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Abstract — Binding of proteins and RNA underlies cell metabolism, gene expression
and self–assembly phenomena. Often such binding has to occur with specific stoichio-
metric ratios: therefore flux control is important to regulate production rate and con-
centration of biochemical species. Flux control loops for two binding species forming
an output product have been implemented with in vitro artificial gene circuits. This
research project aimed at generalizing flux regulation architectures to an arbitrary
number of species. Feedback loops were designed based on negative auto–regulation
(which can minimize the potentially harmful amount of molecules not used to form the
product), cross–activation (which can maximize the overall output flux) and both. It
was shown that transcription rate matching can be achieved through proper feedback
constants; negative feedback is faster and maintains stability. The performances of feed-
back generated with mass action kinetics and feedback described by Hill functions were
compared; stoichiometric negative feedback keeps concentrations at a lower level. We
also studied a possible experimental implementation of a three and four gene network
for flux matching based on negative feedback.

1 Introduction
1.1 Background and motivation

Synthetic biology: a control–theoretic approach

The project pertains to the field of synthetic biology, an emerging and challenging area of
research, which aims at designing from the bottom–up new large scale biological circuits with specific
functionalities.

New biotechnologies, gene and cell therapy can improve human health and quality of life. The
ability of engineering genes and cells and creating new biomolecular circuits is useful to devise
innovative biotechnologies and drugs — for instance, some genes have been used as blocks to insert
in a host genome, to make it provide the desired behavior: yeasts and bacteria have been engineered
to produce pharmaceuticals and remedies, such as insulin. The creation of new circuits is not only
useful for the purpose of practical applications: it can also offer a powerful insight into the design
principles present in nature and selected by evolution, that, although it works by random tinkering,
seems to converge onto a defined set of basic circuit elements [4, 5, 6].

To survive, all living organisms need to sense external stimuli and face variations in the environment
[3]. Cells process information, for survival and reproduction, by means of biochemical circuits made of
many species of interacting molecules. Complex structures assemble, perform elaborate biochemical
tasks and vanish when their work is done: these phenomena seem to be simple, since they are
so spontaneous and efficient, but it is very difficult to understand the general design principles
underlying their mechanisms [4]. However, it is deeply interesting to study, analyze and model the
interactions among the bricks that compose and sustain life and, once we have penetrated the basic
functioning of nature, it will be easier to imitate it in order to forge new biomolecular circuits with
the desired behavior.

To perform the study and the design of gene circuits, it is crucial to develop predictive models, in
order to highlight the fundamental features of biological circuitry and the basic laws that rule the
behavior of living matter, and quantitative methods, in order to optimally adjust their features: thus
a control–theoretic approach is very powerful to assess the key properties of a biochemical dynamical
system, tuning its performance and robustness [7, 3].
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(a) (b)

Figure 1: (a) The DNA double helix, composed by two long polymers of nucleotides, with backbones
made of sugars and phosphate groups joined by ester bonds. Attached to each sugar is one of four
types of molecules called bases: adenine (A) binds to thymine (T) and cytosine (C) to guanine
(G). The two strands are anti–parallel and the sequence of the four nucleobases along the backbone
encodes information. (b) An example of biomolecular circuit designed to produce oscillations.

Rate regulation: what for?

Could we ever build complex biological systems made of simple components, as we build complex
computational systems made of nanometric silicon devices? The ambition is still very far to be
reached, but it is an attractive challenge [8]. Some of the basic blocks have already been built, such
as clock signals [9], oscillators [10, 11, 12], elements with bistable or multistable features [13]. It is
already possible to construct actual molecular machines [2] and DNA nanorobots [1].

(a) (b)

Figure 2: (a) Molecular differential gear, an early Institute for Molecular Manufacturing funded
project (©1997 IMM). (b) DNA box for targeted transport of molecular payloads, reproduced from
[1].

Biological systems actually have a lot of features in common with those designed by human
engineers. Both can reach very high levels of complexity, yet they are made of simple building blocks
assembled in a modular, hierarchical design: basic functional motifs, widely diffused in nature, can
be considered as the elementary building blocks of great biological systems [4, 6]; and also man–made
complex systems reuse a small set of simpler components. If we are producing a complex system made
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(a) (b)

Figure 3: (a) Industrial assembly of electronic components to obtain a computational system:
©Arduino microcontroller. (b) Molecular assembly of biochemical components to obtain cubic
RNA–based scaffolds, reproduced from [2].

up of many smaller components, we want to produce all the components at a precise rate, in order to
have exactly the needed amount of each of them. In the biomolecular case, cells heavily rely for their
survival and activities on a regulated flow of nucleic acids (DNA, RNA), transcription factors, proteins
and other metabolites. Binding of proteins and RNA underlies cell metabolism, gene expression and
self–assembly phenomena; and often such binding has to occur with specific stoichiometric ratios. An
excessive accumulation of one or more reagents is undesirable and may be dangerous; on the other
side, if the production of some reagents is too slow, it becomes a bottleneck for the product flow and
limits the throughput of the whole process. Flux control is thus a fundamental feature and, in a
synthetic circuit, it is very important to be able to regulate and optimize molecular flow rate in order
to optimize the production process. Regulatory schemes are necessary to avoid excess production of
molecules unused by the cell and to increase the production of molecules highly required.

In vitro synthetic gene networks have been recently proposed in [13, 11]: the activity of artificial,
short DNA genes ("genelets") is regulated by their RNA outputs, through displacement of key
activating strands bound to the genes. Thus, unlike in vivo transcriptional control, regulation is
mediated by RNA species rather than by proteins. These networks are translation free (i.e. no
proteins are produced) and are built with few biochemical components (DNA, RNA, two protein
species off-the-shelf, and a well defined set of buffer reagents), but can exhibit by design complex
behaviors such as bistability [13, 14] and oscillations [11, 9]. Since they can generate many complex
behaviors, in vitro transcriptional circuits are a promising toolkit to control dynamics in molecular
machines [2, 1], patterns [15] and computers [16]. Thus, we need scalable flux control architectures
tailored to these synthetic gene networks.

The present project is focused on a class of synthetic gene circuits, termed "rate regulators",
which interact to regulate their RNA production rate. The first rate regulator circuits designed
in vitro involve two genes, do not correspond to any biological circuit existing in nature and are
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described in [17, 8, 3].

