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Elliott introduced dimension groups in [8], in order to classify approximately finite C∗-algebras. In [6],
Effros and Shen showed that dimension groups whose underlying group is Z2 give rise to interesting examples
of C∗-algebras. Dimension groups whose underlying group is a finite product of integers have also been
studied in [3],[4],[5],[13],[14],[15], but up to now there is no general classification result. In this paper we
classify all dimension groups whose underlying group is Z3.

1. Preliminaries and Definitions
A partially ordered abelian group (p.o. group) is an additive abelian group G, together with a positive cone
G+ ⊆ G such that G+ +G+ ⊆ G+ and G+ ∩ (−G+) = {0}. The relation ≤ defined by a ≤ b if and only if
b− a ∈ G+ is a translation invariant partial order. 〈G,G+〉 is
1) unperforated if, for each n ∈ N \ {0}, na ∈ G+ implies a ∈ G+;
2) directed if every pair of elements of G has an upper bound;
3) has the Riesz interpolation property if, for each a, b, c, d such that a, b ≤ c, d, there exists w such that
a, b ≤ w ≤ c, d;
4) lattice ordered if every pair of elements of G has a least upper bound.

A dimension group is a p.o. group satisfying 1), 2), 3). A lattice-ordered group (`-group) is a p.o. group
satisfying 4). For background the reader is referred to [1],[2],[9],[10],[15].

It is easy to prove the following:

Proposition 1.1. Let 〈G,G+〉 be a p.o. group which is countable, unperforated and directed. Then 〈G,G+〉
is a dimension group if and only if, for each a, b ∈ G, either a ∨ b exists, or for each c greater than a, b there
exists a strictly decreasing infinite chain c > y1 > y2 > · · · > a, b such that each d greater than a, b dominates
some yi.

Given p.o. groups G = 〈G,G+〉 and H = 〈H,H+〉, and a homomorphism ϕ:G → H, we say that ϕ
is positive if ϕ(G+) ⊆ H+. If ϕ is an algebraic isomorphism and ϕ(G+) = H+, we say that ϕ is an order
isomorphism, and we write G ∼= H. Given G,H as before, their direct sum G ⊕H is the direct product of
G and H, ordered componentwise (i.e., (a, b) ≤ (c, d) if and only if a ≤ c and b ≤ d). The lexicographic sum
of G and H, denoted by G ⊕lex H, is their direct product, ordered lexicographically (i.e., (a, b) ≤ (c, d) if
and only if a < c or (a = c and b ≤ d)). If G and H are dimension groups, then G ⊕H and G ⊕lex H are
dimension groups. If G and H are `-groups, then G ⊕H is an `-group, whereas G ⊕lex H is an `-group if
and only if G is totally ordered.

Lemma 1.2. Let G be a totally ordered dense p.o. group, H an unperforated p.o. group which satisfies the
Riesz interpolation property. Then G⊕lex H is a dimension group.

Proof. It is easy to see that G ⊕lex H is unperforated and directed. Let (a, a′), (b, b′) ≤ (c, c′), (d, d′). We
may assume a ≤ b ≤ c ≤ d. If b < c, then there exists x ∈ G such that b < x < c; hence (x, 0) is an
interpolant. If b = c < d, then (c, c′) is an interpolant. If a < b = c = d, then (b, b′) is an interpolant. If
a = b = c = d, then there exists x′ ∈ H such that a′, b′ ≤ x′ ≤ c′, d′, and (a, x′) is an interpolant.

A convex subgroup of a dimension group G is a subgroup G′ of G such that if a, b ∈ G′, c ∈ G, and
a ≤ c ≤ b, then c ∈ G′. An ideal is a convex directed subgroup. G is simple if {0}, G are its only ideals.

If G′ is a convex subgroup of G, then 〈G′, G′∩G+〉 is an unperforated p.o. group that satisfies the Riesz
interpolation property. If I is an ideal of G, we denote by G/I the quotient of G by I, ordered by 0/I ≤ a/I
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if and only if there exists b ∈ I such that 0 ≤ a+ b; both I and G/I are dimension groups. A strong unit of
G is an element u > 0 such that, for each a ∈ G, there exists a natural number n such that a ≤ nu.

