Data Processing and Modeling 17

0 100 200 300
0

50

100

Time (min)

[n
M

]

 

 

T
1
 on T

2
 on

0 100 200 300
0

0.05

0.1

Time (min)
[µ

M
].

 

 

Free R
1

Free R
2

0 100 200 300
0

5

10

Time (min)

[µ
M

]

 

 

R
1
 total

R
2
 total

0 100 200 300

0

5

10

Time (min)

[n
M

/m
in

]

 

 

Flow mismatch

Figure S10: Numerical simulation for equations (5). Parameters are chosen as in Table S1.
[T tot1 ] = [Atot1 ] = 100 nM, [T tot2 ] = [Atot2 ] = 50 nM, [RNAP tot] = 80 nM, and [RNaseH tot] = 8.8
nM. These results are consistent with those of the simple model proposed in equations (1), and
analyzed numerically in Figure S7.
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Table S1: Preliminary Simulation Parameters for Equations (5)

Units: [1/M/s] Units: [1/s] Units: [M ]

kTiAi = 4 · 104 kcatONii = 0.06 kMONii = 250 · 10−9

kTiAiRi = 5 · 104 kcatOFFii = 1 · 10−3 kMOFFi = 1 · 10−6

kAiRi = 5 · 104 kcatOFFij = .5 · 10−3 kMOFFij = 1 · 10−6

kRiTj = 1 · 104 kcatHii = .1 kMHii = 50 · 10−9

kRiRj = 1 · 106 kcatHji = .1 kMHji = 50 · 10−9

Units: [M ] Units: [M ]

[RNAP tot] = 80 nM [RNaseHtot] = 8.8 nM

similar length have (to our knowledge) not been assessed before. The expected concentrations of
RNA polymerase and RNase H and their kcat values are also higher than in previous studies Kim
et al. [2006], Franco et al. [2011], where lower hybridization rates were attributed to the presence
of incomplete degradation products from RNase H hydrolization of DNA/RNA hybrids. These
short products, known to have length up to 7–8 bases, may interfere with desired regulatory
pathways Kim and Winfree [2011]. Because the activity and efficiency of off-the-shelf enzymes
is known to considerably vary from batch to batch Kim and Winfree [2011], it is reasonable to
hypothesize that the RNA polymerase and RNase H batches used in this set of experiments had
particularly high activity and low occurrence of incomplete transcription/degradation which can
slow down other reactions. Indeed, the accumulation of these incomplete products over time may
be the reason for slower dynamics observed in our adaptation experiments in Figure S5.

Table S2: Fitted Parameters for (5); other parameters were left unvaried with respect to Table S1

.

Units: [1/M/s] Units: [1/s]

kTiAi = 6.6 · 105 kcatON11 = 0.1, kcatON22 = 0.09

kT1A1R1 = 0.7 · 105, kT2A2R2 = 0.6 · 105 kcatHii = .09

kA1R1 = kA2R2 = 4.4 · 105 kcatH21 = .03, kcatH12 = .02

kRiRj = 4.9 · 106

Units: [M ] Units: [M ]

[RNAP tot] = 100 nM [RNaseHtot] = 20 nM
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Table S3: Fitting constraints for parameters in Table S2.

Parameter Lower Bound Upper Bound

kTiAi 103 5 · 105

kTiAiRi 103 5 · 105

kAiRi 103 5 · 105

kRiRj 103 5 · 105

kcatONii 0.01 0.1

kcatHii 0.001 0.1

[RNAP tot] 15 · 10−9 100 · 10−9

[RNaseHtot] 5 · 10−9 20 · 10−9
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3 Modeling and numerical analysis: Scalability of the neg-
ative feedback scheme for flux regulation

3.1 Simple model system

We consider now n generating species Ti, outputting interacting products Ri, and we explore dif-
ferent feedback interconnection topologies. Initial studies on scalability were outlined in Giordano
et al. [2013]. ODEs were derived using mass action kinetics and used for numerical simulation
of three– and four–component networks. Negative autoregulation is implemented, as for smaller
networks, with a self–repression scheme: when an output is in excess relative to the effectively
used amount, it down–regulates its own production rate.

