
VARIETIES OF MV-ALGEBRAS

GIOVANNI PANTI

Abstract. We characterize, for every subvariety V of the variety of all MV-

algebras, the free objects in V. We use our results to compute coproducts

in V and to provide simple single-axiom axiomatizations of all many-valued
logics extending the  Lukasiewicz one.

1. Preliminaries and Definitions

Subvarieties of MV-algebras have been studied in [Gri77], [Kom81], [DNL]. It
is known that any such variety is generated by finitely many algebras, and explicit
axiomatizations have been obtained. The techniques used in the above papers are
algebraic, and the computations involved relatively complex. In this paper we use
geometric techniques, as developed in [Mun94], [Pan95]. Our results are easily
visualizable, and the topology of the unit interval allows us to dispose of almost
any computation.

We assume familiarity with MV-algebras; we refer to [Cha58], [Cha59], [Mun86,
§2], [CDM95] for all unexplained notions and claims. To fix notation, we recall that
an MV-algebra is an algebra A = (A,⊕,¬, 0) such that A = (A,⊕, 0) is an abelian
monoid and the following identities hold:

¬¬a = a

a⊕ (¬0) = ¬0

¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a

A lattice-ordered abelian group (`-group) is an algebra (A,+,−, 0,∨,∧) such
that (A,+,−, 0) is an abelian group, (A,∨,∧) is a lattice, and + distributes over ∨
and ∧. A totally-ordered abelian group (o-group) is an `-group in which the order
is total. A strong unit of the `-group A is an element u > 0 of A such that, for
every a ∈ A, there exists m ∈ N with a ≤ mu.

Let (A, u) be an `-group equipped with a fixed strong unit u. Γ(A, u) is the
structure

Γ(A, u) = ([0, u],⊕,¬, 0)

defined as follows:

[0, u] = {a ∈ A : 0 ≤ a ≤ u}
a⊕ b = (a+ b) ∧ u
¬a = u− a

0 = the additive identity 0 of A
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It is easy to check that Γ(A, u) is an MV-algebra. The construction of Γ(A, u) from
(A, u) is due to Chang [Cha59] for the totally-ordered case, and to Mundici [Mun86]
for the general case. We have the following key properties, first proved in [Mun86];
see [CM98] for a new presentation:

• the lattice-order induced by the MV operations in Γ(A, u) coincides with
the order inherited from A;

• if ϕ : (A, u) → (B, v) is an `-group homomorphism mapping u to v, then
the restriction Γϕ of ϕ to [0, u] is an MV-algebra homomorphism Γϕ :
Γ(A, u) → Γ(B, v);

• Γ is a full, faithful, and representative functor (i.e., a categorical equiva-
lence) between the category of `-groups with strong unit and the category of
MV-algebras. In particular, for every MV-algebra A, there exists a unique
`-group with strong unit (A, u) such that A is isomorphic to Γ(A, u). If A
is countable, then A is countable;

• the ideals (i.e., kernels of homomorphisms) of (A, u) correspond bijectively
to the ideals of Γ(A, u) via the inclusion-preserving application I 7→ I ∩
[0, u], whose inverse is I 7→ (ideal generated by I in A). If I = I ∩ [0, u],
then Γ(A, u)/I and Γ(A/I, u/I) are isomorphic via a/I 7→ a/I.

Following [Kom81], the MV-algebras Sm and Sωm, for 1 ≤ m, are defined as
follows:

Sm = Γ(Z,m)

Sωm = Γ(Z⊗ Z, (m, 0))

(here Z⊗Z is the lexicographic sum of two copies of the o-group Z of the integers).
We denote the variety of all MV-algebras by MV. If ∅ 6= X ⊆ MV, then V(X)

is the subvariety of MV generated by X. In [Kom81], Komori proved that every
subvariety V of MV is of the form

(∗) V = V(Sm1 , . . . , Smr , S
ω
t1 , . . . , S

ω
ts)

for some finite sets I = {m1, . . . ,mr} and J = {t1, . . . , ts}, not both empty.
Let V be as in (∗); by [Kom81, Theorems 2.1 and 2.3], Sm ∈ V iff m divides

some element of I ∪ J , and Sωt ∈ V iff t divides some element of J . Let us call a
pair (I, J) as above reduced if no m ∈ I divides any m′ ∈ (I \ {m}) ∪ J , and no
t ∈ J divides any t′ ∈ J \ {t} (in particular, I ∩ J = ∅).

Proposition 1.1. The proper subvarieties of MV are in 1-1 correspondence with
reduced pairs.