2. Cones over Zn

Let X be any of Z, Q, R. A cone over Xn is a subset P ⊆ Xn such that P + P ⊆ P and Xn ∩ αP ⊆ P
for any real number α ≥ 0. P is proper if P ∩ (−P ) = {0}, and is generating if Xn = P − P . It is easy to
prove that P is the positive cone of an unperforated, directed p.o. group 〈Xn, P 〉 if and only if it is a proper
generating cone over Xn.

We look at Zn,Qn as embedded in Rn, and we refer to points in Zn, Qn as integral points and rational
points, respectively. We identify the points in Xn with the n× 1 matrices of their components with respect
to the standard basis {e1, . . . , en}.

By Xn+ we mean {(k1, . . . , kn)t ∈ Xn : k1, . . . , kn ≥ 0}, so that 〈Xn,Xn+〉 is given componentwise
ordering. We denote 〈Z,Z+〉 simply by Z. A p.o. group of the form 〈Zn,Zn+〉 is called a simplicial group.
A direct sequence of simplicial groups is a sequence of the form

Zn1 ϕ1−→ Zn2 ϕ2−→ Zn3 ϕ3−→ · · ·

where each Zni is simplicially ordered and the ϕi’s are positive homomorphisms. The direct limit G of the
sequence is defined as usual. If all the ϕi’s can be chosen to be 1–1, then G is said to be ultrasimplicial. If
all the Zni are equal to Zn for some fixed n, and all the ϕi’s are algebraic isomorphisms, then the sequence
is called unimodular. By the Effros, Handelman and Shen theorem [4, Theorem 2.2], countable dimension
groups can be identified with direct limits of direct sequences of simplicial groups.

Definition 2.1. Let f ∈ Rn∗, the dual space of Rn. We identify f with the 1×n matrix of its components
with respect to the dual standard basis {ε1, . . . , εn}. We say that f = (α1, . . . , αn) is of type m if the
dimension of the Q-vector space Qα1 + · · ·+ Qαn is m.

If α1, . . . , αn are independent over Q (for short, Q-independent), we denote the free Z-module Zα1 +
· · ·+ Zαn by Z[α1, . . . , αn], equipped with the standard linear order. If n > 1, then Z[α1, . . . , αn] is densely
ordered. For f ∈ Rn∗, let πf be {x ∈ Zn : f(x) = 0}. It is clear that f is of type m if and only if πf , as a
direct factor of Zn, has rank n−m.

Definition 2.2. Let X be any of Z, Q, R, and let f1, . . . , fm, g1, . . . , gk ∈ Rn∗ be R-independent. We denote
by 〈Xn, f1, . . . , fm, g1, . . . , gk〉 the p.o. group over Xn whose positive cone is {x ∈ Xn : f1(x), . . . , fm(x) >
0 and g1(x), . . . , gk(x) ≥ 0} ∪ {0}, provided that the latter is proper.

Let α1, . . . , αn be Q-independent. It is immediate that 〈Zn, (α1, . . . , αn)〉 and Z[α1, . . . , αn] are order
isomorphic, the isomorphism being given by ei 7→ αi. The following is a generalization of [15, Lemma 4.7].

Lemma 2.3. 〈Zn, f1, . . . , fm〉 is order isomorphic to 〈Zn, f ′1, . . . , f
′
m〉 if and only if there exist a unimodular

matrix C ∈ MatnZ and r1, . . . , rm ∈ R+ \ {0} such that, for each i ∈ {1, . . . ,m}, it is f ′i = rifiC (a matrix
being unimodular if its determinant is +1 or −1).

Proof. (⇐) For i ∈ {1, . . . ,m}, let wi be defined by wi = fiC. Then w1, . . . , wm are R-independent and
〈Zn, w1, . . . , wm〉 = 〈Zn, f ′1, . . . , f

′
m〉. Define ϕ : Zn → Zn by ϕ(x) = C−1x. As C is unimodular, ϕ is an

automorphism of Zn. As fi(x) = fix = fiCC
−1x = wi(ϕ(x)), it follows that ϕ is an order isomorphism of

〈Zn, f1, . . . , fm〉 onto 〈Zn, w1, . . . , wm〉 = 〈Zn, f ′1, . . . , f
′
m〉.