Ri + Ti
δi
⇀T ∗i ,

T ∗i
αi
⇀ Ti,

where T ∗i is an inactive complex. We assume that [T toti ] = [Ti] + [T ∗i ] and that T ∗i spontaneously
reverts to its active state with a first-order rate αi. The corresponding differential equation
describing the template dynamics is the same regardless of the topology:

d[Ti]

dt
= αi ([T

tot
i ]− [Ti])− δi [Ri][Ti], i = 1, ..., n.

Depending on the chosen interaction/binding topology for the products Ri, we find that the
system exhibits different behaviors, as shown in the following sections.

3.1.1 Single product topology

A single product topology occurs when a single complex P is formed by the simultaneous inter-
action of all the n outputs:

n∑
i=1

Ri
k
⇀P.

The corresponding differential equations are

d[Ri]

dt
= βi [Ti]− δi [Ri][Ti]− k

n∏
i=1

[Ri],

d[P ]

dt
= k

n∏
i=1

[Ri]

and the total amount of Ri is [Rtot
i ] = [Ri]+[T ∗i ]+[P ]. Figure S11 shows the numerical solutions

to the ODEs for n = 3 and n = 4. Even though the initial total amounts of Ti are different,
the concentration of active Ti (bottom left panel) gradually decreases and the flow mismatches
(namely the differences in absolute value between any two production rates, shown in the bottom
right panel) are considerably reduced with a fast time response. We can notice that the response
is slower in the case of 4 interconnected species. The quantity of produced Ri (upper left panel)
is of course increasing. With respect to the other topologies, as we will see, the single product
topology leads to a much higher amount of free Ri (upper right panel), which can be considered
waste because it is not used in the product formation.
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Figure S11: Example traces from numerical simulations: single product topology, negative feed-
back scheme.
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3.1.2 Handshake and neighbor topologies

A network of n generating species Ti may be designed to produce different subcomponents,
that may later assemble into a larger product. In this scenario, we can take two extreme cases:
the neighbor topology, when each output participates in at most two subcomponents, and the
handshake topology, when each output participates in n− 1 subcomponents. We thus have the
generation of pairwise products Pij; in the handshake case i, j = 1, ..., n, j 6= i, while in the
neighbor case i = 1, ..., n, j = i − 1, i + 1 and when i = 1, i − 1 = n, when i = n, i + 1 = 1,
to close the loop. It is worth noticing that, in the case n = 3, the two topologies coincide. The
reactions corresponding to product generation are

Ri +Rj
kij
⇀ Pij,

which lead to the following ODEs:

d[Ri]

dt
= βi [Ti]− δi [Ri][Ti]−

∑
j

kij [Ri][Rj],

d[Pij]

dt
= kij [Ri][Rj].

The total amount of Ri is [Rtot
i ] = [Ri] + [T ∗i ] +

∑
j[Pij]. Figure S12 shows the numerical

solutions to the ODEs for n = 3, and for n = 4 in the handshake connection case. As for the
single product topology, even though we initially have different total amounts of active Ti, the
concentration of active Ti decreases and the flux mismatches are considerably reduced with a fast
time response. Although the quantity of produced Ri is increasing, the feedback control reduces
and keeps bounded the amount of free Ri, which can be considered waste.

3.1.3 Parameters

The parameters chosen in our simulations are: kij = 2 · 103 /M/s for the handshake/neighbor
topology and k = 6 ·103/M/s for the single product topology, δi = 5 ·103 /M/s, αi = 3 ·10−4 /s,
βi = 1 · 10−2 /s, [T tot1 ] = 100 nM, [T tot2 ] = 200 nM, [T tot3 ] = 300 nM, [T tot4 ] = 150 nM. An
imbalance in the production rates of Ri is created by setting [Ti](0) = [T toti ], while [Ri](0) = 0.