Proof. Let

V(Sm1 , . . . , Smr
, Sωt1 , . . . , S

ω
ts) = V(Sn1 , . . . , Snp

, Sωv1 , . . . , S
ω
vq

)

with ({m1, . . . ,mr}, {t1, . . . , ts}) and ({n1, . . . , np}, {v1, . . . , vq}) reduced pairs. m1

must divide some element of {n1, . . . , np, v1, . . . , vq}. For no j ∈ {1, . . . , q} it can be
m1 | vj because, since every such vj divides some element of {t1, . . . , ts}, it would
follow that {m1, . . . ,mr}, {t1, . . . , ts} is not reduced. Without loss of generality
m1 | n1 and, since n1 divides some element of {m1, . . . ,mr, t1, . . . , ts}, we must
have n1 | m1 and m1 = n1. This proves that {m1, . . . ,mr} = {n1, . . . , np}. An
analogous argument shows that {t1, . . . , ts} = {v1, . . . , vq}. �
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A McNaughton function over the n-cube is a continuous functions f : [0, 1]n →
[0, 1] for which the following holds:

There exist finitely many affine linear polynomials f1, . . . , fk, each fi of the
form fi = a0

ix0 +a1
ix1 + · · ·+an−1

i xn−1 +ani , with a0
i , . . . , a

n
i integers, such

that, for each v ∈ [0, 1]n, there exists i ∈ {1, . . . , k} with f(v) = fi(v).

If κ is a possibly infinite cardinal, a McNaughton function over the κ-cube is a
function f : [0, 1]κ → [0, 1] which depends on finitely many variables xi1 , . . . , xin ,
and such that f(xi1 , . . . , xin) is a McNaughton function over the n-cube.

We denote by Mκ the MV-algebra of all McNaughton functions over the κ-cube,
under pointwise operations. Any Mκ is a subalgebra of a power of the algebra
Γ(R, 1), which generates MV, and Mκ is indeed the free MV-algebra over κ gen-
erators, the latter being the projection functions xi : [0, 1]κ → [0, 1], for i < κ. We
will always identify elements of Mκ with [classes of equivalence of] terms in the
language of MV-algebras.

The function [0, 1]κ → MaxSpecMκ given by v 7→ Jv = {f ∈ Mκ : f(v) = 0} is
a homeomorphism between the κ-cube with the standard topology and the set of
maximal ideals of Mκ, endowed with the hull-kernel topology [Mun86, Lemma 8.1].

If v ∈ [0, 1]κ, we denote by Mκ � v ' Mκ/Jv the MV-algebra of restrictions of
McNaughton functions over the κ-cube to v.

We need two algebras of germs: Mκ � (v) is the algebra of equivalence classes
of pairs (f, U), with f ∈ Mκ and U an open set in [0, 1]κ containing v. Two
such pairs (f, U) and (g, V ) are equivalent if f = g on U ∩ V ; operations are
inherited from Mκ. Similarly, given v, w ∈ [0, 1]κ, Mκ � [v, w) is the MV-algebra of
equivalence classes of pairs (f, γ), with f ∈Mκ and 0 < γ < 1 a real number. (f, γ)
and (g, δ) are equivalent if f = g on the line segment whose endpoints are v and
v + min(γ, δ)(w − v). Operations are inherited from Mκ (or, as it is tantamount,
from Mκ � (v)); if w = v, then Mκ � [v, w) ' Mκ � v. If J(v) and J[v,w) are
the ideals of functions vanishing —respectively— in a neighborhood of v and in a
line segment starting from v in the direction of w, then Mκ � (v) ' Mκ/J(v) and
Mκ � [v, w) 'Mκ/J[v,w).

A final definition: a rational point of the κ-cube is a point v ∈ [0, 1]κ such that
xi(v) ∈ Q for every i < κ and, moreover, xi(v) = 0 for all but finitely many i’s. If
v is a rational point, then there exists a uniquely determined sequence {ai : i ≤ κ}
of positive integers such that:

• aκ > 0;
• xi(v) = ai/aκ, for every 0 ≤ i < κ;
• the greater common divisor of the ai’s is 1.

We say that the ai’s are the homogeneous coordinates of v, and that aκ is the
denominator of v, den(v). Observe that the set of rational points is dense in [0, 1]κ.

2. Free MV-algebras

Let A be an MV-algebra; the radical of A, written RadA, is the intersection of
all maximal ideals of A. If A is totally ordered, RadA is the unique maximal ideal
of A.
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Definition 2.1. A subalgebra A of Sωm is full if the homomorphism A→ Sm given
by the composition of the natural mappings

A �
A

RadA
↪→ Sωm

RadSωm
' Sm

is surjective, but not injective.

Lemma 2.2. Up to isomorphism, there are exactly m full subalgebras of Sωm.
These are the algebras A0, . . . , Am−1, where Ai is the subalgebra generated by
{(0,m), (1,−i)}.

Proof. The algebras A0, . . . , Am−1 are pairwise non-isomorphic. This can be easily
checked by embedding them in their enveloping o-groups Γ−1A0, . . . ,Γ−1Am−1, and
observing that the element (m,−mi) ∈ Γ−1A0 ∩ · · · ∩ Γ−1Am−1 is divisible by m
in Γ−1Ai only.
Let B be a full subalgebra of Sωm, and let (0, r) be the only atom of B. Let j be the
least positive integer such that (1,−j) ∈ B. Then 0 ≤ j ≤ r − 1 and r | mj. Let
B be the o-group with strong unit enveloping B, i.e., B = Γ(B, (m, 0)). Then B,
as an o-group, is isomorphic to Z⊗ Z, with generators (0, r), (1,−j). Let ψ be the
mapping : B → Z⊗Q that fixes the x axis and contracts all vertical line segments
by a factor of m/r; in cartesian coordinates, ψ : (x, y) 7→ (x,my/r). Then ψ maps
(0, r), (1,−j) into (0,m), (1,−i), where i = mj/r ∈ Z and 0 ≤ i ≤ m − 1. Hence
ψ maps B isomorphically into an o-subgroup of Z ⊗ Z, and fixes the strong unit
(m, 0). By the properties of the Γ functor, B is isomorphic to Γ(ψ(B), (m, 0)); the
latter is the algebra Ai. �

It is not difficult to prove that Ai is isomorphic to Γ(Z ⊗ Z, (m, i)) (compare
with [DNGP98, Lemma 1.3 and Corollary 1.4]).

