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ABSTRACT

The Chang-Mundici equivalence between the category of MV-algebras and the category of lattice-ordered abelian groups

with strong unit allows us to translate facts/problems about  Lukasiewicz many valued logics into facts/problems about

partially ordered abelian groups, and conversely. After giving a brief survey of the theory, we study the automorphism

groups of the free MV-algebras, i.e., the Lindenbaum algebras of  Lukasiewicz logics.

1. Preliminaries

We list here some of the standard definitions and facts about partially ordered abelian groups. By a group
we always mean an abelian group, except when discussing automorphism groups. For background the reader
is referred to [2],[8],[9].

A partially ordered abelian group (p.o. group) is a pair 〈G, G+〉, where G is an abelian group, G+ is a
subsemigroup of G such that 0 ∈ G+, G+∩(−G+) = {0}, and G is positively generated, i.e., every element of
G can be expressed as the difference of two elements of G+ (not necessarily in a unique way). The elements
of G+ are called positive, and G+ is the positive cone of G. The relation ≤ between elements of G given by
x ≤ y iff y−x ∈ G+ is a translation invariant partial order; in other words, for every x, y, t ∈ G, if x ≤ y, then
x + t ≤ y + t. Conversely, given a translation invariant partial order on G such that G+ = {x ∈ G: 0 ≤ x}
generates G, then G+ is a positive cone.

An element u ∈ G+ such that for every x ∈ G there exists an n ∈ N for which x ≤ nu is said to be a
strong unit. 〈G, G+〉 is unperforated if, for every x ∈ G, if for some n ∈ N \ {0} nx is positive, then x itself
is positive. 〈G, G+〉 is a Riesz group if it has the Riesz interpolation property: for every x, y, z, w ∈ G such
that x, y ≤ z, w, there exists t ∈ G with x, y ≤ t ≤ z, w. The Riesz interpolation property is equivalent to
the Riesz decomposition property: if 0 ≤ x ≤ x1 + · · ·+xn, then there exist x′

1, . . . , x
′
n such that 0 ≤ x′

i ≤ xi

and x = x′
1 + · · ·+ x′

n.
A dimension group is an unperforated Riesz group. A lattice-ordered group (`-group) is a p.o. group

whose underlying partial order is a lattice. A totally ordered group is a p.o. group in which the order is
total. Every `-group is a dimension group. Actually, the Effros-Handelman-Shen theorem tells us that the
dimension groups are exactly the inductive limits of direct systems of `-groups ([9, Theorem 3.21.]). Loosely
speaking, the Riesz property is what remains of the lattice property in forming direct limits.

Let P, P ′ be posets, P ′ a subposet of P . P ′ is convex in P if x, y ∈ P ′, z ∈ P and x ≤ z ≤ y imply
z ∈ P ′. Let 〈G, G+〉 be a p.o. group, and let H be a subgroup of G. Define H+ = H ∩G+, and assume that
H is generated by H+. Then 〈H,H+〉 is a p.o. subgroup of 〈G, G+〉. If, furthermore, H is convex in G, then
H is an ideal of G (from now on, as soon as no confusion is possible, we will drop references to the positive
cones). Note that a convex subgroup of a Riesz group is positively generated iff it is directed; hence an ideal
of a Riesz group is a convex directed subgroup. A subsemigroup of G+, containing 0 and convex in G+, is
called a face (of G+). Let us call Ideals(G) the poset of ideals of G, ordered by inclusion, and Faces(G+)
the poset of faces of G+, ordered by inclusion. There is an isomorphism between Ideals(G) and Faces(G+),
which is given by H 7→ H+, the inverse isomorphism being given by H+ 7→ H+ −H+.