3.1.4 Performance overview of the different topologies as a function of key parame-
ters

We numerically explored the behavior of the different network topologies for n = 4 as a function
of the feedback parameter δ and of the rate of activation α. Figures S13, S14 and S15 show the
network response in terms of active percentage of Ti ([Ti]/[T

tot
i ] ·100), flow mismatch (computed

as in the previous cases) and response time (defined as the time it takes for the active Ti trajectory
to go from [Ti(0)]− 10%∆ to [Ti(0)]− 90%∆, where ∆ is the difference between its initial value
[Ti(0)] and its steady state value). We solved the differential equations for a time span of 10
hours and averaged the trajectories for active Ti and for the computed mismatch over the last
simulation hour. δ varies logarithmically from a tenth to a thousand times its nominal value; α
varies from a hundredth to five times its nominal value. In each figure, pink squares mark the
nominal behavior of the system (all parameters are identical to those listed in Section 3.1.3).
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Figure S12: Example traces from numerical simulations: handshake/neighbor topologies, negative
feedback scheme.
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Figure S13: Simulations for the negative feedback, single product topology: parameter sensitivity
analysis.

In all network topologies, a large negative feedback parameter δ yields a lower mismatch and
decreases the response time; however, large δ clearly reduces the steady state activity of Ti. In
the handshake and neighbor topologies, a larger value of the spontaneous reactivation parameter
α yields higher Ti steady state activity, a larger mismatch, and a shorter response time. On the
contrary, in the single product topology larger α, despite yielding higher Ti steady state activity,
dramatically increases the response time, while the mismatch does not monotonically increase.
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Figure S14: Simulations for the negative feedback, handshake topology: parameter sensitivity analysis.
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Figure S15: Simulations for the negative feedback, neighbor topology: parameter sensitivity analysis.
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4 Positive feedback architecture for a two-gene system.
Modeling and a viable experimental implementation

4.1 Simple model system: derivation of nullclines and rate matching
conditions

T1 T2
R1

R2

Figure S16: Our two-gene
positive feedback architec-
ture

As done for the negative feedback architecture, we consider a
system composed of two generating species T1 and T2, whose
products R1 and R2 interact to form a complex P = R1 ·R2. We
devise a positive feedback interconnection where product in excess
upregulates the product in shortage (Figure S16). Free (and thus,
in excess) molecules of Ri bind to inactive Tj and activate it:

Ri + T ∗j
δij
⇀ Tj

Ti
αi
⇀ T ∗i ,

where again T ∗i is an inactive complex and [T toti ] = [Ti] + [T ∗i ]. The total amount of Ri is
[Rtot

i ] = [Ri] + [Tj] + [P ]. We now assume that Ti naturally reverts to its inactive state with rate
αi. The corresponding differential equations are

d[Ti]

dt
= −αi [Ti] + δji [Rj]([T

tot
i ]− [Ti]),

d[Ri]

dt
= βi [Ti]− k [Ri][Rj]− δij [Ri]([T

tot
j ]− [Tj]). (6)

This system was initially considered in Franco [2012]. The above differential equations were
solved numerically. The parameters were chosen for illustrative purposes as α1 = α2 = 3·10−4 /s,
β1 = β2 = 0.01 /s, δ1 = δ2 = 5 ·102 /M/s, and k = 2 ·103/M/s. The total amount of templates
was chosen as [T tot1 ] = 100 nM, [T tot2 ] = 200 nM. The initial conditions of active [Ti] are set as
[T1](0) = 10 nM and [T2](0) = 160 nM, while [R1](0) = [R2](0) = 0. Example traces are shown
in Figure S17 (a modified version of this figure is also in the main paper). Each product’s flux
rate is defined again as the derivative of [Rtot

i ]. The flux mismatch is defined as the absolute
value of the difference between the two flux rates. The effect of changing the feedback strength,
where for simplicity δ1 = δ2, is shown in Figure S17 B and C, which plots the active fraction of
[Ti] and the flux mismatch averaged over the last one hour of a 10 hours simulation. The right
panel in Figure S17 seems to indicate that the flux mismatch of the two circuits is minimized for
a certain range of δ around the nominal value of δ = 5 · 102.