Lemma 2.3. Let v 6= w be rational points of the κ-cube, with den(v) = m. Then
Mκ � [v, w) is isomorphic to a full subalgebra of Sωm.

Proof. Let {ai}i≤κ, {bj}j≤κ be the homogeneous coordinates of v, w, respectively,
and let cκ be the least common multiple of aκ and bκ. We claim that, for every
f ∈Mκ, the one-sided directional derivative

f ′(v;w) = lim
λ→0+

f(v + λ(w − v))− f(v)
λ

(see [Mun88, Proposition 2.3]) at v in the direction of w is an integral multiple of
1/cκ. Indeed, choose a positive integer c so big that f is linear on the line segment
[v, v + c−1(w − v)]. Then

f ′(v;w) = c
[
f(v + c−1(w − v))− f(v)

]
.

Without loss of generality, f has the form d0x0 + d1x1 + · · ·+ dn−1xn−1 + dn over
[v, v + c−1(w − v)], with d0, . . . , dn integers. Then

f(v + c−1(w − v))− f(v) =
n−1∑
i=0

di
(
ai
aκ

+ c−1

(
cκb

−1
κ bi − cκa

−1
κ ai

cκ

)
− ai
aκ

)

=
c−1

cκ

n−1∑
i=0

diei
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where ei = cκb
−1
κ bi − cκa

−1
κ ai ∈ Z. This proves our claim.

Consider the mapping

ψw : Mκ � [v, w) → Γ(Z⊗ Z, (m, 0))

given by ψw(f) = (mf(v), cκf ′(v;w)). It is obvious that ψw is an injective MV-
algebra homomorphism, and hence that Mκ � [v, w) is isomorphic to a subalgebra
of Sωm. This subalgebra is full because, on the one hand, for every 0 ≤ j ≤ m,
there is some f ∈Mκ with f(v) = j/m. On the other hand, let i < κ be such that
xi(v) 6= xi(w). It is easy to find a one-variable McNaughton function g that has
value 0 in xi(v) and whose derivative at xi(v) in the direction of xi(w) is nonzero.
Then the germ of g ◦ xi in Mκ � [v, w) witnesses that Rad(Mκ � [v, w)) is not
trivial. �

The embedding ψw constructed in Lemma 2.3 depends on the particular w we
choose. If w′ is another rational point along the half line from v to w, the em-
beddings ψw and ψw′ may be different, but their images are isomorphic. This
ambiguity is removed by Lemma 2.2; although we do not need uniqueness, we state
our conclusions as a corollary.

Corollary 2.4. Let v 6= w be rational points of the κ-cube, with den(v) = m.
Then there exists a unique 0 ≤ i ≤ m− 1 and a unique isomorphism of Mκ � [v, w)
onto Ai, where Ai is the full subalgebra of Sωm defined in Lemma 2.2.

We may now prove our main theorem.

Theorem 2.5. Fix κ > 0, and let V = V(Sm1 , . . . , Smr
, Sωt1 , . . . , S

ω
ts) be a proper

subvariety of MV. Let X be the set of rational points of the κ-cube whose denom-
inator divides at least one of m1, . . . ,mr, and let Y be the set of rational points
of the κ-cube whose denominator divides at least one of t1, . . . , ts. Consider the
MV-algebra A defined by

A =
∏

u∈X\Y

Mκ � u×
∏
v∈Y

Mκ � (v)

and let x̄i be the image in A of the ith projection xi ∈ Mκ. Then the subalgebra
MV
κ of A generated by {x̄i : i < κ} is the free algebra over κ generators in V, the

x̄i’s being free generators.

Proof. We first show that each factor in the definition of A belongs to V; it will
follow that both A and MV

κ are in V.
Let u ∈ X \ Y , with den(u) = k | m, for some m ∈ {m1, . . . ,mr}. Then Mκ � u is
isomorphic to Sk, which is a homomorphic image of Sm; hence Mκ � u ∈ V.
Let v ∈ Y , with den(v) = k | t, for some t ∈ {t1, . . . , ts}, and let w 6= v be
any rational point of the κ-cube. By Lemma 2.3, Mκ � [v, w) is isomorphic to a
subalgebra of Sωk . Since Sωk is a homomorphic image of Sωt , it follows that Mκ �
[v, w) ∈ V. If w = v, then Mκ � [v, w) ' Mκ � v ' Sk ∈ V. Since the set of
rational points is dense in [0, 1]κ, the natural mapping

Mκ � (v) →
∏

w a rational point
of the κ-cube

Mκ � [v, w)

is injective (compare with [Mun88, Propositions 2.3]), and hence Mκ � (v), being
a subdirect product of the Mκ � [v, w)’s, belongs to V. This concludes the proof
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that MV
κ ∈ V.