The set of faces of G+ is closed under arbitrary intersections. Let X ⊆ G+; the face generated by X
is 〈X〉+ =

⋂
{f ∈ Faces(G+): f ⊇ X}. It is straightforward to prove that 〈X〉+ = {y ∈ G+:∃x1, . . . , xn ∈
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X such that 0 ≤ y ≤ x1 + · · ·+ xn}. The ideal generated by X is 〈X〉 = 〈X〉+ − 〈X〉+. If X = {x}, we just
write 〈x〉. We have that x ∈ G+ is a strong unit iff 〈x〉 = G.

Assume that H is an ideal of G. We order the quotient group G/H by using as positive cone the image
of the positive cone of G, i.e., we put (G/H)+ = G+/H. Then 〈G/H, (G/H)+〉 is a p.o. group. Equivalently,
define x/H ≤ y/H in G/H iff there exists z ∈ H such that x ≤ y + z in G. If H is an ideal of the Riesz
group (dimension group, `-group) G, then both H and G/H are Riesz groups (dimension groups, `-groups).

Let G, K be p.o. groups. Their direct sum G ⊕ K is the ordinary group direct sum, ordered compo-
nentwise: (x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′. Their lexicographic sum G⊕lex K has the same support
group as G⊕K, and is ordered lexicographically: (x, y) ≤ (x′, y′) iff (x < x′) or (x = x′ and y ≤ y′).

A homomorphism ϕ: G → K is a group homomorphism such that ϕ(G+) ⊆ K+. If ϕ(G+) = K+, then
ϕ is an epimorphism, and an injective epimorphism is an isomorphism. Of course, an automorphism of G is
an isomorphism of G onto itself. An `-homomorphism of lattice-ordered groups is a homomorphism which
preserves infima and suprema. If u is a distinguished strong unit of G, and v is a distinguished strong unit
of K, a homomorphism ϕ: (G, u) → (K, v) is unital if ϕ(u) = v.

Here are some examples:
1) Let C[0, 1] be the additive group of continuous real valued functions over the unit interval [0, 1], with
pointwise order: x ≤ y iff ∀t ∈ [0, 1] x(t) ≤ y(t). Then C[0, 1] is an `-group, having the constant function
1 as a strong unit.
2) Let C1[0, 1] be the subgroup of C[0, 1] whose elements are the differentiable functions, with the inherited
order. Then C1[0, 1] is a p.o. subgroup of C[0, 1] which is not convex. C1[0, 1] is a dimension group, but not
an `-group. Any positive function which is never 0 is a strong unit.
3) Same construction as in 2), but taking polynomial functions, instead of differentiable ones.
4) Let X be any of Z,Q,R, and take G to be the additive group X2. Let G+ = {(0, 0)} ∪ {(x, y) ∈ X2: 0 <
x, 0 ≤ y}. Then {(x, 0): x ∈ X} is an ideal of G, {(x, x): x ∈ X} is a p.o. subgroup of G which is not convex,
{(0, y): y ∈ X} is a subgroup of G which is not positively generated. If X is Q or R, then G is a dimension
group, whereas if X = Z, it is not: e.g., there is no interpolant to (1, 0), (0, 1) ≤ (2, 1), (2, 2).
5) Let Γ be a poset, and for each γ ∈ Γ, let Gγ be a totally ordered group. For every x ∈

∏
γ∈Γ Gγ , let the

support of x be {γ ∈ Γ: x(γ) 6= 0}, and let G be the set of elements of
∏

γ∈Γ Gγ whose support satisfies the
ascending chain condition. Define a nonzero element of G to be positive iff it is positive at each maximal
element of its support. Groups obtained by using this construction are called Hahn-type, and they are fairly
general. In fact:
• every totally ordered group can be embedded in a Hahn-type group in which Γ is a chain and each Gγ is
a subgroup of R (Hahn, 1907);
• every `-group can be embedded in a Hahn-type group in which Γ is a root system (i.e., ∀γ ∈ Γ, the
elements greater than γ form a chain) (Conrad, Harvey, Holland, 1963);
• if Γ is a poset with a finite numer of maximal chains, then G, as defined above, is a dimension group
(Teller, [14]).