(⇒) Let ϕ : 〈Zn, f ′1, . . . , f
′
m〉 → 〈Zn, f1, . . . , fm〉 be an order isomorphism. Then in particular ϕ is an

automorphism of Zn and there exists a unimodular matrix C ∈ MatnZ such that ϕ(x) = Cx. Again, for
i ∈ {1, . . . ,m}, define wi = fiC. Then, by the first part of the proof, ψ : 〈Zn, f1, . . . , fm〉 → 〈Zn, w1, . . . , wm〉
defined by ψ(x) = C−1x is an order isomorphism. Hence ψϕ : 〈Zn, f ′1, . . . , f

′
m〉 → 〈Zn, w1, . . . , wm〉 is the

identity order isomorphism. This implies that f ′i is a positive multiple of wi = fiC.

Let P be a cone in Rn. We say that P is cosimplicial if there exist R-independent f1, . . . , fm ∈ Rn∗

such that P = {x ∈ Rn : f1(x), . . . , fm(x) ≥ 0}.
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Lemma 2.4. Let 〈Zn, P 〉 be a dimension group, P̃ = {qx : q ∈ Q+ and x ∈ P}, P the topological closure

of P̃ in Rn. Then P is a cosimplicial cone, P = P̃ ∩ Zn, and any rational point in the topological interior
of P belongs to P̃ .

Proof. By [7, Lemmas 2.1 and 1.1], 〈Qn, P̃ 〉 is a dimension group and P is cosimplicial. Assume x ∈ P̃ ∩Zn.
Then there exist y ∈ P , k ∈ Z+, k′ ∈ Z+ \ {0}, such that x = ky/k′. Hence k′x = ky ∈ P and, as 〈Zn, P 〉
is unperforated, x ∈ P .
Assume that x ∈ Qn is in the topological interior of P . As open n-dimensional simplexes form a basis for
the standard topology in Rn, we may choose n + 1 points x1, . . . , xn+1 ∈ P such that x is in the interior
of the simplex spanned by x1, . . . , xn+1. As P̃ is dense in P , we may assume that x1, . . . , xn+1 ∈ P̃ . There
exist uniquely determined rational numbers q1, . . . , qn+1 such that 0 < qi < 1 and x = q1x1 + · · ·+qn+1xn+1.
As every qixi belongs to P̃ , it follows that x belongs to P̃ .

It follows that for any dimension group 〈Zn, P 〉 there exist R-independent f1, . . . , fm ∈ Rn∗ and some
{0} ⊆ B ⊆ πf1 ∪ · · · ∪ πfm such that P = int(P ) ∪ B, where int(P ) = {x ∈ Zn : f1(x), . . . , fm(x) > 0} 6= ∅.
It is easy to show that int(P ) is the set of strong units of 〈Zn, P 〉. If m = n, the dimension of the space,
then, by [10, Theorem 3.13] and the observation that there is no infinite descending chain in P , we conclude
that 〈Zn, P 〉 is simplicially ordered. If m = 1, we have the following proposition, which is essentially due to
Shen [15, Proposition 1.6].

Proposition 2.5. Let G = 〈Zn, P 〉 be a dimension group such that P = {x ∈ Zn : f(x) > 0} ∪B for some
f = (α1, . . . , αn) ∈ Rn∗ and {0} ⊆ B ⊆ πf . We have:
i) if f is of type n, then G ∼= Z[α1, . . . , αn];
ii) if f is of type m ∈ {2, . . . , n − 1}, then G ∼= Z[β1, . . . βm] ⊕lex 〈Zn−m, P ′〉, for some β1, . . . , βm ∈ R and
some p.o. group 〈Zn−m, P ′〉 which is unperforated and satisfies the Riesz interpolation property;
iii) if f is of type 1, then G ∼= Z⊕lex 〈Zn−1, P ′〉, where 〈Zn−1, P ′〉 is a dimension group.