Let now p(x1, . . . , xn) = q(x1, . . . , xn) be an n-variable identity in the language
of MV-algebras that fails in at least one of Sm1 , . . . , Smr

, Sωt1 , . . . , S
ω
ts . Choose n

generators x̄i1 , . . . , x̄in of MV
κ ; for simplicity’s sake, we write yj for x̄ij . We claim

that p(y1, . . . , yn) = q(y1, . . . , yn) fails in MV
κ .

Case 1. p = q fails in some Sm, for m ∈ {m1, . . . ,mr}, in the elements a1, . . . , an ∈
Γ(Z,m). Let u be the rational point of the κ-cube defined by

xi(u) =

{
aj/m, if i = ij for some j ∈ {1, . . . , n};
0, otherwise.

Then u belongs either to X \ Y or to Y . Let ψ : MV
κ → Sm be the homomorphism

defined as follows:
• if u ∈ X \ Y , then ψ is the composition of the projection MV

κ → Mκ � u
followed by the unique monomorphism Mκ � u→ Sm;

• if u ∈ Y , then ψ is the composition of the projection MV
κ →Mκ � (u), fol-

lowed by the retraction Mκ � (u) →Mκ � u, and again the monomorphism
Mκ � u→ Sm.

As trivially ψ(yj) = aj , for all j = 1, . . . , n, our claim is settled.
Case 2. p = q fails in some Sωt , for t ∈ {t1, . . . , ts}, in the elements
(a1, b1), . . . , (an, bn) ∈ Γ(Z⊗ Z, (t, 0)). As in Case 1, define u ∈ [0, 1]κ by

xi(u) =

{
aj/t, if i = ij for some j ∈ {1, . . . , n};
0, otherwise.

Define ν ∈ Zκ to be the vector whose ijth component is bj , for j = 1, . . . , n, and
that has all other components equal to 0. Choose a positive integer c so large that
w = u+ c−1ν is a point of the κ-cube; note that w is rational. For u,w so defined,
the embedding

ψu : Mκ � [u,w) → Γ(Z⊗ Z, (t, 0))
defined in the proof of Lemma 2.3 has the form ψu(f) = (tf(u), df ′(u;w)), where d
is the least common multiple of den(u) and den(w). Consider the homomorphisms

Mκ � (u)
µ−→Mκ � [u,w)

ψu−−→ Γ(Z⊗ Z, (t, 0))

where µ is the natural retraction. Then clearly, for every j = 1, . . . , n, it is (ψu ◦
µ)(yj) = (aj , dc−1bj). Since p = q fails in Γ(Z ⊗ Z, (t, 0)) over the (aj , bj)’s, and
dc−1 is nonzero positive, it follows that p = q fails in Γ(Z ⊗ Z, (t, 0)) over the
(aj , dc−1bj)’s, too. Pulling back along ψu ◦ µ, we see that p = q fails in Mκ � (u)
over the yj ’s, as was to be shown. �

Lemma 2.6. Let κ = n > 0 be finite, and let T1, . . . , Tl be finitely many pairwise
disjoint closed subsets of [0, 1]n. Let f1, . . . , fl ∈ Mn. Then there exists g ∈ Mn

such that, for every i = 1, . . . , l, we have g = fi over Ti.

Proof. Induction over l, using [Mun88, Corollary 3.4(ii)]. �

Corollary 2.7. Assume the hypotheses of Theorem 2.5, and let κ = n > 0 be
finite. Then the free algebra over n generators in V is the finite product

MV
n =

∏
u∈X\Y

Mn � u×
∏
v∈Y

Mn � (v)
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3. First application: coproducts

Coproducts of MV-algebras have been considered, and explicit computations
have been given, in [Mun88]. While products of abstract algebras are independent
of the ambient variety, this is not the case for coproducts. As an example, the
coproduct of S2 and S3 in MV is S6 [Mun88, Theorem 4.2] but, as we shall see, is
the one-element algebra in V(S2, S3). Free products always exist in MV, but may
not exist in proper subvarieties. We recall the basic definitions for the case of two
algebras, the extension to the general case being straightforward.

Let V be any variety of abstract algebras, whose signature contains at least
one constant. Taking as morphisms the homomorphisms, V becomes a concrete
category with initial object the algebra generated by the constants, and terminal
object the one-element algebra. For A1, A2 ∈ V, their coproduct in V is some
B ∈ V, together with morphisms ιi : Ai → B such that, for every C ∈ V and
every pair of morphisms ϕi : Ai → C, there exists a unique ψ : B → C with
ϕi = ψ ◦ ιi. Coproducts are unique up to isomorphism; a coproduct is called a free
product if the maps ιi are injective. Coproducts always exist in a variety V, and
can be constructed as follows: for i = 1, 2, represent the algebras Ai as Fκi

/Θi,
where Fκi

is the free algebra over κi generators in V, and Θi is a congruence in
Fκi

. Embed canonically Fκ1 and Fκ2 into Fκ1+κ2 , and let Θ be the congruence in
Fκ1+κ2 generated by the images of Θ1 and Θ2. Then Fκ1+κ2/Θ is the coproduct
of A1 and A2 in V. When one has sufficient information about the free objects
in V, this construction can be carried out explicitly. In the case of MV-algebras,
congruences are in 1-1 correspondence with ideals, and one works better with ideals.
In this section we give a few coproduct computations. We intend them mainly as
specimens of the above technique; once the latter is understood, the computation
of similar examples becomes an exercise.