Previous literature overview

The simplest case of flux regulation is given by two reagents that bind one to one to form a
product. The aim is to equate their flow (or, more in general, to regulate the different flows depending
on the stoichiometric ratios of the reaction that has to occur) through the design of feedback loops.
As a model problem, consider two reactants, R1 and R2 (produced at rates β1 and β2 by the genes
T1 and T2, respectively), that bind with one to one stoichiometry to form an output product P [3].
If the two flows are not matched, the reagent with the higher flux accumulates, creating a potentially
harmful excess, and the flow of product is limited by the lower reagent flux. We would like thus to
reduce the flux mismatch, namely the difference in absolute value between the two production rates.
To equate the two production rates, regulatory schemes are necessary and two different designs have
been proposed in literature up to now: the first is based on negative feedback (self–repression [17]),
the second on positive feedback (cross–activation [8]). The problem considered and the two designs
devised in previous literature are shown in Fig. 4. The first design [17, 3] performs self–repression
of the species in excess: when either species senses an excess of its product, it down–regulates its
own production rate. The second design [8, 3] performs cross–activation: if one of the reagents is
in excess, it will increase the production rate of the other reagent. Since both transcripts have this
self–repression or cross–activation feature, at steady state their production rates will be equal. The
differential equations describing the dynamics of the species concentrations in the three cases can be
gathered from chemical reactions through mass action kinetics and the solution trajectories, obtained
via numerical simulations, are shown in Fig. 5 for a particular set of parameter values: both negative
and positive feedback can balance the quantity of reactants produced. As these gene circuits have
been built in vitro, the numerical results have been confirmed by experiments.

(a) (b) (c)

Figure 4: Graph representations of (a) the flux regulation problem, (b) the negative feedback flux
control, (c) the positive feedback flux control. Figures reproduced from [3].

1.2 Paper outline
The goal of the project was to develop new and more general models that describe rate–regulation

circuits, to extend these patterns to more than two genes, by using positive or negative feedback,
to examine the sensitivity to parameter variation and the robustness of the models and to make
comparisons between different scenarios and performances.

The existing models and experimental implementations of synthetic rate regulatory circuits are
limited to connecting only two genes, but, to make these schemes useful for large scale systems, we
needed to be able to describe and monitor situations in which genes and metabolites are interacting
in greater number. Besides generalizing the models, we wanted to discover what kind of feedback
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(a)

(b) (c)

Figure 5: Numerical solutions to the differential equations (a) of the unregulated network, leading to
a flux mismatch. (b) of the network regulated by a negative feedback. (c) of the network regulated by
a positive feedback. In cases (b) and (c), the flux mismatch observably reduces. Figures reproduced
from [3].

implements the best control strategy according to our aim (e.g. maximizing the output flux or
minimizing wastes) and what biochemical process generates the most suitable feedback (e.g. mass
action kinetics or Hill functions).

Section 2 introduces some basic concept about artificial in vitro gene networks (transcriptional
circuits). Section 3 is devoted to scaling up flux regulation circuitry to an arbitrary number of
genes, according to different product formation schemes; Subsection 3.2 explores negative feedback
regulation schemes, Subsection 3.3 instead positive feedback regulation schemes. In Subsection 3.4,
the performances of positive and negative feedback schemes are compared and summarized in a
table. It is shown that, if we scale up flux regulation circuits, through proper negative or positive
feedback loops, flux matching can be achieved with an arbitrary number of genes; moreover, negative
feedback seems to have the most interesting and desirable features and so to be worth of further
investigations. Section 4 deals with two gene circuits in which positive and negative feedback coexist:
through suitable feedback loops, flux matching is achieved as well and the system behavior shows
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intermediate features, depending on which of the two feedback constants is the highest. In Section 5,
different models to represent feedback are considered. It is shown that mass action kinetics and Hill
functions can be both used to model feedback reactions in biochemical systems, yet a different overall
behavior is achieved. Section 6 examines more deeply the mass action kinetics negative feedback
scheme for rate–regulation circuits, since it appears as the most interesting and easy to implement.
In Subsection 6.1 a viable DNA strand implementation is described, based on which in Subsection
6.2 a new model is considered, fitting to the biochemical reactions actually occurring in the system.
In Section 7 the project results are summarized and briefly discussed, including implications and
future research directions. Finally, Section 8 gives some hints about the routines used for numerical
simulations and reports the parameter values used to obtain the graphs shown throughout the paper.

Part of the results are exposed also in [18].

2 Artificial gene networks

Figure 6: (a) Domain representation of nucleic acids and branch migration (b) On/off state of genelets
(c) RNA-mediated repression (d) RNA-mediated activation. Figure reproduced from [18].

Here we introduce artificial in vitro gene networks (transcriptional circuits) [13], with the support
of Figure 6. Interactions among nucleic acids (DNA and RNA) can be programmed by choosing their
sequences (ATCG); strand domains (subsequences of bases) having a particular function, Figure 6
(a), are identified with a specific color (once domain interactions are chosen, automated software
tools can be used to find optimal sequences [16]). The arrow on every strand represented in Figure 6
represents the 5′ end. Reactions in nucleic acid systems occur by hybridization (two single stranded,
complementary nucleic acids bind to form a double stranded complex) and by toehold-mediated
branch migration [19], exemplified in Figure 6 (a): species A and B interact through the exposed

11



pink domain and switch to a new, thermodynamically more favorable configuration, creating species
D and C. The reaction speed is determined by the length of the toehold domain and is typically
tunable in the range 10–106/M/s for 1–8 bases toeholds.

Figure 6 (b) introduces artificial genelets; synthetic DNA templates are copied (transcribed) into
RNA using T7 RNA polymerase (RNAP); if the RNAP binding region, called promoter, is incomplete
(partially single stranded), the genelet is off (T∗). When the double stranded region is reformed by
the appropriate DNA activating strand, the genelet is on (T) and RNA output R is produced. The
total amount of a genelet is constant, i.e. [T] + [T∗] = [Ttot]. We assume the enzyme operates in a
linear regime, thus R is produced at rate β: T

β
⇀R + T. Output R can be used downstream at a rate

k, for instance to interact with other RNA species in circuit dynamics or to form nanostructures [2].
In this paper, we describe repression and activation of genelets with a set of aggregate reactions;

we obtain intuitive models that bear relevance to general molecular networks.
In Figure 6 (c) we show how a genelet can be repressed by an RNA species R. This pathway is at

the basis of the proposed negative feedback circuits. By design, R displaces part of the promoter in
the activating strand through toehold-mediated branch migration: R+T

δ
⇀T∗, where δ is proportional

to the length of the toehold domain (cyan domain). We lump the species in the dashed box into
species T∗. The inactive gene T∗ reverts at rate α to its active form T thanks to the action of RNase
H, an enzyme which degrades RNA in RNA/DNA duplexes; R is degraded and the activating strand
binds again to the template forming T∗.