The nullclines of the system in the T1-T2 space can be calculated as done for the negative
feedback design. Taking equations (6), we find:

Ṫj = 0 =⇒ Ri =
αjTj

δij(T totj − Tj)
,

Ṙi = 0 =⇒ Ri =
βiTi

kRj + δij(T totj − Tj)
.
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tion of source species as a function of the positive feedback rate δ. C: Flow mismatch between
R1 and R2 as a function of δ. Dark circles indicate the value of δ used in panel A.
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To simplify the derivation, we set δ12 = δ21 = δ, β1 = β2 = β, α1 = α2 = α. Equating the two
expressions for Ri, we get the following equations (for i = 1, 2 and j = 1, 2):(α

δ

)2
k

(
Ti

T toti − Ti

)(
Tj

T totj − Tj

)
+ αTi − βTj = 0. (7)

We can find an expression of the nullclines by introducing a change of variables z =
(

T1
T tot
1 −T1

)
and w =

(
T2

T tot
2 −T2

)
, and defining φ1 = ψ1 =

(
α
δ

)2
k, φ2 = αT tot1 , ψ2 = αT tot2 , φ3 = βT tot2 , and

finally ψ3 = βT tot1 :

z2(φ1v) + z(φ1w + φ2 − φ3
w

1 + w
)− φ3

w

1 + w
= 0, (8)

w2(ψ1z) + w(φ1z + ψ2 − ψ3
z

1 + z
)− ψ3

z

1 + z
= 0. (9)

The roots of the equations above represent the nullclines of the system. Because all the
parameters in these equations are positive, there is always a single root. The nullclines are
numerically solved, for varying δ, in Figure S18. A condition for flow matching at steady-state
can be derived as follows:

Ṙ1 − Ṙ2 = 0,

β1T1 − δ21R1(T
tot
2 − T2) = β2T2 − δ12R2(T

tot
1 − T1).

Substituting the expressions for R1 and R2 that can be derived by setting Ṫ1 = 0 = Ṫ2, we get:

β1T̄1 −
δ21
δ12

α2T̄2 = β2T̄2 −
δ12
δ21

α1T̄1.

Taking α1 = α2 = α, β1 = β2 = β, and δ12 = δ21 = δ we get:

T̄2 = T̄1. (10)

This flow matching condition is shown in Figure S18 in the red dashed line. Decreasing α
(inactivation rate for the generating species) or increasing δ (speed of the positive feedback),
with respect to the nominal values chosen here, causes the equilibrium of the system to be
pushed toward the upper right corner of Figure S18. Moreover, when decreasing α or increasing
δ the system reaches equilibrium on a timescale in the order of several dozens of hours. Explicit
tradeoffs on the effects of α and δ may be found by further analysis on the nullclines and on the
locus of equilibria in equation (7).

4.2 A possible experimental implementation of a two-gene positive
feedback scheme

The experimental implementation of our positive feedback scheme using transcriptional networks
presents several challenges. Here we present its general idea. A viable strand design scheme is in



Supplementary Information Appendix - Experiments, Data Processing and Modeling 29

0 20 40 60 80 100 120
0

50

100

150

200

T1 [nM]

T
2 

[n
M

]

Nullclines for varying δ

 

 

T
2
(T

1
)

T
1
(T

2
)

δ= 125
δ= 250
δ= 500
δ= 1000
δ= 2000

Figure S18: Numerical simulation: nullclines of the positive feedback scheme (6) in the T1-
T2 plane, calculated for different values of δ finding the roots of equations (8) and (9). The
equilibrium corresponding to the set of nominal parameters (trajectories in Figure S17 A) is
circled in black. The flow matching condition (10) is shown in the orange line. The flow matching
condition is satisfied by the equilibria T̄1 and T̄2 for δ = 5 · 103.
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Figure S19 A. Both genelets are constitutively inhibited by a DNA inhibitor Ii. Each RNA output
Ri is designed to bind to the inhibitor Ij (domains indicated as qj-aj-tj), thereby releasing the
activator Aj for binding to Tj. Because Ri should also cover the active domain of Rj in the
formation of P , then Ri must also be complementary to Ai (domains t′i-a

′
i-q
′
i): therefore, this

design is structurally affected by binding of RNA to templates (as for the self-repressing circuit),
and by RNA-mediated self-inhibition loops, as shown in the reaction scheme in Figure S19 C.
The entity of these design pitfalls depends on the length and sequences of the complementarity
domains shared by Ri and Rj. For instance, we could avoid inserting in the RNA species the
toehold sequences t1, t′1, t2, and t′2 to minimize the self inhibition; however, this would facilitate
the formation of complexes Ai · Ii ·Rj that would slow down the release of Ai.