From now on we concentrate on Riesz groups. Our present goal is to develop the spectral theory for
Riesz groups; in the next section we will analyze how the structure of the interval [0, u] in a Riesz group
with strong unit u is related to the structure of the whole group. Some words are in order to explain why
we are working at this level of generality. As a matter of fact, the categorical equivalence between algebras
of  Lukasiewicz many valued logics and p.o. groups with strong unit works only at the level of `-groups.
Nevertheless, we feel that the class of Riesz groups is appropriate to introduce most of the theory. In fact:
1) the arguments involved do not require the lattice property, but just the interpolation and decomposition
properties;
2) Riesz groups and dimension groups arise in functional analysis as an important tool for classifying algebras
of operators. It is then possible to use them as a bridge between operator theory and many valued logics
([11]);
3) there are many open problems on the borderline between Riesz groups, dimension groups and `-groups.
For example: which are the minimal conditions for a Riesz group to be an `-group ([7])? how much of the
spectral theory for `-groups can be extended to Riesz groups?
4) it would be very interesting to extend the duality between MV-algebras and `-groups to the larger classes of
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dimension groups and Riesz groups. The logic which seems to arise would have partially defined connectives,
and a “limiting process” to approximate undefined formulas.

Let then G be a fixed Riesz group. Ideals(G) is a complete distributive Brouwerian algebraic lattice
([1],[8]). Finite meets are given by intersections, whereas if {It: t ∈ T} is an infinite family of ideals, then∧

t∈T It = (
⋂

t∈T I+
t ) − (

⋂
t∈T I+

t ). Joins, either finite or infinite, are given by direct sums:
∨

t∈T It =∑
t∈T It = subgroup generated by

⋃
t∈T It. Observe also that meets distribute over infinite suprema (but

not conversely). Ideals generated by singletons are compact, and every ideal is clearly the supremum of such
ones.

A proper ideal p of G is said to be prime if it is meet irreducible in Ideals(G), i.e., p = I ∩ J implies
p = I or p = J . As in any distributive lattice, this is equivalent to saying that p ⊇ I ∩ J implies p ⊇ I or
p ⊇ J .

Proposition 1.1. Let G be a Riesz group, I ∈ Ideals(G). Then I =
∧
{p ∈ Spec(G): p ⊇ I}.

Proof. It suffices to prove that I+ =
⋂
{p+: p ∈ Spec(G) and p+ ⊇ I+}. Assume that x ∈ G+ \ I+, and

observe that the union of a chain of faces is a face. Then, by Zorn lemma, we can find a face f which
is maximal with respect to the property of containing I+ and excluding x, and such an f is clearly meet
irreducible. Hence the prime ideal p = f − f satisfies the conditions p+ = f ⊇ I+ and x /∈ p+.

The set of prime ideals of G, equipped with the Jacobson-Zariski topology, is a topological space called
the spectrum of G, and denoted by Spec(G). The topology can be conveniently described by describing
the closure operator: given P ⊆ Spec(G), consider the ideal

∧
P (the kernel of P ), and then define {p ∈

Spec(G): p ⊇
∧

P} (the hull of
∧

P ) to be the closure of P .
The membership relation between elements of G+ and elements of Spec(G) induces, as always, a Galois

connection. Let X ⊆ G+, P ⊆ Spec(G). Let X ′ = FX = {p ∈ Spec(G):∀x ∈ X x ∈ p} = {p ∈
Spec(G): p ⊇ X}, and let P ′ = {x ∈ G+:∀p ∈ P x ∈ p} =