Our building blocks being the various Sm and Sωt , we compute the coproducts
Sm

∐
St, Sm

∐
Sωt , Sωm

∐
Sωt . In each case, we compute the coproduct with respect

to the smallest variety in which it makes sense, i.e., in V(Sm, St), V(Sm, Sωt ),
V(Sωm

∐
Sωt ), respectively. In order to avoid burdening of notation, when we write

A
∐
B in the following, we always intend the coproduct of A and B in the subvariety

V(A,B) of MV. We need a name for the one-element MV-algebra, and we call it
S0. Note that Sm and Sωt have easy presentations:

• Sm 'M1 � p 'M1/Jp, with p = 1/m ∈ [0, 1];
• Sωt 'M2 � [q, r) 'M2/J[q,r), with q = (1/t, 1/t) and r = (1/t, 1).

Let R2
+ = {(x, y) ∈ R2 : x, y ≥ 0} be the first cartesian quadrant, and let H be

the `-group of positively homogeneous piecewise-linear continuous functions with
integer coefficients : R2

+ → R. Explicitly: h ∈ H iff h is a finite sup of finite infs of
functions of the form ax+ by with a, b integers [Bey77, §1].

Lemma 3.1. Let A be an `-group, I an ideal of A. Suppose that there is a
unique maximal ideal K of A that extends I. Suppose that ϕ : A → Z is an
epimorphism with kernel K, and choose e ∈ A with ϕ(e) = 1. Then the mapping
ψ : A → Z⊗ (K/I) given by

ψ(f) =
(
ϕ(f),

f − ϕ(f)e
I

)
is an epimorphism with kernel I.
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Proof. Since A/K and A/I
/
K/I are isomorphic [BKW77, p. 43], we may assume

that I is the zero ideal of A. It is straightforward to show that ψ is injective
and distributes over the group operations. Let f, g ∈ A, ϕ(f ∨ g) = a, ϕ(f) = b,
ϕ(g) = c; without loss of generality, a = b ≥ c.
Case 1. b = c. Then ψ(f ∨ g) = (a, (f ∨ g) − ae) = (a, (f − ae) ∨ (g − ae)) =
(b, f − be) ∨ (c, g − ce) = ψ(f) ∨ ψ(g).
Case 2. b > c. Then f > g. Indeed, if not, then there exists a prime ideal P of A
with f/P < g/P. But since P ⊆ K, this implies f/K ≤ g/K, which is contrary to
our assumption. Hence ψ(f ∨ g) = ψ(f) = (b, f − be) = (b, f − be) ∨ (c, g − ce) =
ψ(f) ∨ ψ(g).
Finally, for every a ∈ Z and every f ∈ K, we have ψ(f + ae) = (a, f). �

Theorem 3.2. (Compare with [Mun88, Theorems 4.2 and 4.6]) Let 0 < m, t. If
m - t and t - m, then Sm

∐
St, Sm

∐
Sωt , Sωm

∐
Sωt are all equal to S0. Assume

m | t. Then:

(i) Sm
∐
St = St;

(ii) Sm
∐
Sωt = Sωt ;

(iii) if m 6= t, then Sωm
∐
St = St;

(iv) Sωm
∐
Sωt = Γ(Z⊗ H, (t, 0)).

Proof. We prove our assertions concerning Sm
∐
Sωt and Sωm

∐
Sωt , the other cases

being similar. Let V = V(Sm, Sωt ). Represent Sm as MV
1 /Ip, where Ip is the ideal

of germs of one-variable McNaughton functions vanishing at p = 1/m; represent Sωt
as MV

2 /I[q,r), with I[q,r) the ideal of two-variable germs vanishing at q = (1/t, 1/t)
along the direction of r = (1/t, 1). Embed MV

1 and MV
2 canonically in MV

3 , and
let I be the ideal of MV

3 generated by the images of Ip and I[q,r). In the notation of
Theorem 2.5 and Corollary 2.7, denote by f̄ the image of f ∈M3 under the natural
epimorphism

M3 →MV
3 =

∏
u∈X\Y

M3 � u×
∏
v∈Y

M3 � (v)

Then it is clear that f̄ ∈ I iff f vanishes at q′ = (1/m, 1/t, 1/t) along the direction of
r′ = (1/m, 1/t, 1). We have den(q′) = lcm(m, t). If m - t and t - m, then q′ /∈ X ∪Y
and, by Lemma 2.6, we can find f ∈M3 such that f̄ ∈ I and f̄ = 1̄. Hence I is the
improper ideal of MV

3 and Sm
∐
Sωt = S0. If m | t, then den(q′) = t, q′ ∈ Y , and

MV
3 /I is isomorphic to M3 � [q′, r′). Since the images of the generators x0, x1, x2

in the monomorphism

ψr′ : M3 � [q′, r′) → Γ(Z⊗ Z, (t, 0))

of Lemma 2.3 are (t/m, 0), (1, 0), (1, t − 1), the range of ψr′ is the full subalgebra
of Γ(Z⊗ Z, (t, 0)) generated by (0, t− 1), (1, 0), which is isomorphic to Sωt .