Preliminary experiments on this design, reported in Franco [2012], show that the issues de-
scribed above are significant. In particular, the design could be improved if the self-inhibition
pathways were minimized: this was attempted, without conclusive success, by increasing the
concentration of DNA inhibitors, the concentration of RNase H, and by lengthening the length
of toeholds for Ai and Ii. Experiments also highlighted the possibility of “leaky” transcription of
inhibited switches. We refer the reader to Franco [2012], Chapter 1, for further details. Here,
we only describe our numerical analysis, which suggests that the scheme has the ability to match
transcription rates of two cross-activating genelets when we choose plausible reaction parameters.

4.2.1 Modeling

To construct a dynamic model for the cross-activating circuit represented in Figure S19 A, we
start from a list of all the chemical reactions that can occur,

Activation Ti + Ai
kTiAi→ Ti · Ai

Inhibition Ti · Ai + Ii
kTiAiIi→ Ti + Ii · Ai

Annihilation Ai + Ii
kAiIi→ Ai · Ii

Release Ri + Aj · Ij
kRiAjIj
→ Ri · Ij + Ai

Annihilation Ri + Ij
kRiIj
→ Ri · Ij

Output formation Ri +Rj
kRiRj
→ Ri ·Rj

Undesired interactions Ri + Ai
kRiAi→ Ri · Ai

Ri + Tj
kRiTj
→ Ri · Tj
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Figure S19: General reaction scheme of the transcriptional circuits implementation for the positive
feedback scheme in Figure S16. Complementary domains are represented with the same color.
Promoters are colored in dark gray, while hairpin terminator sequences are in light gray. A. Desired
cross-activation loops. The activation reaction arrows are colored in red. B. Undesired cross-
activation and RNase H-mediated degradation of the RNA-template complexes. C. Undesired
self-inhibition. The inhibition pathway in cyan arrows nominally should not occur, since there
is no exposed toehold to favor it. However, this reaction has been observed in preliminary
experiments not shown in this manuscript and is therefore also included in the models.



Supplementary Information Appendix - Experiments, Data Processing and Modeling 32

Transcription: on state RNAP + Ti · Ai
k+ONii→
←

k−ONii

RNAP · Ti · Ai
kcatONii→ RNAP + Ti · Ai +Ri

Transcription: off state RNAP + Ti

k+OFFi→
←

k−OFFi

RNAP · Ti kcatOFFi→ RNAP + Ti +Ri

RNAP +Ri · Tj
k+OFFij
→
←

k−OFFij

RNAP ·Ri · Tj
kcatOFFij
→ RNAP +Ri · Tj +Rj

Degradation RNaseH +Ri · Ij
k+HIj
→
←
k−HIj

RNaseH ·Ri · Ij
kcatHIj
→ RNaseH + Ij

RNaseH +Ri · Ai
k+HAi→
←

k−HAi

RNaseH ·Ri · Ai
kcatHAi→ RNaseH + Ai

RNaseH +Ri · Tj
k+HTj
→
←

k−HTj

RNaseH ·Ri · Tj
kcatHTj
→ RNaseH + Tj.

The resulting set of ordinary differential equations is:

d

dt
[Ti] =− kTiAi

[Ti] [Ai]− kRjTi [Rj] [Ti] + kTiAiIi [Ti · Ai] [Ii] + kcatHTi
[RNaseH ·Rj · Ti],

d

dt
[Ai] =− kTiAi

[Ti] [Ai]− kAiIi [Ai] [Ii]− kRiAi
[Ri] [Ai] + kcatHAi

[RNaseH ·Ri · Ai],

d

dt
[Ii] =− kAiIi [Ai] [Ii]− kTiAiIi [Ti · Ai] [Ii]− kRjIi [Rj] [Ii] + kcatHIi

[RNaseH ·Rj · Ii],

d

dt
[Ri] =− kRiAjIj [Ri] [Aj · Ij]− kRiRj

[Ri] [Rj]− kRiTj [Ri] [Tj]− kRiIj [Ri] [Ij]− kRiAi
[Ri] [Ai]

+ kcatONii
[RNAP · Ti · Ai] + kcatOFFi

[RNAP · Ti] + kcatOFFji
[RNAP ·Rj · Ti],

d

dt
[Ri · Tj] = + kRiTj [Ri] [Tj]− kcatHTj

[RNaseH ·Ri · Tj],

d

dt
[Ri ·Rj] = + kRiRj

[Ri] [Rj].