In Figure 6 (d) we show how a genelet can be activated by an RNA species R. This pathway is at
the basis of the proposed positive feedback designs. In this case, species T∗ (dashed box) is comprised
of the inactive genelet and a DNA inhibitor-activator complex (the activating strand is sequestered
by design). Again, by suitable domain design, R releases the activating–strand through toehold
(violet domain) mediated displacement: thus, T∗ is converted into T with rate δ (proportional to the
toehold length). Now two species coexist: active template T and the complex R·(DNA inhibiting
strand). Again, the active gene T reverts to its inactive form T∗ at rate α, thanks to the action of
RNase H, which releases the inactivating DNA strand.
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3 Scaling up rate–regulation circuits
The main goal of the project was to scale up flux regulation circuits to an arbitrary number of

genes, generalizing the models proposed in literature for the case of two genes and developing new
models for n genes, useful to describe large scale systems with a greater number of interactions.

3.1 Possible schemes
We consider a set of n genelets and different interaction scenarios. We say that genelets are

interconnected when their RNA outputs bind to form one or more products. When extending
rate–regulator circuitry to an arbitrary number n of genes, the products can be formed in many
different ways that lead to different schemes. Fig. 7 shows the schemes considered:

• single product connection: all the reagents Ri bind to form a single product, so that the
product is always one only, even when n is increasing;

• "neighbor" connection: each reagent Ri binds to form a product with only two of the others,
namely its neighbors in an imaginary chain, so that the total number of products is n;

• "handshake" connection: pairwise, each Ri binds to form a product with every other, so
that the total number of products is n(n− 1)/2.

(a)

(b)

(c)

Figure 7: Possible connection schemes with n genes: (a) single product, (b) "neighbor" connection,
(c) "handshake" connection.

A single product interconnection occurs when a single RNA complex (for instance, a large
nanostructure) is formed from the simultaneous interaction of all RNA species.

A network of genelets may be designed to produce different subcomponents, that may later
assemble into a larger product. In this scenario, we can take two extreme cases: each RNA participates
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in at most two subcomponents (neighbor interconnection); each RNA participates in the creation of
n− 1 subcomponents (handshake interconnection).

We note that in these three cases, all RNA outputs are used in the same number of complexes. Thus,
we would like them to be produced and degraded at comparable rates, given that their downstream
utilization is the same. We introduce feedback in these circuits, to compensate imbalances in the
concentration of templates and match the transcription rate of the RNA outputs. We will present
architectures based on negative and positive feedback, which scale up previously proposed two–gene
networks [17, 8].

3.2 Scaling up negative feedback architectures
The negative feedback structure proposed in [3] for the simplest case of two interacting genes can

be extended to an arbitrary number of genes, connected one another according to the three different
schemes described in 3.1.

3.2.1 Handshake connection

In the handshake connection negative feedback architecture, every gene is interacting pairwise
with all the other genes and, if it senses an excess of its product, it down–regulates its own production
rate. Here are the chemical reactions and the corresponding differential equations derived through
mass action kinetics:

T∗i
αi
⇀Ti, [Ttot

i ] = [Ti] + [T∗i ], i = 1, ..., n,

Ti
βi
⇀Ri + Ti,

d[Ti]

dt
= αi ([T

tot
i ]− [Ti])− δi [Ri][Ti],

Ri + Ti
δi
⇀T∗i ,

d[Ri]

dt
= βi [Ti]− δi [Ri][Ti]−

n∑
j=1, j 6=i

kij [Ri][Rj],

Ri + Rj
kij
⇀ Pij,

d[Pij]

dt
= kij [Ri][Rj], i, j = 1, ...,n, i 6= j,

[Rtot
i ] = [Ri] + [T∗i ] +

n∑
j=1, j 6=i

[Pij].

The inactive T∗i is assumed to naturally revert to its active state with rate αi, while βi is the
production rate of Ri and δi the strength of the negative feedback. kij is the generation rate of the
product Pij. The set of differential equations was solved numerically in the cases n = 3 and 4 and
the results are shown in Fig. 9: we can notice that the flow mismatches, shown in the right–bottom
panel of figures (a) and (b), considerably reduce with a fast time response. Fig. 10 (a) and (b)
show that, if δ increases, concentration and mismatch decrease (the feedback is stronger), while if
α increases, they increase (T∗i becomes active at a faster rate). This is a common trend for all the
negative feedback schemes with n genes.

3.2.2 Neighbor connection

In the neighbor connection negative feedback architecture, the genes can be thought as if they
were forming a chain: every gene is interacting with its two neighbors in the chain and, if it senses
an excess of its product, it down–regulates its own production rate. Here are the chemical reactions
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Figure 8: Handshake/neighbor connection negative feedback with 3 genes: graph representation.

and the corresponding differential equations derived through mass action kinetics:

T∗i
αi
⇀Ti, [Ttot

i ] = [Ti] + [T∗i ], i = 1, ..., n,

Ti
βi
⇀Ri + Ti,

d[Ti]

dt
= αi ([T

tot
i ]− [Ti])− δi [Ri][Ti],

Ri + Ti
δi
⇀T∗i ,

d[Ri]

dt
= βi [Ti]− δi [Ri][Ti]− ki,i−1 [Ri][Ri−1]− ki,i+1 [Ri][Ri+1],

Ri + Rj
kij
⇀ Pij,

d[Pij]

dt
= kij [Ri][Rj], i = 1, ...,n, j = i− 1, i + 1,

[Rtot
i ] = [Ri] + [T∗i ] + [Pi,i−1] + [Pi,i+1].

When i = 1 we have to consider i− 1 = n and when i = n we have to consider i+ 1 = 1 to close the
chain loop. Note that in the case n = 3 this scheme coincides with the handshake connection. The
set of differential equations was solved numerically in the case n = 4 and the results are shown in
Fig. 11. Again, the flow mismatches significantly reduce with a fast time response.