We now compute Sωm
∐
Sωt in V(Sωm, S

ω
t ). If m - t and t - m, then the same

argument as in the preceding case shows that the coproduct is S0. Assume m |
t, let w = (1/m, 1/m, 1/t, 1/t) ∈ [0, 1]4, W = {(1/m, b, 1/t, d) ∈ [0, 1]4 : b ≥
1/m and d ≥ 1/t}, and let I be the ideal of all four-variable McNaughton functions
vanishing in some set of the form U∩W , where U is an open set containing w. Then
the standard construction shows that A = M4/I is the coproduct of Sωm and Sωt in
V(Sωm, S

ω
t ) (as well as in MV, by the way). Applying Γ−1 to the exact sequence

I ↪→M4 � A
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yields a well-defined exact sequence

I ↪→ (M4, 1) � (M4/I, 1/I)

of `-groups (1 ∈ M4 is the function whose value is identically 1). By taking K to be
the kernel of the epimorphism ϕ : M4 → Z given by ϕ(f) = tf(w), and by choosing
e = x2, Lemma 3.1 applies and we conclude that the function

ψ̄ : M4/I → Z⊗ (K/I)

given by

ψ̄(f/I) =
(
tf(w), (f − tf(w)x2)/I

)
is an isomorphism. Since A = Γ(M4/I, 1/I) and ψ̄(1/I) = ψ̄(tx2/I) = (t2/t, (tx2−
tx2)/I) = (t, 0), we know that A and Γ(Z⊗ (K/I), (t, 0)) are isomorphic.

It remains to be proved that K/I and H are isomorphic as `-groups. M4/I is
generated by the germs x0/I, x1/I, x2/I, x3/I, 1/I. Set

z̄1 = x1/I− (t/m)x2/I

z̄2 = x3/I− x2/I

z̄3 = x2/I

Then M4/I is generated by z̄1, z̄2, z̄3, too. Note that z̄1 > 0 and z̄2 > 0. Since H
is the free `-group over two generators (the projection functions x, y : R2

+ → R),
subject to the relations x ≥ 0 and y ≥ 0 [Bey77, Example 2], we can define a
homomorphism

ϕ : H → M4/I

by ϕ(x) = z̄1, ϕ(y) = z̄2. It is clear that ϕ is injective, and we only need to
show that ϕ(H) = K/I. The inclusion ⊆ being trivial, let f̄ ∈ K/I. By repeated
applications of the distributive and De Morgan laws [BKW77, Proposition 2.1.4],
we can write f̄ as

(∗) f̄ =
∨
i∈I

∧
j∈Ji

(aij z̄1 + bij z̄2 + cij z̄3)

with I and every Ji, for i ∈ I, finite index sets, and all the coefficients of the z̄’s
integer numbers. If c < c′, then az̄1 + bz̄2 + cz̄3 < a′z̄1 + b′z̄2 + c′z̄3; hence we can
drop superfluous conjuncts in (∗), writing

f̄ =
∨
i∈I

(
ciz̄3 +

∧
r∈Ri

(air z̄1 + bir z̄2)
)

Analogously, setting c =
∨
i ci, we write

f̄ = cz̄3 +
∨
s∈S

∧
t∈Ts

(astz̄1 + bstz̄2)

Since f̄(w) = 0, we must have c = 0, and hence f̄ is in the range of ϕ. �
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4. Second application: axiomatizations

For the rest of this paper we fix a reduced pair ({m1, . . . ,mr}, {t1, . . . , ts}), and
we consider the proper subvariety V = V(Sm1 , . . . , Smr , S

ω
t1 , . . . , S

ω
ts) of MV. We

will construct a one-variable identity α(a) = 1 that, together with the MV-algebra
identities, axiomatize V (as customary, 1 denotes the MV-term ¬0). Similar finite
axiomatizations have been obtained in [DNL], but we think that our geometric
approach is anyhow interesting, because it is easily visualizable, and exploits the
compactness properties of the n-cube.

We need a few basics on [a variant of] Farey sequences; we just sketch the
construction, and refer to [HW85, §6.10], [MP94] for unproved claims.

A Farey sequence is a finite increasing set of reduced fractions in the interval
[0, 1], defined by recursion as follows:

• the set {0/1, 1/1} is a Farey sequence;
• if F is a Farey sequence and c/d, c′/d′ are two consecutive terms in F, then

the set obtained from F by inserting (c+ c′)/(d+ d′) between c/d and c′/d′

is a Farey sequence (this insertion process is called a starring).
For every Farey sequence F and every reduced fraction 0 ≤ c/d ≤ 1, there exists

a sequence of starrings that leads from F to a sequence F′ that includes c/d. Given
two consecutive terms c/d < c′/d′ in any F, the determinant∣∣∣∣c′ d′

c d

∣∣∣∣
has value 1. Owing to this property, for every 0 ≤ e ≤ d and every 0 ≤ e′ ≤ d′,
the affine line y = ax + b passing through (c/d, e/d) and (c′/d′, e′/d′) has integer
coefficients; indeed, a = de′ − d′e and b = c′e− ce′. Let

0 =
c1
d1

<
c2
d2

< · · · < cu
du

= 1

display a Farey sequence, and choose 0 ≤ ep ≤ dp, for every 1 ≤ p ≤ u. Then the
function f : [0, 1] → [0, 1] that assumes value ep/dp on cp/dp, for every 1 ≤ p ≤ u,
and is linear on each Farey interval, is a McNaughton function, and we identify it
with a one-variable term —also denoted by f— in the language of MV-algebras.