⋂
{p+: p ∈ P} ∈ Faces(G+). Then X 7→ X ′′ and

P 7→ P ′′ are both Moore closure operators. It is clear that X ′′ is exactly the face generated by X, whereas
P ′′ is the hull-kernel closure of P . It also follows:
• the complete lattice of faces of G+ (or, equivalently, of ideals of G) is antiisomorphic to the complete
lattice of closed sets of Spec(G), and isomorphic to the complete lattice of open sets of Spec(G). The
antiisomorphism is given by I 7→ FI = {p ∈ Spec(G): p ⊇ I}, and the isomorphism by I 7→ OI = {p ∈
Spec(G): p 6⊇ I} (I ∈ Ideals(G)). Hence, every closed (open) set of Spec(G) is of the form FI (OI) for some
I ∈ Ideals(G);
• there is a 1-1 correspondence between clopen sets of Spec(G) and direct sum decompositions of G. In
fact, assume P ⊆ Spec(G) is clopen. Then P ′ and (Spec(G) \ P )′ have {0} as their meet, and their direct
sum (i.e., their supremum) is G+. Let I = P ′ − P ′, J = (Spec(G) \ P )′ − (Spec(G) \ P )′ be the ideals they
generate. Then G is isomorphic to I ⊕ J as a group and, by [8, Proposition 5.8.], it is also isomorphic to
I ⊕ J as a p.o. group.

Let X ⊆ G+. As in any Galois connection, X ′ = X ′′′. Hence FX = F〈X〉 and OX = O〈X〉. In particular,
we are interested in the open sets of the form Ox, for x ∈ G+.

Proposition 1.2. Let G be a Riesz group. The compact open sets of Spec(G) are exactly those of the form
Ox, for x ∈ G+. They form a basis for Spec(G).

Proof. Choose any open set of Spec(G); it will be of the form OI for some I ∈ Ideals(G). Clearly I =∨
x∈I+〈x〉. By the above mentioned isomorphism it is OI = O∨

x∈I+ 〈x〉 =
∨

x∈I+ O〈x〉 =
⋃

x∈I+ Ox. Let

Ox ⊆
⋃

t∈T OIt
: then 〈x〉 ⊆

∨
t∈T It =

∑
t∈T It. Hence there exist t1, . . . , tn ∈ T and xt1 ∈ It1 , . . . , xtn

∈ Itn

such that x = xt1 + · · ·+xtn . Hence 〈x〉 ⊆ It1 + · · ·+Itn , and Ox ⊆ OIt1
∪· · ·∪OItn

. Conversely, assume that
OI is compact. As OI =

⋃
x∈I+ Ox, there exist x1, . . . , xn ∈ I+ such that OI = Ox1 ∪ · · · ∪Oxn = Ox1+···+xn

(this last equality follows at once by the straightforward equality 〈x1〉+ · · ·+ 〈xn〉 = 〈x1 + · · ·+ xn〉).

Corollary 1.3. Spec(G) is compact if and only if G has a strong unit.

Proof. If G has a strong unit u, then Spec(G) = Ou, which is compact. If Spec(G) is compact, then it must
be Spec(G) = Ox, for some x ∈ G+. Hence ∀p ∈ Spec(G) x /∈ p. But then x is a strong unit. In fact, if 〈x〉
were different from G, then by Proposition 1.1. there would exist a prime ideal of G containing x.
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In a topological space a closed set is called an irreducible if it cannot be expressed as a non trivial union
of two closed sets. Every closure of a point is clearly an irreducible set. A topological space is sober if every
irreducible set is the closure of a point.

Proposition 1.4. Let G be a Riesz group. Then Spec(G) is
i) T0

ii) sober
iii) has a basis of compact open sets (and hence is locally compact).

Proof. The third statement is proved in Proposition 1.2.. Let p, q ∈ Spec(G), p 6= q. By Proposition 1.1.
{r ∈ Spec(G): r ⊇ p} (the closure of p) is different from {r ∈ Spec(G): r ⊇ q} (the closure of q). Hence
Spec(G) is T0. Assume that FI is an irreducible set. This amounts to saying that FI cannot be expressed in
a nontrivial way as the union (i.e., the join in the lattice of closed sets of Spec(G)) of two sets of the form
FJ , FJ′ . By the above mentioned antiisomorphism, this means that I cannot be expressed in a nontrivial way
as the meet of two ideals J, J ′. It follows that I is prime, hence a point of Spec(G), and FI is its closure.