3.2.3 Single product

In the single product negative feedback architecture, all the genes interact to form a unique
product and, if each gene senses an excess of its product, it down–regulates its own production rate.
Here are the chemical reactions and the corresponding differential equations derived through mass
action kinetics:

T∗i
αi
⇀Ti, [Ttot

i ] = [Ti] + [T∗i ], i = 1, ..., n,

Ti
βi
⇀Ri + Ti,

d[Ti]

dt
= αi ([T

tot
i ]− [Ti])− δi [Ri][Ti],

Ri + Ti
δi
⇀T∗i ,

d[Ri]

dt
= βi [Ti]− δi [Ri][Ti]− k

n∏
i=1

[Ri],

n∑
i=1

Ri
k
⇀P,

d[P]

dt
= k

n∏
i=1

[Ri],

[Rtot
i ] = [Ri] + [T∗i ] + [P].
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(a)

(b)

Figure 9: Handshake/neighbor connection negative feedback with 3 genes: (a) numerical ODE
solutions. Handshake connection negative feedback with 4 genes: (b) numerical ODE solutions.
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(a)

(b)

Figure 10: Handshake connection negative feedback with 3 genes: steady state values of mean
concentrations and mean flow mismatches shown as a function of (a) δ and (b) α.
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(a)

(b)

Figure 11: Neighbor connection negative feedback with 4 genes: (a) numerical ODE solutions, (b)
steady state values of mean concentrations and mean flow mismatches shown as a function of δ.
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k is the generation rate of the unique product P. The results of numerical simulation with three and
four genes are shown in Fig. 12 and 13. The mismatches reduce as well, but the time response is
slightly slower than in the two cases previously shown, even though it is quite fast anyway.

3.2.4 Negative feedback architectures: a survey

Negative feedback architectures for rate–regulation have many remarkable features: they have a
very fast time response, they are modular and easy to scale up to a simple general structure, because
every gene is controlling its own production rate. Yet it is worth noting that negative feedback loops
optimize flux matching for avoiding wastes, but do not maximize the output production rate, that
can reach low levels. That’s why this type of scheme is most suitable to adjust the production rate of
a species to a level close to the flux effectively needed, avoiding accumulation of potentially harmful
excess, in the case of genes in low demand. Because of their interesting properties and effectiveness,
negative feedback rate–regulators have been analyzed more in deep and a possible experimental
implementation of these architectures has been studied (see Section 6).

3.3 Scaling up positive feedback architectures
The positive feedback structure proposed in [3] for the simplest case of two interacting genes

has been extended to an arbitrary number of genes, connected one another according to the three
different schemes described in 3.1.

3.3.1 Handshake connection

In the handshake connection positive feedback architecture, every gene is interacting pairwise
with all the other genes and, if one reagent is in excess, it will increase the production rate of all the
other reagents it is reacting with. Here are the chemical reactions and the corresponding differential
equations derived through mass action kinetics:

Ti
αi
⇀T∗i , [Ttot

i ] = [Ti] + [T∗i ], i = 1, ..., n,

Ti
βi
⇀Ri + Ti,

d[Ti]

dt
= −αi [Ti] +

∑
j 6=i

δij [Rj]([T
tot
i ]− [Ti]),

Ri + T∗j
δij
⇀ Tj,

d[Ri]

dt
= βi [Ti]−

∑
j 6=i

kij [Ri][Rj]−
∑
j6=i

δji [Ri]([T
tot
j ]− [Tj]),

Ri + Rj
kij
⇀ Pij,

d[Pij]

dt
= kij [Ri][Rj], i, j = 1, ...,n, i 6= j,

[Rtot
i ] = [Ri] +

n∑
j=1, j6=i

[Tj] +
n∑

j=1, j6=i

[Pij].

The active Ti is assumed to naturally inactivate with rate αi, while βi is the production rate of Ri

and δij the strength of the positive feedback on gene i due to gene j. kij is the generation rate of the
product Pij. The set of differential equations was solved numerically in the case n = 3 and the results
are shown in Fig. 15: we can notice that the flow mismatches, shown in the right–bottom panel of
figure (a), considerably reduce, but the response time is longer than in the negative feedback case.
Fig. 15 (b) and (c) show that, if δ increases, concentration and mismatch increase (the feedback is
stronger and the system becomes instable); while if α increases, they decrease (Ti becomes inactive
at a faster rate), which is a common trend for all the positive feedback schemes with n genes.
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(a)

(b)

(c)

Figure 12: Single product negative feedback with 3 genes: (a) numerical ODE solutions; steady state
values of mean concentrations and mean flow mismatches shown as a function of (b) δ, (c) α.
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(a)

(b)

Figure 13: Single product negative feedback with 4 genes: (a) numerical ODE solutions, (b) steady
state values of mean concentrations and mean flow mismatches shown as a function of δ.

21



Figure 14: Handshake/neighbor connection positive feedback with 3 genes: graph representation.

3.3.2 Neighbor connection

In the neighbor connection positive feedback architecture, the genes can be thought as if they
were forming a chain: every gene is interacting with its two neighbors in the chain and, if one reagent
is in excess, it will increase the production rate of the two neighboring reagents it is reacting with.
Here are the chemical reactions and the corresponding differential equations derived through mass
action kinetics:

Ti
αi
⇀T∗i , [Ttot

i ] = [Ti] + [T∗i ], i = 1, ..., n,

Ti
βi
⇀Ri + Ti,

d[Ti]

dt
= −αi [Ti] +

∑
j=i±1

δij [Rj]([T
tot
i ]− [Ti]),

Ri + T∗j
δij
⇀ Tj,

d[Ri]

dt
= βi [Ti]−

∑
j=i±1

ki,j [Ri][Rj]−
∑
j=i±1

δji [Ri]([T
tot
j ]− [Tj]),

Ri + Rj
kij
⇀ Pij,

d[Pij]

dt
= kij [Ri][Rj], i = 1, ...,n, j = i− 1, i + 1,

[Rtot
i ] = [Ri] +

∑
j=i±1

[Tj] + [Pi,i−1] + [Pi,i+1].

When i = 1 we have to consider i− 1 = n and when i = n we have to consider i+ 1 = 1 to close the
chain loop. Note that in the case n = 3 this scheme coincides with the handshake connection.

3.3.3 Single product

In the single product positive feedback architecture, all the genes interact to form a unique
product and, if one reagent is in shortage, its production rate will be enhanced by the others. Here
are the chemical reactions and the corresponding differential equations derived through mass action
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(a)

(b)

(c)

Figure 15: Handshake/neighbor connection positive feedback with 3 genes: (a) numerical ODE
solutions. Steady state values of mean concentrations and mean flow mismatches shown as a function
of (b) δ, (c) α.
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kinetics:

Ti
αi
⇀T∗i , [Ttot

i ] = [Ti] + [T∗i ], i = 1, ..., n,

Ti
βi
⇀Ri + Ti,

d[Ti]

dt
= −αi [Ti] + δi ([T

tot
i ]− [Ti])

∏
j 6=i

[Rj],

n∑
i=1

Ri
k
⇀P,

d[Ri]

dt
= βi [Ti]− k

n∏
i=1

[Ri]− δi [Ri]
∏
j6=i

([Ttot
j ]− [Tj]),

[Rtot
i ] = [Ri] +

n∑
j=1, j 6=i

[Tj] + [P],
d[P]

dt
= k

n∏
i=1

[Ri].

k is the generation rate of the unique product P and δi is the strength of the positive feedback on
gene i due to all the others. The results of numerical simulation with three genes are shown in
Fig. 16 and it is interesting to observe that, in this particular case, mean concentrations and flow
mismatches are independent of δ.