(11)

As previously done for the self-inhibiting circuit model, we can express the enzyme-substrate
complexes using the Michaelis-Menten approximation. For the RNAP substrate, for instance, we
find:

[RNAP · Ti ·Ai] =
[RNAP tot](

1 +
∑

i,j
[Ti·Ai]
kMONii

+ [Ti]
kMOFFi

+
[Ri·Tj ]
kMOFFij

) . (12)

Analogous expressions can be derived for all other complexes.
Equations (11) are numerically solved using the MATLAB ode23s solver. Table S4 shows the

parameters used for the simulations. Such generic parameters are consistent with those in Kim
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et al. [2006]. For simplicity we assume that the two sub-circuits are symmetric and have the
same binding rates. We check the behavior of the system by creating an imbalance in the total
concentration of inhibitors: [T tot1 ] = [Atot1 ] = 50 nM, [T tot2 ] = [Atot2 ] = 100 nM, while [I tot1 ] = 20
nM and [I tot2 ] = 120 nM. The simulation first allows for equilibration of all the DNA strands in
the absence of enzymes. The plot shows the trajectories after addition of the enzymes, whose
total concentration is assumed to be [RNAP tot] = 80 nM and [RNaseH tot] = 8.8 nM, based on
typical experimental conditions. As noted before for the self-inhibitory scheme, the concentration
of RNAP is not negligible relative to the total amount of genelets present and therefore the
Michaelis-Menten approximation may not be accurate in this case. The simulation results are
shown in Figure S20 and are consistent with the traces obtained for the simple model system
shown at Figure S17 A: the templates cross–activate and reach an equilibrium where the flow of
total RNA is matched. A comparison between the performance of the transcriptional negative
and positive feedback circuits models was also done in Franco and Murray [2008].

Table S4: Parameters for the Initial Numerical Analysis of the Cross Activating Circuit

Units: [1/M/s] Units: [1/s] Units: [M ]

kTiAi = 4 · 104 kcatONii = 0.06 kMONii = 250 · 10−9

kTiAiIi = 5 · 104 kcatOFFi = 1 · 10−3 kMOFFi = 1 · 10−6

kAiIi = 5 · 104 kcatOFFij = 1 · 10−3 kMOFFij = 1 · 10−6

kRjAiIi = 5 · 105 kcatHIi
= 0.1 kMHIi

= 50 · 10−9

kRiIi = 5 · 105 kcatHTi
= 0.1 kMHTi

= 50 · 10−9

kRiTj = 1 · 103 kcatHAi
= 0.1 kMHAi

= 50 · 10−9

kRiAi = 1 · 103

kRiRj = 2 · 105

5 Numerical scalability analysis of our simplified positive
feedback scheme model for flux regulation

Here we report the mathematical models for positive feedback topologies in the case of n gener-
ating species Ti. This numerical study was initially outlined in Giordano et al. [2013]. The ODE
systems were derived using mass action kinetics and used for the numerical simulation of the
proposed topologies in the case of three–component networks. Positive feedback is implemented,
as for smaller networks, with a cross–activation scheme: when an output is in excess (not used
in the product formation), it increases the generation rate of all the other outputs it forms a
product with:

Ti
αi
⇀ T ∗i ,
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Figure S20: Numerical simulation for equations (11). Parameters are chosen as in Table S4.
[T tot1 ] = [Atot1 ] = 50 nM, [T tot2 ] = [Atot2 ] = 100 nM, while [I tot1 ] = 20 nM, and [I tot2 ] = 120
nM. [RNAP tot] = 80 nM and [RNaseH tot] = 8.8 nM. These numerical results are in general
consistent with those obtained for the simple model (6), shown in Figure S17 A.

where T ∗i is an inactive complex. We assume that [T toti ] = [Ti]+[T ∗i ] and that the active complex
Ti naturally inactivates with a first order rate αi.

5.1 Single product topology

In a single product topology, a single complex P is concurrently formed by all the n outputs:

n∑
i=1

Ri
k
⇀P.