Lemma 4.1. Let u be a rational point of the n-cube, with den(u) = d, and choose
0 ≤ e ≤ d. Then there exist g, h ∈Mn such that g(u) = h(u) = e/d and, for every
v 6= u, we have g(v) < e/d < h(v).

Proof. This is trivial by the theory of Schauder hats [Mun94], [Pan95]. �

Definition 4.2. Let I = {m1, . . . ,mr}, J = {t1, . . . , ts} be a reduced pair. An
(I, J)-comb is any α ∈M1 such that the following conditions hold:

(i) for every t ∈ J and every 0 ≤ k ≤ t, there exists a neighborhood U of k/t
such that α � U is identically 1;

(ii) for every m ∈ I we have:
(ii′) for every 0 ≤ h ≤ m, it is α(h/m) = 1;
(ii′′) there exists 0 ≤ h ≤ m and some h/m 6= u ∈ [0, 1] such that α never

takes value 1 either on the open interval (u, h/m) (if u < h/m), or on
the open interval (h/m, u) (if h/m < u);

(iii) if d > 1 is any integer that does not divide any m ∈ I ∪J , then there exists
1 ≤ l ≤ d− 1 with α(l/d) 6= 1.
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It is easy to construct an (I, J)-comb: let X be the set of all rational points
in [0, 1] whose denominator divides one of m1, . . . ,mr, and let Y be the set of all
points whose denominator divides one of t1, . . . , ts. Choose a Farey sequence F that
includes all points of X ∪ Y and such that, moreover, for every u, v ∈ X ∪ Y with
u < v, there exist w1, w2, w3 ∈ F with u < w1 < w2 < w3 < v. Let Z be the set
of points of F that are immediately to the left or immediately to the right of some
point of Y . Define αF ∈ M1 to be the function that is linear on each interval of F
and whose values on F are given by

αF(u) =

{
1, if u ∈ X ∪ Y ∪ Z;
(den(u)− 1)/den(u), if u ∈ F \ (X ∪ Y ∪ Z).

Then αF automatically satisfies conditions (i) and (ii) in Definition 4.2. Let r ∈ Q
be the length of the largest open subinterval (u, v) of [0, 1] such that αF � (u, v)
never takes value 1, and let d′ be the smallest positive integer with r > 1/d′. Then
αF may fail condition (iii) only for finitely many d’s, because if d ≥ d′ then the
interval (u, v) contains a point of the form l/d. Once the list of all d’s for which
(iii) fails is written down, it is easy to refine F by successive starrings to a Farey
sequence F′ in such a way that the resulting αF′ satisfies (iii). Since (i) and (ii) are
not affected, αF′ is an (I, J)-comb.

Example 4.3. Let I = {2}, J = {3}. We have X = {0, 1/2, 1}, Y =
{0, 1/3, 2/3, 1}, and an appropriate F is

0,
1
5
,
1
4
,
2
7
,
1
3
,
3
8
,
2
5
,
3
7
,
1
2
,
4
7
,
3
5
,
5
8
,
2
3
,
5
7
,
3
4
,
4
5
, 1

The graph of αF is

-

6
D
D
D
D
D
D
D�
�
�
�
�
�
� E

E
E
E
E
E�

�
�
�
�
�A

A
A
A
A
A�

�
�
�
�
� E

E
E
E
E
E
E�
�
�
�
�
�
�

1

1
2

0 1
5

1
4

2
7

3
8

2
5

1
2

3
5

5
8

5
7

3
4

4
5 1

The largest interval in which αF never takes value 1 has length (1/2) − (3/8) =
1/8; hence condition (iii) may fail only for d ≤ 8. The only possibilities are d =
4, 5, 6, 7, 8. Since α(1/4) = α(2/8), α(2/5), α(3/7) are all different from 1, we have
to take care of the case d = 6 only. By starring F twice, we obtain the sequence F′

given by

0,
1
7
,
1
6
,
1
5
,
1
4
,
2
7
,
1
3
,
3
8
,
2
5
,
3
7
,
1
2
,
4
7
,
3
5
,
5
8
,
2
3
,
5
7
,
3
4
,
4
5
, 1
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whose corresponding αF′ is

-

6
E
E
E
E
E
@

@@�
�
�
�
�
�
� E

E
E
E
E
E�

�
�
�
�
�A

A
A
A
A
A�

�
�
�
�
� E

E
E
E
E
E
E�
�
�
�
�
�
�

1

1
2

0 1
7

1
6

1
5

1
4

2
7

3
8

2
5

1
2

3
5

5
8

5
7

3
4

4
5 1

Since αF′(1/6) 6= 1, this αF′ is an (I, J)-comb.