3.3.4 Positive feedback architectures: a survey

Positive feedback architectures for rate–regulation maximize the overall output rate of production.
Yet they have a much slower time response, with respect to negative feedback architectures, and
above all the feedback constant must be very small not to cause instability. They are not so easy
to scale up: the number of interactions is growing with n, because each gene is controlled by all
the others with which it works to form products. Therefore, this type of scheme is most suitable to
adjust the production rate when a high amount of product is required, in the case of genes in high
demand, but in general it is necessary to be careful to avoid problems of instability.

3.4 Negative and positive feedback: a comparison
If we compare the two feedback schemes, we notice that the negative feedback has a lot of

interesting features: it has a fast time response, it is easy to scale up because each gene controls its
own production rate, it is stabilizing for the system. Yet it is not meant to maximize the output
production rate and thus the overall output flux may reach low levels. The positive feedback, instead,
has a slower response time, is more difficult to scale up because each gene is controlled by the
others and so increasing the number of genes involved leads to a growing number of interactions,
the feedback constant must be kept very small not to lead the system to instability. Yet the overall
output flux is maximized. So negative feedback is the best control strategy, if genes are not highly
required, and it avoids the accumulation of potentially harmful excess of unused reagents; while
positive feedback is the best strategy for genes in high demand, since it maximizes the production
rate.
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(a)

(b)

(c)

Figure 16: Single product positive feedback with 3 genes: (a) numerical ODE solutions; steady state
values of mean concentrations and mean flow mismatches shown as a function of (b) δ, (c) α.
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Negative feedback Positive feedback

When δ increases mismatch decreases mismatch increases

When α increases mismatch increases mismatch decreases

Stability stable system feedback constants not small
enough can lead to instability

Time response fast slower

Scaling up easy (each gene controls its
own production rate)

more difficult (each gene con-
trolled by the others: growing
number of interactions)

Production rate may reach low levels maximized

Best control strategy for genes not highly required genes in high demand

4 Both positive and negative feedback with two genes
It may be interesting to see what happens if in the system considered both positive and negative

feedback loops are present. To examine this aspect, we study the simple two gene system and we
assume that only one of the two spontaneous conversion rates αi,pos (inactivation of Ti) and αi,neg

(activation of T∗i ) is different from zero. The resulting ODE system is

d[Ti]

dt
= −αi,pos [Ti] + (αi,neg + δij [Rj]) ([Ttot

i ]− [Ti])− δi [Ri] [Ti]

d[Ri]

dt
= βi [Ti]− k [R1][R2]− δi [Ri] [Ti]− δji [Ri]([T

tot
j ]− [Tj])

d[P]

dt
= k [R1][R2]

where i, j = 1, 2; αi,pos or αi,neg must be zero

By means of numerical simulation, it is possible to notice that the system shows an intermediate
behavior, which is more similar to pure negative or positive feedback, according to which feedback
constant δ is the strongest. Figures 18, 19, 20 and 21 show some plots obtained with different values
of the feedback constant δ for positive and negative feedback, in both cases αi,pos = 0 and αi,neg = 0.

Figure 17: System with both positive and negative feedback: graph representation.
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(a)

(b)

Figure 18: System with both positive and negative feedback. If αi,neg 6= 0: numerical ODE solutions
when (a) δ negative is greater than δ positive, (b) δ positive is greater than δ negative.
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(a)

(b)

Figure 19: System with both positive and negative feedback. If αi,neg 6= 0: steady state values of
mean concentrations and mean flow mismatches decrease (a) if δ negative increases or (b) if δ positive
decreases.
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(a)

(b)

Figure 20: System with both positive and negative feedback. If αi,pos 6= 0: numerical ODE solutions
when (a) δ negative is greater than δ positive, (b) δ positive is greater than δ negative.
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(a)

(b)

Figure 21: System with both positive and negative feedback. If αi,pos 6= 0: steady state values of
mean concentrations and mean flow mismatches (a) decrease if δ negative increases and (b) tend to
increase if δ positive increases.

30



5 Hill function and mass action kinetics models: a comparison
Consider a single gene T with a "load", i.e. a gene interacting with other molecules that require it

to produce a certain amount of R. To regulate the production of R in order to match the load request,
it is necessary to insert some feedback loop. A feedback can be described not only by means of mass
action chemical reactions, but also with a Hill function model. A Hill function model for negative
feedback has been considered and the performances of the different models have been compared. A
Hill function model for negative feedback can be obtained starting from these chemical reactions:

T
β
⇀T + R production,

T + nR
γ+



γ−

T∗ negative feedback,

R
k
⇀ ∅ degradation,

[Ttot] = [T] + [T∗] constraint.

From the ODE

d[T∗]

dt
= γ+[T][R]n − γ−[T∗]

by means of the Quasi Steady State Approximation (QSSA) we obtain

0 = γ+[T][R]n − γ−([Ttot]− [T])

¯[T] =
γ−[Ttot]

γ− + γ+[R]n
= [Ttot]

Γn

Γn + [R]n
, where Γn =

γ−

γ+

Then, if we substitute ¯[T] in the dynamics of species R, we take into account a consumption term (n
molecules of R are used up in the negative feedback reaction) and we consider the degradation as
due to the presence of a load U, we achieve

d[R]

dt
= β[T]− δ[R][U]− nγ−[R]n[T] = (β − nγ−[R]n)[Ttot]

Γn

Γn + [R]n
− δ[R][U]

The performance of this system can be compared to those of systems with negative feedback, positive
feedback and both, modeled with mass action kinetics in presence of the same load U (which, from
the point of view of the only gene considered, plays exactly the part of the other gene in the simple
two gene system). The results of numerical simulation are shown in Fig. 22 and 23. It is possible
to see that stoichiometric negative feedback keeps concentrations at a lower level with respect to
Hill function negative feedback. While, if we compare the different stoichiometric feedback schemes,
we see that with positive feedback concentrations are higher than with negative feedback, and the
behavior of the system with both positive and negative feedback ranks somewhere in between.
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(a)