Proof. Let f be of type m. Identify 〈πf , B〉 with 〈Zn−m, P ′〉; it is a convex subgroup of G and hence
an unperforated p.o. group that satisfies the Riesz interpolation property. Let {x1, . . . , xn} be a basis for
Zn whose last n − m elements form a basis for πf , and let βi = f(xi) for 1 ≤ i ≤ m. Then β1, . . . , βm

are Q-independent and f(Zn) = Z[β1, . . . , βm]. Define ϕ : G → Z[β1, . . . , βm] ⊕lex 〈Zn−m, P ′〉 by: if
x = k1x1 + · · · + knxn, then ϕ(x) = (f(x), km+1xm+1 + · · · + knxn). It is clear that ϕ is an algebraic
isomorphism and that x ≥ 0 in G if and only if ϕ(x) ≥ 0 in Z[β1, . . . , βm]⊕lex 〈Zn−m, P ′〉, i.e., ϕ is an order
isomorphism. We also have:
• if f is of type n, then B = πf = {0} and G ∼= Z[α1, . . . , αn];
• if f is of type 1, then G ∼= Z[β1] ⊕lex 〈Zn−1, P ′〉 ∼= Z ⊕lex 〈Zn−1, P ′〉. In this case, 〈Zn−1, P ′〉 must be
directed, and hence a dimension group. In fact, assume that a, b ∈ 〈Zn−1, P ′〉 do not have an upper bound.
Then −a,−b do not have a lower bound and there is no interpolant for (0, a), (0, b) ≤ (1,−a), (1,−b) in
Z⊕lex 〈Zn−1, P ′〉.

We note that all the `-groups over a finite product of integers can be constructed by applying the
following procedure:
i) the only `-group over Z is 〈Z,Z+〉;
ii) suppose we have constructed all the `-groups over Zi for 1 ≤ i < n. The `-groups over Zn are Z[α1, . . . , αn],
plus all direct sums G⊕G′ (where G is an `-group over Zi for some i ∈ {1, . . . , n−1} and G′ is an `-group over
Zn−i), plus all lexicographic sums G⊕lex G

′ (where G and G′ are as before, with the additional assumption
that G is totally ordered).

Parentheses can be simplified observing that ⊕ and ⊕lex are both associative and that ⊕ is commutative.
Conrad’s structure theorems for `-groups having a finite basis [1, Theorems 7.4.6 and 7.4.7] may be used to
show that the above construction generates all the `-groups over Zn. We give an elementary proof, which
does not involve the concept of basis.

Proposition 2.6. Assume that G = 〈Zn, P 〉 is an `-group. Then:
i) if G is simple, then G ∼= Z[α1, . . . , αn] for some α1, . . . , αn ∈ R;
ii) if G has a unique nonzero maximal ideal, then G ∼= Z[β1, . . . , βm]⊕lex〈Zn−m, P ′〉, for some β1, . . . , βm ∈ R
and some `-group 〈Zn−m, P ′〉;
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iii) if G has more that one maximal ideal, then G is a direct sum of `-groups over free groups of rank less
than n.

Proof. If G is simple, then by Hölder’s theorem G is order isomorphic to a subgroup of R. Since G has
rank n, it follows that G ∼= Z[α1, . . . , αn] for some α1, . . . , αn ∈ R.
Suppose that G is not simple and that M 6= {0} is the only maximal ideal of G. Every element of G \M is
either positive or negative; this follows easily from Clifford’s representation theorem [2, Theorem XIII 22]. By
the observation following Lemma 2.4, and noting that no proper ideal may contain a strong unit, we see that
there exists f ∈ Rn∗, say of type m, such that M ⊆ πf and P = {x ∈ Zn : f(x) > 0}∪B, where B = P ∩πf .
Identifying 〈πf , B〉 with 〈Zn−m, P ′〉, we have from Proposition 2.5 that G ∼= Z[β1, . . . , βm]⊕lex 〈Zn−m, P ′〉.
It is now easy to show that 〈Zn−m, P ′〉 is lattice-ordered.
Finally, if G has more than one maximal ideal, then G is a direct sum of lower rank `-groups by [2, Theo-
rem XIII 23].

3. Dimension groups over Z3

The following is Shen’s classification of dimension groups over Z and Z2.

Theorem 3.1. [15, Corollary 2.6 and Section 4] Up to order isomorphism, there is exactly one dimension
group over Z, namely 〈Z,Z+〉.
There are exactly three classes of dimension groups over Z2:
1) totally ordered groups of the form Z[α, β], which are simple and partition in isomorphism classes according
to Lemma 2.3;
2) Z⊕lex Z;
3) Z⊕ Z.
All of these are `-groups.