A topological space which is T0, sober, and with a countable basis of compact open sets is called a
spectral space. By [4, Theorem 5] any spectral space is homeomorphic to the spectrum of a dimension group
(not necessarily unique). The problem of characterizing, up to homeomorphism, the spectra of `-groups is
still open (see [7]).

2. The unit interval

Let (G, u) be a Riesz group with a distinguished strong unit u. We are interested in the unit interval
[0, u] = {x ∈ G: 0 ≤ x ≤ u} of (G, u). The structure of the unit interval is interesting because:
i) it tells us “almost everything” about the structure of G;
ii) it has a logical interpretation.

Let us consider i). First of all, the unit interval generates G as a group; this follows from the Riesz
decomposition property and the definition of strong unit. Let X ⊆ [0, u]. We call X a face of [0, u] if 0 ∈ X,
X is convex in [0, u] and is conditionally closed under sum (i.e., x, y ∈ X and x + y ≤ u imply x + y ∈ X).
Let us denote the poset of faces of [0, u] by Faces[0, u], ordered by inclusion. As arbitrary intersections of
faces of [0, u] are faces of [0, u], it follows that Faces[0, u] is a complete lattice.

Proposition 2.1. Faces[0, u] is isomorphic to Faces(G+) (and hence to Ideals(G)).

Proof. For X ∈ Faces[0, u], let a(X) be the face of G+ generated by X. For f ∈ Faces(G+) let b(f) =
f ∩ [0, u]. We must verify that b(f) ∈ Faces[0, u], that both a: Faces[0, u] → Faces(G+) and b: Faces(G+) →
Faces[0, u] are order preserving, that ab is the identity on Faces(G+), and that ba is the identity on Faces[0, u].
All these verifications are straightforward.

By the above Proposition, meet irreducible elements of Ideals(G) correspond to meet irreducible elements
of Faces[0, u], and the same holds for compact elements. For X ⊆ [0, u], define the face of [0, u] generated
by X to be 〈X〉+ ∩ [0, u]; principal faces (either of G+ or of [0, u]) are those generated by singletons.

Proposition 2.2. The principal faces of G+ are those generated by the elements of the unit interval. It
follows that principal faces of [0, u] correspond to principal faces of G+ (and hence to principal ideals of G).

Proof. Let x ∈ G+. By the Riesz decomposition property there exist x1, . . . , xn ∈ [0, u] such that x =
x1 + · · · + xn. By the interpolation property there exists y ∈ [0, u] such that x1, . . . , xn ≤ y ≤ x, u, and
clearly 〈x〉+ = 〈y〉+.

A Riesz group (or a poset) is an antilattice ([8]) if it has only the infima that it cannot fail to have.
More formally, G is an antilattice if, for any x, y ∈ G, the existence of x ∧ y implies that x ≤ y or y ≤ x.

Proposition 2.3. Let H be an ideal of the Riesz group G. The following conditions are equivalent:
i) H is prime;
ii) if x, y ∈ G+ and [0, x] ∩ [0, y] ⊆ H, then x ∈ H or y ∈ H;
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iii) G/H is an antilattice;
iv) G+ \H+ is lower directed.