(b)

Figure 22: Single gene with a "load", comparison between different stoichiometric feedbacks and Hill
function model for negative feedback: (a) compared numerical ODE solutions; (b) steady state value
of concentrations with different loads.
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(a)

(b)

Figure 23: Single gene with a "load", comparison between different stoichiometric feedbacks and Hill
function model for negative feedback: (a) steady state value of concentrations with different values
of k; (b) steady state value of concentrations with mass action kinetics models as a function of the
feedback strength δ.
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6 Negative feedback: a new model for a viable implementation
6.1 A viable DNA strand implementation: domain level design

The negative feedback rate–regulators are the ones we prefer to implement, because of their
satisfactory properties and behavior shown by means of numerical simulations. The models considered
in 3.2 are simplified and can give us an idea of the biochemical system behavior, but to study a possible
experimental implementation, with transcriptional circuits, we need to develop a more complex
model, which has to be much more fitting to the biochemical reactions actually occurring. The
more accurate model describing the transcriptional circuit implementation of the negative feedback
scheme is an extension of the one expounded and derived in [3], which takes into consideration two
genes only, but can be adapted to be suitable for a larger number of genes as well. In this case,
the "handshake" connection has been considered, because it is the most scalable and the easiest to
actually implement with transcriptional circuits. By the way, in the three genes case the "neighbor"
and the "handshake" connections coincide.

Figure 24: DNA-domain implementation of the (a) three and (b) four genes negative feedback
interconnection. Complementary domains have the same color. Nicked T7 promoters are in dark gray,
terminator domains in light gray. The RNA output of each genelet is designed to be complementary
to its activator strand. RNA species are pairwise complementary.

Previously proposed implementation for two genes

In the two gene system, the transcriptional circuit implementation proposed in [3] consists in two
genelets such that the two RNA outputs of each genelet are designed to be complementary to the
corresponding activator strand and complementary to each other, so that they can bind to form a
product. The two species T1 and T2 correspond to two genelet switches, whose RNA transcripts (the
output reagents R1 and R2) are designed to bind and form a complex P. Once R1 and R2 are bound
and form P, the complex must be inert and all the regulatory domains for negative auto–regulation
(or cross–activation, in general) must be covered, as it is highlighted in Fig. 25.

In the two genes negative feedback case (self–repression), shown in Fig. 26, in addition to the
desired self–inhibition loops due to the binding of the two complementary RNA species, an undesired
binding between Ti and Rj is introduced. This can be considered as another off state: the complex
obtained is a substrate for RNaseH and the RNA strand is degraded by the enzyme, releasing the
genelet activation domain. Undesired effects are anyway assumed not to prevail in the system. The
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Figure 25: Transcriptional circuit implementation of the two genes interconnection: two RNA species
bind to form a product and their regulatory domains are sequestered. When either species is in
excess, the feedback loops are active and therefore its regulatory domains are not covered. Figure
reproduced from [3].

Figure 26: Transcriptional circuit implementation of the two genes negative feedback interconnection:
general reaction scheme. Complementary domains have the same color. T7 promoters are in dark
gray, terminator hairpin sequences in light gray. The RNA output of each genelet is designed to be
complementary to its corresponding activator strand. The two RNA species are also complementary.
A) Desired self-inhibition loops. B) Undesired cross–hybridization and RNaseH mediated degradation
of the RNA–template complexes. Figures reproduced from [3].
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switches Ti and Tj can have three possible states: the on state, in which activator and template are
bound and form the complex TiAi; the off state given by free Ti; the off state represented by Rj

bound to Ti (thus forming TiRj). An off state still allows for RNAP weak binding and transcription.
The concentration of enzymes is assumed to be considerably lower than that of the DNA molecules,
allowing the steady–state assumption for Michaelis–Menten kinetics utilized in the model derivation.

Three and four genes case

The DNA strand implementations proposed for the two genes case can be extended to the case of
three or four genes, according for instance to the "neighbor" or the "handshake" scheme (which are
anyway completely equivalent in the three genes case). Each genelet needs to be turned on or off
depending on the binding of the activator strand and each RNA must be able to bind pairwise with
(at least) two of the others to form a product.

Here we describe a possible DNA implementation for our three or four genes handshake negative
feedback architecture, with artificial gene networks (transcriptional circuits) [13]. The working
principles of these circuits were described in Section 2. Referring to Figure 24, domains of the genes
are represented as sequences of bases with different colors. RNA outputs of each gene are not shown,
but their domains are identical to the transcribed regions of the genes (downstream of the promoter,
dark gray). Domains with the same color are complementary and are expected to bind. The domain
annotated as t1a1 on T1, for instance, is an activator strand which can be displaced by the RNA
output R1, which has the domain t′1a′1. Output RNAs Ri are designed to be complementary to their
own activator strands and pairwise complementary to one another, so that they can bind to form
products. Once Ri and Rj form Pij, the complex is inert and all the regulatory domains for negative
auto–regulation are covered. This design is an extension of that proposed in [17] for a two-gene
interconnection. This choice of the domains introduces, in addition to the desired self–inhibition
loops, an undesired binding between Ti and Rj. The resulting complex can be considered as another
off state of the gene: the complex obtained is a substrate for RNaseH and the RNA strand is degraded
by the enzyme, releasing the activating strand.

We built a detailed model of this system, based on the expected domain interactions. Each gene
Ti can have three possible states: the on state, in which activator and template are bound and form
the complex TiAi; the off state given by free Ti; the off state represented by Rj bound to Ti (thus
forming TiRj). To be sure that the inhibition rate is the same for all the genes, it is better to place
the self–inhibition domains t′i a′i in the same position inside the strand; for example, first (near the 3′

end) or last (near the 5′ end) domain (in Figure 24, self-inhibition domains are at the 3′ end). In
the case of more than two genes, when the complex RiRj forms, we cannot avoid the formation of
loops or torsions for some values of i, j. For example, referring to Figure 24, the R2 and R1 complex
(binding of the domains indexed 1 and 2) occurs by formation of a loop in the domain a3t3 on R2. It
is evident that it is possible to form a complex between Rn and Rm iff, going through one strand
in the arrow direction (from 5’ to 3’) you find at first t′m a′m and then an tn, while going through
the other strand you find at first t′n a′n and then am tm. Placing all the self–inhibition domains t′i a′i
either at the beginning or at the end of the RNA strand assures that this condition is satisfied and
thus the binding can successfully occur. So, in the n genes case, there can be 2 · ((n− 1)!)n different
domain level designs for a DNA strand implementation of the negative feedback architecture for
rate–regulation: the self–inhibition domains can be in the first position inside the strand or in the
last; in each of these 2 cases, the possible permutations of the other segments are ((n− 1)!)n because
there are (n− 1)! possible different configurations in each of the n strands.