Simple dimension groups over Zn for arbitrary n have been characterized by Effros.

Theorem 3.2. [3, Theorem 4.8] A p.o. group 〈Zn, P 〉 is a simple dimension group if and only if it is of the
form 〈Zn, f1, . . . , fm〉 for some f1, . . . , fm ∈ Rn∗ such that (Rf1 + · · ·+ Rfm) ∩ (Zε1 + · · ·+ Zεn) = {0}.

We are now in a position to classify all dimension groups over Z3.

Theorem 3.3. There are exactly eight classes of `-groups over Z3:
1) Z[α, β, γ];
2) Z[α, β]⊕lex Z;
3) Z⊕lex Z[α, β];
4) Z[α, β]⊕ Z;
5) Z⊕lex Z⊕lex Z;
6) Z⊕lex (Z⊕ Z);
7) (Z⊕lex Z)⊕ Z;
8) Z⊕ Z⊕ Z.
There are exactly four classes of dimension groups over Z3 which are not `-groups:
9) 〈Z3, f1, f2〉, provided that (Rf1 + Rf2) ∩ (Zε1 + Zε2 + Zε3) = {0};
10) Z[α, β]⊕lex 〈Z, {0}〉;
11) 〈Z3, ε1, (α, β, 1)〉, provided that β ∈ R \Q;
12) (Z⊕ Z)⊕lex Z.
The groups of type 1) and 9) partition in isomorphism classes according to Lemma 2.3. Two groups
Z[α, β]⊕lexZ and Z[α′, β′]⊕lexZ are order isomorphic if and only if Z[α, β] and Z[α′, β′] are order isomorphic;
analogous statements hold for groups of type 3), 4), 10). Two groups 〈Z3, ε1, (α, β, 1)〉 and 〈Z3, ε1, (α′, β′, 1)〉
of type 11) are order isomorphic if and only if 〈Z3, ε1, (α, β, 1)〉 and 〈Z3, ε1, (α′, β′, 1)〉 are order isomorphic.

Proof. All the groups of type 1)–8) are `-groups. The groups of type 9) are simple dimension groups by
Theorem 3.2; we will prove later that the groups of type 11) are dimension groups. As Z⊕ Z is not totally
ordered, the group 12) is a dimension group which is not an `-group. The groups of type 10) are dimension
groups by Lemma 1.2; they are not `-groups as (0, 0) ∨ (0, 1) does not exist. The claims about isomorphism
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classes of the groups of type 2), 3), 4), 10), follow by observing that, in all cases, we can recover an isomorphic
copy of Z[α, β] from the groups under consideration. Moreover, this process can be unambiguously described
in purely p.o. group theoretical terms. So Z[α, β] is isomorphic to:
• the quotient of Z[α, β]⊕lex Z by its only proper nontrivial ideal;
• the only proper nontrivial ideal of Z⊕lex Z[α, β];
• the only densely ordered ideal of Z[α, β]⊕ Z;
• the quotient of Z[α, β]⊕lex 〈Z, {0}〉 by its maximal convex subgroup.

Assume that ϕ : 〈Z3, ε1, (α, β, 1)〉 → 〈Z3, ε1, (α′, β′, 1)〉 is an order isomorphism. As πε1 is the only
maximal ideal of both groups, ϕ maps πε1 injectively onto itself. Hence {x ∈ Z3 : ε1(x), (α, β, 1)(x) > 0} is
mapped injectively onto {x ∈ Z3 : ε1(x), (α′, β′, 1)(x) > 0}, i.e., ϕ is an order isomorphism of 〈Z3, ε1, (α, β, 1)〉
onto 〈Z3, ε1, (α′, β′, 1)〉. Conversely, assume that ϕ : 〈Z3, ε1, (α, β, 1)〉 → 〈Z3, ε1, (α′, β′, 1)〉 is an order
isomorphism. By topological considerations, we see that πε1 ∩ {x ∈ Z3 : (α, β, 1)(x) > 0} is mapped either
into πε1 ∩ {x ∈ Z3 : (α′, β′, 1)(x) > 0}, or into π(α′,β′,1) ∩ {x ∈ Z3 : ε1(x) > 0}. It cannot be mapped into
the latter because, as β′ ∈ R \Q, we have that π(α′,β′,1) has rank 0 or 1, whereas πε1 has rank 2. Hence, for
each x ∈ Z3, it is (ε1(x) ≥ 0 and (α, β, 1)(x) > 0) if and only if (ε1(ϕ(x)) ≥ 0 and (α′, β′, 1)(ϕ(x)) > 0), i.e.,
ϕ is an order isomorphism between 〈Z3, ε1, (α, β, 1)〉 and 〈Z3, ε1, (α′, β′, 1)〉.