For α ∈ M1 and f ∈ Mn, we continue to identify the term α(f), obtained by
substituting the term f for the propositional variable x0 in α, with the function
α ◦ f ∈Mn.

Theorem 4.4. Let I = {m1, . . . ,mr}, J = {t1, . . . , ts} be a reduced pair, and
let α ∈ M1. Then the identity α(a) = 1, together with the MV-algebra axioms,
axiomatize V = V(Sm1 , . . . , Smr , S

ω
t1 , . . . , S

ω
ts) if and only if α is an (I, J)-comb.

Proof. Assume that α(a) = 1 axiomatize V. By setting n = 1 in Corollary 2.7,
we see that conditions (i) and (ii′) of Definition 4.2 are satisfied. Assume by con-
tradiction that (ii′′) fails for some m ∈ I, and let u = (1/m, 1/m) ∈ [0, 1]2. Since
MV

2 is the quotient of M2 by the filter generated by {α(f) : f ∈ M2}, it follows
that M2 � (u) is a quotient of MV

2 . Set v = (1/m, 1); since Sωm is isomorphic to
M2 � [u, v), which is a quotient of M2 � (u), it follows that Sωm ∈ V. By Komori’s
results cited before Proposition 1.1, m divides some element of J , and this is absurd,
because I, J is reduced. The same argument shows that if (iii) fails for some d, then
Sd is a quotient of MV

1 , and hence belongs to V; again, this is a contradiction.
For the reverse direction, assume that α is an (I, J)-comb. For every n and every
f ∈Mn, denote the image of f under the canonical epimorphism Mn →MV

n by f̄ .
We must show that, for every such f :

(i) α(f) = 1̄;
(ii) if f̄ = 1̄, then there exist f1, . . . , fk ∈ Mn such that f belongs to the filter

generated by α(f1), . . . , α(fk).
Now, (i) follows immediately from Corollary 2.7 and the observation that, for every
rational point u ∈ [0, 1]n, f(u) is an integral multiple of 1/den(u). Let us introduce
the Euclidean metric over the n-cube; we write B(u, ε) for the open ball of center
u and radius ε. For g ∈Mn, let Og ⊆ [0, 1]n be the set of points in which g attains
value 1; it is well known that g belongs to the filter generated by g1, . . . , gk iff
Og ⊇ Og1 ∩ · · · ∩ Ogk. Let X,Y ⊆ [0, 1]n be defined as in Theorem 2.5. We work
in two steps.
Step 1. IfX\Y = ∅, go to Step 2. Otherwise, letX\Y = {u1, . . . , up}. Consider u1;
without loss of generality, den(u1) = d | m1. By condition (ii′′) of Definition 4.2,
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there exists 0 ≤ l ≤ m1 and some w ∈ [0, 1] such that α(l/m1) = 1 and α is never 1
either on the interval (w, l/m1) or on the interval (l/m1, w) (according if w < l/m1

or l/m1 < w). By Lemma 4.1, there exists g1 ∈ Mn and a neighborhood U of u1

such that α(g1) � U attains value 1 exactly in u1. Repeat the same construction
for every ui ∈ X \ Y , obtaining g1, . . . , gp. This ends Step 1.
Step 2. Choose ε > 0 such that:

• for every ui ∈ X \ Y , α(gi) � B(ui, ε) assumes value 1 exactly in ui;
• for every v ∈ Y , f � B(v, ε) is identically 1.

Denote by T the closed set

T = [0, 1]n \
⋃

u∈X∪Y
B(u, ε)

We claim that, for every w ∈ T , there exists hw ∈Mn such that w /∈ Oα(hw), i.e.,
α(hw(w)) 6= 1. Indeed, there are two possibilities:
Case a. w ∈ T is rational, with den(w) = d′. Then d′ does not divide any element
of I ∪ J . By condition (iii) of Definition 4.2, there exists 1 ≤ l ≤ d′ − 1 with
α(l/d′) 6= 1. By Lemma 4.1, one can find hw with hw(w) = l/d′; such an hw does
the job.
Case b. w ∈ T is not rational. Then the set {h(w) : h ∈Mn} is dense in [0, 1] and,
since α is not identically 1, we are through.
The family {[0, 1]n \ Oα(hw) : w ∈ T} is an open covering of T . By compactness,
there exist h1, . . . , hq ∈Mn such that

T ⊆
(
[0, 1]n \Oα(h1)

)
∪ · · · ∪

(
[0, 1]n \Oα(hq)

)
and hence

Oα(h1) ∩ · · · ∩Oα(hq) ⊆
⋃

u∈X∪Y
B(u, ε).

Since, for 1 ≤ i ≤ p, it is

Oα(gi) ∩B(ui, ε) = {ui}
we obtain

Oα(g1) ∩ · · · ∩Oα(gp) ∩Oα(h1) ∩ · · · ∩Oα(hq) ⊆ (X \ Y ) ∪
⋃
v∈Y

B(v, ε) ⊆ Of.

This concludes Step 2 and the proof of the Theorem. �
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