In the three genes case there can be 16 different domain level designs for a DNA strand imple-
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mentation of the negative feedback architecture for rate–regulation. The self–inhibition domains
can be in the first position inside the strand or in the third; in each of these 2 cases, the possible
permutations of the other segments are 8 (23, because there are 2 possible different configurations in
each of the 3 strands). The possible combinations are shown in Fig. 27 (self–inhibition domains in
the first position) and 28 (self–inhibition domains in the first position).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 27: Transcriptional circuit implementation of the three genes negative feedback interconnection:
possible domain level designs with the self–inhibition domains in the first position. Complementary
domains have the same color. T7 promoters are in dark gray, terminator hairpin sequences in light
gray. The RNA output of each genelet is designed to be complementary to its corresponding activator
strand. The RNA species are also pairwise complementary.

In the four genes case, instead, the possible different domain level designs for a DNA strand
implementation of the negative feedback architecture are 2592. The self–inhibition domains can be in
the first position inside the strand or in the fourth; in each of these 2 cases, the possible permutations
of the other segments are 1296 (64, because there are 3 · 2 possible different configurations in each of
the 4 strands). A couple of the possible combinations are shown in Fig. 29.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 28: Transcriptional circuit implementation of the three genes negative feedback interconnection:
possible domain level designs with the self–inhibition domains in the third position. Complementary
domains have the same color. T7 promoters are in dark gray, terminator hairpin sequences in light
gray. The RNA output of each genelet is designed to be complementary to its corresponding activator
strand. The RNA species are also pairwise complementary.

(a) (b)

Figure 29: Transcriptional circuit implementation of the four genes negative feedback interconnection:
a couple of examples of possible domain level designs. Complementary domains have the same color.
T7 promoters are in dark gray, terminator hairpin sequences in light gray. The RNA output of each
genelet is designed to be complementary to its corresponding activator strand. The RNA species are
also pairwise complementary.
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6.2 A more complex model
Including all reactions occurring in the system [17], we can build the following ODEs, where

i = 1, ..., n,

d[Ti]

dt
= −kTiAi [Ti][Ai] + kRiTiAi [Ri][Ti ·Ai]− kRjTi [Rj][Ti] +

∑
j 6=i

kcatHji [RNaseH · Rj · Ti],

d[Ai]

dt
= −kTiAi [Ti][Ai]− kRiAi [Ri][Ai] + kcatHi [RNaseH · Ri ·Ai],

d[Ri]

dt
= −

∑
j 6=i

kRiRj [Ri][Rj] + kRiTiAi [Ri][Ti ·Ai]− kRiTj [Ri][Tj]− kRiAi [Ri][Ai]

+ kcatONi[RNAP · Ti ·Ai] + kcatOFFi [RNAP · Ti] +
∑
j 6=i

kcatOFFji [RNAP · Rj · Ti],

d[Ri · Rj]

dt
= +kRiRj [Ri][Rj], j 6= i

d[Rj · Ti]

dt
= +kRjTi [Rj][Ti]− kcatHji [RNaseH · Rj · Ti], j 6= i.

under proper assumptions we can use Michaelis–Menten quasi–steady–state approximation and
substitute these expressions

[RNAP · Ti ·Ai] =
[RNAPtot] [Ti ·Ai]

P · kMONi

[RNAP · Rj · Ti] =
[RNAPtot] [Rj · Ti]

P · kMOFFji

[RNAP · Ti] =
[RNAPtot] [Ti]

P · kMOFFi

[RNaseH · Ri ·Ai] =
[RNaseHtot] [Ri ·Ai]

H · kMHi

[RNaseH · Rj · Ti] =
[RNaseHtot] [Rj · Ti]

H · kMHji

where

P = [RNAPtot]/[RNAP] = 1 +

n∑
i=1

[Ti ·Ai]

kMONi
+

n∑
i=1

[Ti]

kMOFFi
+
∑
j6=i

[Ri · Tj]

kMOFFij

H = [RNaseHtot]/[RNaseH] = 1 +
n∑

i=1

[Ri ·Ai]

kMHi
+
∑
j 6=i

[Ri · Tj]

kMHij

The ODEs derived with this new, more complete model have been solved numerically for the cases of
three and four genes and the results are shown in Fig. 30. The negative feedback rate–regulation
seems thus to work well also when we consider the more complete and accurate model, which can be
experimentally implemented and tested by means of transcriptional circuits.
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(a)

(b)

Figure 30: Transcriptional circuit implementation of the negative feedback scheme: numerical ODE
solutions for the case of (a) 3 genes and (b) 4 genes.
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7 Results discussion
We considered different feedback architectures to regulate the production of RNA species in a

synthetic n–gene system, where these species interact with one another to produce one or more
complexes. This problem is relevant in the context of in vitro synthetic biology and nanotechnol-
ogy, where synthetic gene networks are useful as circuits producing components that assemble in
nanostructures or that orchestrate dynamic behaviors for molecular computations.

Rate-regulation circuits were scaled up, proposing some theoretical general models for n genes,
according to different combinations for product formation, and showing their effectiveness through
numerical simulations up to four genes. Feedback loops were designed based on negative feedback
(self–inhibition, which can minimize the potentially harmful amount of molecules not used to form
the product), positive feedback (cross–activation, which can maximize the overall output flux) and
both. Our numerical analysis for n = 3 and n = 4 revealed that negative autoregulation guarantees
better scalability and faster response than positive feedback based architectures. The performances of
feedback generated with mass action kinetics and feedback described by Hill functions were compared;
both are effective, but stoichiometric negative feedback keeps concentrations at a lower level. After
having considered and compared different schemes, since the mass action kinetics negative feedback
architecture seems to have the most interesting features and to be the easiest to implement, it was
subject to a further investigation. So, for the case of negative feedback, a more accurate model was
considered and simulated in the cases of three and four genes. Since the mismatch reduction was
still significantly and very fast achieved, a viable DNA strand implementation was devised for this
system, for both the networks of three and four genes. Our results provide useful predictions for the
future experimental construction of these in vitro genetic networks.

Future research goals
The results obtained during the development of this project suggest that the theoretical analysis

and the concrete realization in vitro of biomolecular rate–regulator circuitry deserve to be continued.
Here are some possible targets for future research.