What remains to be proved is that every dimension group over Z3 has one of the previous forms. As the
proof is a bit cumbersome, we will make use of the geometric language freely. Moreover, we will sometimes
identify R3∗ and R3 without specific notice.

Let us then assume that we are given a dimension group G = 〈Z3, P 〉. By the observation following
Lemma 2.4, P has one of the following forms:
i) {x ∈ Z3 : f(x) > 0} ∪B for some f ∈ R3∗ and {0} ⊆ B ⊆ πf ;
ii) {x ∈ Z3 : f1(x), f2(x) > 0} ∪B for some R-independent f1, f2 ∈ R3∗ and {0} ⊆ B ⊆ πf1 ∪ πf2 ;
iii) {x ∈ Z3 : f1(x), f2(x), f3(x) > 0} ∪ B for some R-independent f1, f2, f3 ∈ R3∗ and {0} ⊆ B ⊆
πf1 ∪ πf2 ∪ πf3 .

We already observed that there is exactly one dimension group over Z3 whose positive cone has form iii),
namely 〈Z3,Z3+〉 ∼= Z⊕ Z⊕ Z (Case 8)). Assume P has form i) and apply Proposition 2.5.
• If f is of type 3, then G ∼= Z[α, β, γ] for certain α,β,γ, and we are in Case 1).
• If f is of type 2, then either G ∼= Z[α, β]⊕lex Z (Case 2)), or G ∼= Z[α, β]⊕lex 〈Z, {0}〉 (Case 10)). In fact,
〈Z, {0}〉 is trivially unperforated and satisfies the Riesz interpolation property. On the other hand, assume
that 〈Z, P 〉 is unperforated and 0 6= k ∈ P . Without loss of generality, k > 0. By unperforatedness 1 ∈ P ,
and hence P = Z+.
• If f is of type 1, we apply Shen’s classification and conclude that G is either Z⊕lex Z[α, β] (Case 3)), or
Z⊕lex Z⊕lex Z (Case 5)), or Z⊕lex (Z⊕ Z) (Case 6)).

Assume now that P has form ii). If G is simple, then we are in Case 9) by Theorem 3.2. If G is not
simple, then B 6= {0}. Let us fix some notation: we have two R-independent functionals f1, f2, two free
subgroups πi = {x ∈ Z3 : fi(x) = 0} of Z3, and two planes φi = {x ∈ R3 : fi(x) = 0}. Let g be a nonzero
vector in φ1 ∩ φ2, and let φ = {x ∈ R3 : g(x) = 0} be the plane through the origin and perpendicular to
both φ1 and φ2. Let ψ : Z3 → φ be the projection map.

Claim 1. i) If g is of type 1, then ψ(Z3) = Zv1 + Zv2 for certain R-independent vectors v1, v2 in φ;
ii) If g is of type 2, then ψ(Z3) = Zv1+Zv2+Zv3, where v1, v2, v3 are Q-independent, v1, v2 are R-dependent,
and both v1, v3 and v2, v3 are R-independent;
iii) if g is of type 3, then ψ(Z3) is dense in φ.
Proof. i) If g is of type 1, then Rg ∩Z3 = Zw1 for some w1 ∈ Z3. Extend w1 to a basis {w1, w2, w3} of Z3,
and define v1 = ψ(w2), v2 = ψ(w3). Clearly, v1 and v2 are R-independent.
ii) If g is of type 2, then φ ∩ Z3 = Zw for some w ∈ Z3. Let {w1, w2} be a basis for πw, and extend it to a
basis {w1, w2, w3} for Z3. Then vi = ψ(wi), for i = 1, 2, 3, have the required properties.
iii) This is a consequence of [4, Theorem 4.1].