Proof. The equivalence of ii) and iv) is clear.
i)⇒ii) Let x, y ∈ G+. We claim that 〈x〉+∩〈y〉+ = 〈[0, x]∩ [0, y]〉+. The right to left inclusion being trivial,
assume z ∈ 〈x〉+ ∩ 〈y〉+. Then 0 ≤ z ≤ nx for some n ∈ N. By the Riesz decomposition property there exist
x1, . . . , xn ∈ [0, x] such that z = x1 + · · ·+ xn. Analogously z = y1 + · · ·+ yk for some y1, . . . , yk ∈ [0, y]. By
[9, Proposition 2.2.(c)] there exist z1, . . . , zr ∈ [0, x]∩ [0, y] such that z = z1 + · · ·+ zr. Our claim is proved;
it follows that 〈x〉∧ 〈y〉 = 〈[0, x]∩ [0, y]〉. Assume that [0, x]∩ [0, y] ⊆ H; then 〈x〉∧ 〈y〉 = 〈[0, x]∩ [0, y]〉 ⊆ H.
Since H is prime, it follows that 〈x〉 ⊆ H or 〈y〉 ⊆ H, and so x ∈ H or y ∈ H.
ii)⇒iii) Assume x/H ∧ y/H exists. By translation invariance we may assume x/H ∧ y/H = 0/H, and by
definition of quotient ordering we may also assume x, y ≥ 0. We must have [0, x]∩ [0, y] ⊆ H for, otherwise,
if z ∈ (G+ \ H) ∩ [0, x] ∩ [0, y], we would have 0/H < z/H ≤ x/H, y/H. Hence x ∈ H or y ∈ H, and so
x/H = 0/H or y/H = 0/H.
iii)⇒i) Assume H is not prime. Then there exist I, J ∈ Ideals(G) and x, y ∈ G+ such that H = I ∩ J ,
x ∈ I \ H and y ∈ J \ H. Hence x/H, y/H > 0/H. We claim that x/H ∧ y/H = 0/H. In fact, assume
that there exists z ∈ G+ such that x/H, y/H ≥ z/H > 0/H. Then 0/I = x/I ≥ z/I ≥ 0/I and z ∈ I.
Analogously z ∈ J . Hence z ∈ H = I ∩ J . Contradiction.

Note that, in contrast with the `-group case, the fact that the ideals greater than H form a chain is a
sufficient but not necessary condition for H to be prime. As a counterexample, consider the prime ideal {0}
in the antilattice (Z⊕ Z)⊕lex Z ([13]), whose lattice of ideals is

We have already seen how the lattice of ideals of a Riesz group with strong unit is faithfully reflected
in the lattice of faces of the unit interval. The order relation of the unit interval also determines the order
relation of the whole group.

Theorem 2.4. Let (G, u) be a Riesz group with strong unit u. Then each of the following properties holds
in the poset [0, u] if and only if it holds in G:
i) each bounded countable chain has a supremum;
ii) ω-interpolation (i.e., if {xi}, {yj} are countable families of elements such that, for each i, j, xi ≤ yj ,
then there exists z such that, for each i, j, xi ≤ z ≤ yj);
iii) to be lattice-ordered;
iv) to be antilattice-ordered;
v) to be totally ordered.

Proof. The statements corresponding to properties i) and ii) are proved in [9, Proposition 16.9.] and [9,
Proposition 16.3.], respectively. The statement corresponding to property iii) is proved in [12, Lemma 3.1.].
About iv): if G is an antilattice, then [0, u] is clearly an antilattice. Assume that [0, u] is an antilattice
and that, for certain x, y ∈ G, x ∧ y exists. By translation invariance we may assume x ∧ y = 0, so that
x, y are positive. By the Riesz decomposition property there exist x1, . . . , xn, y1, . . . , ym ∈ [0, u] such that
x = x1 + · · · + xn and y = y1 + · · · + ym. We claim that, for every i, j, xi ∧ yj exists and has value 0. In
fact, 0 ≤ xi, yj . If z ≤ xi, yj , then z ≤ x, y, and hence z ≤ 0. Our claim is settled. We need only to show
that one of x, y equals 0. If x1 = x2 = · · · = xn = 0, then x = 0. If for some i xi > 0 then, as [0, u] is an
antilattice, it must be y1 = y2 = · · · = ym = 0, so that y = 0. For v), simply observe that total orders are
posets which are lattices and antilattices at the same time.
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Now we turn to the logical interpretation of the unit interval: a Many Valued algebra (MV-algebra) is
an algebra 〈A,⊕, ·, ∗, 0, 1〉 such that 〈A,⊕, 0〉 is an abelian monoid, x⊕1 = 1, x∗∗ = x, 0∗ = 1, (x∗⊕y)∗⊕y =
(y∗ ⊕ x)∗ ⊕ x, x · y = (x∗ ⊕ y∗)∗. Setting x ∨ y = (x∗ ⊕ y)∗ ⊕ y, x ∧ y = (x∗ · y)∗ · y, x → y = x∗ ⊕ y, we
have that 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice. MV-algebras are to  Lukasiewicz many valued logics
what Boolean algebras are to classical (2-valued) logic; see [5],[6] for a completeness theorem and further
references.