• In vitro realization: basing on the devised DNA strand implementation, it would be possible
to run genelets experiments and actually build in vitro one of the circuits considered: comparing
the experimental data to simulation results would hopefully validate the ideas and the models
produced.

• Numerical sensitivity analysis of parameters: to examine the sensitivity to parameter
variation and the robustness of the models, Bayesian techniques for parameter space analysis
may be useful [14, 20]. It may be possible to fit the parameters of our models, comparing the
theoretical system behavior not to actual experimental data, but to fictitious data obtained
from the ideal behavior we want the system to show.

• Consensus and cooperation algorithms [21]: can they be applied to biochemical systems,
to describe rate–regulation systems that involve a growing number of genes? Can we establish
a complete formal parallel between rate–regulation biochemical networks and networks based
on consensus and cooperation algorithms? It might be interesting to make a further effort in
order to exhaustively answer these theoretical questions.
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8 Methods: numerical simulations
The various systems were numerically analyzed using scripts expressly written in MATLAB

(©The MathWorks). Differential equations were solved using the ode23 routine. A constant reference
for the choice of parameter values was [3].

Here the set of parameter values used to perform the simulation is given for each of the plots
shown in the present paper.

Fig. 9 (a) and Fig. 10:
αi = 3 · 10−4 s−1, βi = 1 · 10−2 s−1, δi = 5 · 103M−1s−1 for i = 1, 2, 3 and k12 = k23 = k13 =

2 · 103M−1s−1. [Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM, [Ttot
3 ] = 300 nM.

Fig. 9 (b):
αi = 3 · 10−4 s−1, βi = 1 · 10−2 s−1, δi = 5 · 103M−1s−1 for i = 1, 2, 3, 4 and k12 = k23 =

k13 = k14 = k24 = k34 = 2 · 103M−1s−1. [Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM, [Ttot
3 ] = 300 nM,

[Ttot
4 ] = 150 nM.
Fig. 11:
αi = 3 · 10−4 s−1, βi = 1 · 10−2 s−1, δi = 5 · 103M−1s−1 for i = 1, 2, 3, 4 and k12 = k23 = k14 =

k34 = 2 · 103M−1s−1. [Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM, [Ttot
3 ] = 300 nM, [Ttot

4 ] = 150 nM.
Fig. 12:
αi = 3 · 10−4 s−1, βi = 1 · 10−2 s−1, δi = 5 · 103M−1s−1 for i = 1, 2, 3 and k = 6 · 103M−1s−1.

[Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM, [Ttot
3 ] = 300 nM.

Fig. 13:
αi = 3 · 10−4 s−1, βi = 1 · 10−2 s−1, δi = 5 · 102M−1s−1 for i = 1, 2, 3, 4 and k = 6 · 103M−1s−1.

[Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM, [Ttot
3 ] = 300 nM, [Ttot

4 ] = 150 nM.
Fig. 15:
αi = 3 · 10−4 s−1 and βi = 1 · 10−2 s−1 for i = 1, 2, 3, δ12 = δ23 = δ13 = δ21 = δ32 =

δ31 = 5 · 101M−1s−1 and k12 = k23 = k13 = 2 · 103M−1s−1. [Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM,
[Ttot

3 ] = 300 nM.
Fig. 16:
αi = 3 · 10−4 s−1 and βi = 1 · 10−2 s−1, δi = 5 · 101M−1s−1 for i = 1, 2, 3 and k = 6 · 103M−1s−1.

[Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM, [Ttot
3 ] = 300 nM.

Fig. 18:
αi,neg = 3 · 10−4 s−1, αi,pos = 0, βi = 1 · 10−2 s−1 for i = 1, 2 and k = 2 · 103M−1s−1.

[Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM; (a): δpos = 5 · 102M−1s−1 and δneg = 5 · 103M−1s−1 while (b):
δpos = 5 · 103M−1s−1 and δneg = 5 · 102M−1s−1.

Fig. 19:
αi,neg = 3 · 10−4 s−1, αi,pos = 0, βi = 1 · 10−2 s−1 for i = 1, 2 and k = 2 · 103M−1s−1.

[Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM.
Fig. 20:
αi,pos = 3 · 10−4 s−1, αi,neg = 0, βi = 1 · 10−2 s−1 for i = 1, 2 and k = 2 · 103M−1s−1.

[Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM; (a): δpos = 5 · 102M−1s−1 and δneg = 5 · 103M−1s−1 while (b):
δpos = 5 · 103M−1s−1 and δneg = 5 · 102M−1s−1.

Fig. 21:
αi,pos = 3 · 10−4 s−1, αi,neg = 0, βi = 1 · 10−2 s−1 for i = 1, 2 and k = 2 · 103M−1s−1.

[Ttot
1 ] = 100 nM, [Ttot

2 ] = 200 nM.
Fig. 22 and Fig. 23:

42



positive feedback α = 3 · 10−4 s−1, β = 1 · 10−2 s−1, k = 2 · 103M−1s−1, δ = 2 · 104M−1s−1,
[U] = 0.5 µM, [Ttot] = 100 nM; negative feedback α = 3·10−4 s−1, β = 1·10−2 s−1, k = 2·103M−1s−1,
δ = 2 · 104M−1s−1, [U] = 0.5µM, [Ttot] = 100 nM; both feedbacks αpos = 3 · 10−4 s−1, αneg = 0,
β = 1 · 10−2 s−1, k = 2 · 103M−1s−1, δpos = δneg = 2 · 104M−1s−1, [U] = 0.5µM, [Ttot] = 100 nM;
Hill function β = 1 s−1, γ− = 1 · 10−2, Γ = 0.1 · 10−6, n = 2, δ = 2 · 103M−1s−1, [U] = 0.5µM,
[Ttot] = 100 nM.

Fig. 30:
kTiAi = 4 · 104M−1s−1, kRiAi = 5 · 104M−1s−1, kRiTiAi = 5 · 104M−1s−1, kcatONi = 6 · 10−2 s−1,

kcatOFFi = 1 · 10−3 s−1, kcatHi = 1 · 10−1 s−1, kMONi = 250 · 10−9M , kMOFFi = 1 · 10−6M , kMHi =
50 ·10−9M for i = 1, ..., n and kRiRj = 1 ·106M−1s−1, kRiTj = 1 ·103M−1s−1, kMOFFij = 1 ·10−6M ,
kcatHij = 1 · 10−1 s−1, kcatOFFij = 1 · 10−3 s−1, kMHij = 50 · 10−9M for i = 1, ..., n, j 6= i; (a) n = 3,
(b) n = 4.
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