Assume that g is of type 3. Then ψ is 1–1 and we may identify G with 〈ψ(Z3), ψ(P )〉. Neither π1 nor
π2 may have rank 2 (otherwise ψ(Z3) would not be dense). As B 6= {0} and we have unperforatedness, we
may assume P ∩ φ1 = Z+x ⊆ B for some 0 6= x ∈ π1. Hence we have on φ the situation depicted by the
following diagram:
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ψ(φ1)

ψ(P )

ψ(x)
ψ(φ2)

ψ(y)
0

As ψ(Z3) is dense, we can choose ψ(y) in the dotted open half strip in figure. It is clear that 0 ∨ ψ(y)
does not exist and that for no point ψ(z) the inequality 0, ψ(y) < ψ(z) < ψ(x) holds. This contradicts
Proposition 1.1, and hence g cannot be of type 3.

Assume that g is of type 2. Again ψ is 1–1 and we identify G with 〈ψ(Z3), ψ(P )〉. We claim that for
one of φ1,φ2, say φ1, it is ψ(φ1) = Rv1 = Rv2 (v1, v2 as in Claim 1). Suppose this is not the case: then
again we may assume P ∩ φ1 = Z+x ⊆ B for some 0 6= x ∈ π1. Hence we have the following situation on φ:

ψ(φ1)

ψ(P )
ψ(φ2)

ψ(x)

I

ψ(y) 0

Zv1 + Zv2

Choose an open interval I in the segment {αψ(x) : 0 ≤ α ≤ 1} ⊆ φ. There exists ψ(y) in the open half
strip (I+ψ(φ2))\ψ(P ). Again, 0∨ψ(y) does not exists and for no ψ(z) the inequality 0, ψ(y) < ψ(z) < ψ(x)
holds. This is a contradiction and our claim is settled. We may assume ψ(φ1) = Rv1 = Rv2; this implies
also that f1 is of type 1. We may assume f1 = ε1. Consider the rank 2 convex subgroup G′ = 〈π1, π1 ∩ P 〉
(π1 is now Ze2 + Ze3), which is unperforated and has the Riesz interpolation property. We want to prove
that it is a dimension group. Assume it is not directed. Then we can find x, y ∈ π1 such that x, y do not
have an upper bound in π1. We may assume f2(x) ≤ f2(y). Choose z ∈ e1 + π1 such that f2(y) < f2(z).
Then x, y < z, z − x+ y; in fact 0 = ε1(x) = ε1(y) < ε1(z) = ε1(z − x+ y) = 1 and f2(x) ≤ f2(y) < f2(z) ≤
f2(z − x + y). On the other hand, there is no lower bound for z, z − x + y in e1 + π1 (if w were a lower
bound for z, z − x + y in e1 + π1, then z + y − w would be an upper bound for x, y in π1). Hence there
is no interpolant for x, y < z, z − x + y, which is a contradiction. It follows that G′ is directed and it is a
dimension group over Z2. By Theorem 3.1, we see that either {x ∈ π1 : f2(x) > 0} ⊆ B, or G′ ∼= Z⊕ Z.

We claim that the latter can never be the case. For otherwise we could find x ∈ π1 such that f2(x) <
f2(y), where y is the least upper bound of 0, x in G′. Projecting on φ we would have the following situation:
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ψ(φ1)
ψ(e1 + φ1)

ψ(y)

ψ(z) ψ(P )

ψ(x)

ψ(φ2)

0

Take ψ(z) as in figure: it is 0, x < y, z, but clearly there is no interpolant. So {x ∈ π1 : f2(x) > 0} ⊆ B.
Now consider f2 = (α, β, γ). One of β, γ must be different from 0; we may assume γ 6= 0 and f2 = (α, β, 1)
for some α, β. Then β ∈ R \Q is a necessary and sufficient condition for g to be of type 2.
• If B = {x ∈ π1 : f2(x) ≥ 0}, then we have G = 〈Z3, ε1, (α, β, 1)〉. It is easy to show, using Proposition 1.1,
that this is a dimension group (Case 11)).
• If there exists x in B \ π1, then x must be in e1 + π1 (otherwise we could choose y ∈ (e1 + π1) \P , so that
0∨ y does not exist and there is no infinite chain x > y1 > y2 > · · · > 0, y). Hence G ∼= Z[α, β]⊕Z for some
α, β (Case 4)).