The corresponding differential equations are

d[Ti]

dt
= −αi [Ti] + δi ([T

tot
i ]− [Ti])

∏
j 6=i

[Rj]

d[Ri]

dt
= βi [Ti]− k

n∏
i=1

[Ri]− δi [Ri]
∏
j 6=i

([T totj ]− [Tj])

d[P ]

dt
= k

n∏
i=1

[Ri]

(13)

and the total amount of Ri is [Rtot
i ] = [Ri] +

∑
j 6=i[Tj] + [P ]. The simulation results, in Figure

S21 (a), show that also this feedback strategy is effective. The concentrations of active Ti
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asymptotically decrease and flow mismatches reduce, yet the time response is slower than in the
negative feedback case. With respect to negative feedback, there is also a higher Ri production.

5.2 Handshake and neighbor topologies

Subcomponents generation is expressed by the reaction Ri+Rj
kij
⇀ Pij and positive feedback acts

on gene i due to gene j: Ri + T ∗j
δij
⇀ Tj. The differential equations are

d[Ti]

dt
= −αi [Ti] +

∑
j

δij [Rj]([T
tot
i ]− [Ti])

d[Ri]

dt
= βi [Ti]−

∑
j

kij [Ri][Rj]−
∑
j

δji [Ri]([T
tot
j ]− [Tj])

d[Pij]

dt
= kij [Ri][Rj]

(14)

and the total amount of Ri is [Rtot
i ] = [Ri]+

∑
j[Tj]+

∑
j[Pij]. We remind that the two topologies

coincide in the case n = 3. The simulation results are shown in Figure S21 (b). The concentration
of active genes decreases and the flux mismatches are reduced, but the response time is still longer
than in the negative feedback architecture. Moreover, there is a higher Ri production than in
the negative feedback case. We can note that the handshake/neighbor connection generates less
waste (unused Ri) than the single product interconnection.

5.3 Parameters

For the numerical solution, the parameters chosen are: kij = 2 · 103 /M/s for the hand-
shake/neighbor topology and k = 6 · 103/M/s for the single product topology, δij = 50 /M/s,
αi = 3 · 10−4 /s, βi = 1 · 10−2 /s, [T tot1 ] = 100 nM, [T tot2 ] = 200 nM, [T tot3 ] = 300 nM. An
imbalance in the production rates of Ri is created by setting [Ti](0) = [T toti ], while [Ri](0) = 0.

5.4 Performance overview of the different topologies as a function of
key parameters

Using Figures S23 and S24 as a support, we can compare the performance of the positive feedback
strategy for networks with n = 3. These topologies are shown in Figure S22; for n = 3 the
handshake and neighbor topology coincide, Figure S22 B.

We numerically analyzed the network response in terms of active percentage of Ti, mean
flow mismatch and response time, defined as previously done for negative feedback topologies.
We solved the differential equations for a time span of 10 hours and averaged the trajectories
for active Ti and for the computed mismatch over the last simulation hour. We examined the
sensitivity to variations in δ, the feedback strength, and in α, the rate of spontaneous inactivation
of Ti: δ varies from a hundredth to a hundred times its nominal value; α varies from a hundredth
of its nominal value to twice its nominal value, and up to five times its nominal value in the
response time analysis. In each figure, a pink square highlights the system behavior when the
nominal parameters in Section 5.3 are adopted.
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Figure S21: Example traces from numerical simulations: positive feedback scheme.
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Figure S22: A: Single product topology. B: Handshake/neighbor interconnection.
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Figure S23: Positive feedback, single product topology: parameter sensitivity analysis.
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Figure S24: Positive feedback, neighbor/handshake topology: parameter sensitivity analysis.

In all network topologies, an increase in the spontaneous inactivation parameter α yields a
lower mismatch, decreases the response time and considerably reduces the steady state activity of
Ti. In the handshake/neighbor topology, an increase in the positive feedback parameter δ yields a
significantly higher Ti steady state activity and a larger mismatch; in the single product topology,
instead, the steady state activity of Ti is quite low and almost insensitive to variations in δ and
the mismatch is almost independent of δ. When δ increases, the response time decreases in the
single product topology, while it does not have a monotone behavior in the handshake/neighbor
topology.
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