The prototypical example of an MV-algebra is the unit real interval [0, 1], equipped with truncated
addition x ⊕ y = (x + y) ∧ 1, and with the other operations defined by x∗ = 1 − x, x · y = (x∗ ⊕ y∗)∗(=
(x + y − 1) ∨ 0). The unit real interval is generic (but not free) in the variety of MV-algebras; equivalently,
a propositional sentence is a theorem in  Lukasiewicz infinite valued logic iff it receives value 1 under any
interpretation in the unit real interval. The construction that gives rise to the unit real interval (as an MV-
algebra) from the `-group with strong unit (R,1) is generic in another sense: every MV-algebra is obtained
in such a way.

Theorem 2.5. [11] Let (G, u) be an `-group with strong unit. Equip the unit interval [0, u] with the
operations x ⊕ y = (x + y) ∧ u, x∗ = u − x, x · y = (x∗ ⊕ y∗)∗, 1 = u. Then Γ(G, u) = 〈[0, u],⊕, ·, ∗, 0, 1〉
is an MV-algebra, whose lattice order, as induced by the MV operations, coincides with the order inherited
by (G, u). If ϕ: (G, u) → (K, v) is a unital `-homomorphism, then the restriction of ϕ to the unit interval,
denoted by Γ(ϕ), is an MV-algebra homomorphism Γ(ϕ): Γ(G, u) → Γ(K, v). Γ is a full, faithful and
representative functor (i.e., a categorical equivalence) between the category of `-groups with strong unit and
unital `-homomorphisms and the category of MV-algebras and MV-algebra homomorphisms; in particular,
for every MV-algebra A there exists a unique `-group (G, u) such that A ' Γ(G, u).

Definition 2.6. Let A be an MV-algebra. An ideal I of A is a subset of A containing 0, closed under ⊕,
and such that x ≤ y and y ∈ I implies x ∈ I.

Proposition 2.7. Let (G, u) be an `-group with strong unit. The complete lattice of ideals of Γ(G, u) is
isomorphic to Ideals(G, u).

Proof. In the light of Proposition 2.1., it suffices to show that a subset I ⊆ [0, u] is an ideal of Γ(G, u) iff it
is a face of [0, u]. Assume I is an ideal of Γ(G, u), x, y ∈ I, x + y ≤ u. Then x + y = (x + y)∧ u = x⊕ y ∈ I.
Assume I is a face of [0, u], and let x, y ∈ I. Then 0 ≤ x⊕y = (x+y)∧u ≤ x+y. By the Riesz decomposition
property there exist x′, y′ such that 0 ≤ x′ ≤ x, 0 ≤ y′ ≤ y, x′ + y′ = x ⊕ y ≤ u. Hence x′, y′ ∈ I and
x⊕ y ∈ I. The other conditions (containing 0 and closure downwards) are obvious in both directions.