Finally we consider the case where g is of type 1. This implies that π1 ∩ π2 = Zw for some 0 6= w ∈ Z3.
Claim 2. Either w or −w belongs to P , so that Zw is a nontrivial ideal.
Proof. Suppose w,−w /∈ P . Then by unperforatedness π1 ∩ π2 ∩ P = {0}. As B 6= {0}, one of f1, f2 must
be of type 1, say f1. As before, G′ = 〈π1, π1 ∩ P 〉 is a dimension group over Z2, hence an `-group. Consider
w ∨ 0 (∨ being the supremum in G′); it cannot be w ∨ 0 ∈ π2, otherwise we would have w ∨ 0 = 0, which
implies −w ∈ P , contradicting our assumption. Choose a ∈ int(P ); as w ∨ 0 /∈ π2, there exists n ∈ Z+ such
that f2(a) < nf2(w ∨ 0) = f2(n(w ∨ 0)) = f2(nw ∨ 0) (the last equality follows from [1, Proposition 1.3.7]).
But then 0, nw < nw ∨ 0, a, and it is clear that there is no interpolant in G, which is a contradiction.

As the quotient of a dimension group by an ideal is a dimension group, we see that G/Zw ∼= Z ⊕ Z.
This means that we may assume f1 = ε1, f2 = ε2, and that both π1 and π2 are dimension groups over Z2.
• If π1

∼= Z⊕ Z and π2
∼= Z⊕lex Z, or conversely, we have the `-group (Z⊕lex Z)⊕ Z (Case 7)).

• If π1
∼= π2

∼= Z⊕lex Z, we have the dimension group (Z⊕ Z)⊕lex Z (Case 12)).
• If π1

∼= π2
∼= Z ⊕ Z, we may assume that B = (Z+e1 + Z+e3) ∪ (Z+e2 + Z+e3) and we do not have a

dimension group; in fact (0, 0, 0), (0, 1,−1) < (0, 1, 0), (1, 1,−1) is a counterexample to the Riesz property.
This concludes the analysis of the possible structures for G, and hence the proof of Theorem 3.3.

We conclude our paper with the following remarks: by [12, Theorem 2.1], every abelian `-group is
ultrasimplicial. The group 12) in Theorem 3.3 is clearly ultrasimplicial, and so are the groups of type 10) by
the main result of [13]. We claim that the groups of type 11) are ultrasimplicial. In fact, by [11, Proposition 1],
a dimension group 〈G,G+〉 is ultrasimplicial if and only if for every x1, . . . , xn ∈ P there exist Z-independent
y1, . . . , ym ∈ P such that {x1, . . . , xn} ⊆ Z+y1 + · · ·+ Z+ym. Let x1, . . . , xn be positive elements of a group
of type 11). Choose a positive y1 ∈ e1 + πε1 , such that 0 < (α, β, 1)(y1) < min{(α, β, 1)(xi)/ε1(xi) : i ∈
{1, . . . , n} and ε1(xi) > 0}. For each i ∈ {1, . . . , n}, let mi1 = ε1(xi), and define zi = xi −mi1y1. Then it
is ε1(zi) = 0 and (α, β, 1)(zi) > 0, so that {z1, . . . , zn} ⊆ P ∩ πε1 . As 〈πε1 , πε1 ∩ P 〉 ∼= Z[β, 1], which is an
ultrasimplicial group of rank 2, it follows that there exist Z-independent y2, y3 ∈ πε1∩P such that, for each i,
there exist mi2,mi3 ∈ Z+ with zi = mi2y2 +mi3y3. Hence, for each i, it is xi = mi1y1 +mi2y2 +mi3y3, and
clearly y1, y2, y3 are Z-independent.

On the other hand the groups of type 9) are not, in general, ultrasimplicial. In fact, dimension groups of
that form are among Riedel’s counterexamples [14] to the conjecture that every finitely generated dimension
group is the limit of a unimodular sequence, and it is easy to prove that a dimension group of the form
〈Zn, P 〉 is ultrasimplicial if and only if it is the limit of a unimodular sequence.
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