If I is an ideal of the MV-algebra A, the canonical epimorphism A → A/I is defined as usual, by using
the congruence relation ∼I defined by x ∼I y iff ((x → y) · (y → x))∗ = (x∗ · y)⊕ (x · y∗) ∈ I. Let us recall
that in any `-group G the absolute value of x ∈ G is defined to be |x| = x∨ (−x) = (x∨ 0)− (x∧ 0) ≥ 0 ([2,
1.3.13.]); for any ideal J of G, x ∈ J iff |x| ∈ J . Assume A = Γ(G, u), I is an ideal of A, J is the ideal of (G, u)
corresponding to I (i.e., J = 〈I〉). For x, y ∈ A, a bit of computation shows that (x∗ ·y)⊕(x ·y∗) = |x−y|∧u.
By [2, 1.3.12.], |x− y| = (x ∨ y)− (x ∧ y); hence, 0 ≤ |x− y| ≤ u. It follows that x ∼I y in A iff |x− y| ∈ I
iff x− y ∈ J iff x/J = y/J in (G/J, u/J).

Proposition 2.8. Take A, (G, u), I, J as above. Then A/I ' Γ(G/J, u/J).

Proof. Define ϕ: A/I → Γ(G/J, u/J) by ϕ(x/I) = x/J . By the preceding remarks ϕ is well defined and
1–1. Let y/J ∈ Γ(G/J, u/J). By [8, Proposition 5.7.] there exists x ∈ [0, u] such that y/J = x/J Hence
y/J = ϕ(x/I) and ϕ is onto. Now we just need to prove that ϕ preserves ⊕ and ∗, and this is straightforward.
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3. Free objects, maximal ideals, and automorphism groups
The results in the previous section allow us to move freely between the category of MV-algebras and their
homomorphisms and the category of `-groups with strong unit and unital `-homomorphisms. In particular,
there is a correspondence between `-groups with strong unit and theories in  Lukasiewicz many valued logics.
Such a correspondence is established by making use of free objects, and the rest of this paper is devoted to
an analysis of such objects and their automorphism groups.

The free MV-algebras are, of course, the Lindenbaum algebras of  Lukasiewicz logics. By Theorem 2.5.
they are in 1–1 correspondence with free objects in the category of `-groups with strong unit (note that the
latter is not an equational class, as it is not closed under infinite products; indeed it is not even an elementary
class). Free MV-algebras have been characterized by McNaughton ([10]). Let n ∈ N \ {0}. A McNaughton
function over [0, u]n is a [0, 1]-valued continuous piecewise linear function with integral coefficients. Here by
piecewise linear function with integral coefficients we mean a function x of domain [0, 1]n for which there exist
linear affine polynomials x1, . . . , xn (each xj of the form c1jh1 + · · ·+ cnjhn + c(n+1)j , with c1j , . . . , c(n+1)j

integers) such that for every h ∈ [0, 1]n there exists j for which x(h) = xj(h). A McNaughton function
over [0, 1]ω is a function y: [0, 1]ω → [0, 1] for which there exist 0 < m1 < · · · < mn < ω such that
y(h) = x(hm1 , . . . , hmn) for some McNaughton function x over [0, 1]n. For 1 ≤ κ ≤ ω, McNaughton’s
representation theorem ([10, Theorem 2]) states that the free MV-algebra over κ generators is the subalgebra
Aκ of [0, 1]([0,1]κ) whose elements are the McNaughton functions over [0, 1]κ. The free generators of Aκ are
the projections {pi+1}i<κ, i.e., the functions pi(h) = hi.

As a consequence of Theorem 2.5., the `-group with strong unit (Mκ,1) of real-valued continuous
piecewise linear functions with integral coefficients defined over [0, 1]κ exibits freeness properties (we denote
by 1 the function that maps every point to 1). In other words, we have Aκ = Γ(Mκ,1). Note that Mκ is not
the free `-group over κ generators ([1, Theorem 6.3.]). We define M0 = Z, A0 = the two element boolean
algebra. Aut(Mκ) is the automorphism group of (Mκ,1); we always require that 1 stays fixed under any
automorphism, whence Aut(Mκ) may be identified with the automorphism group of Aκ.

Let G be a Riesz group. An ideal m of G is maximal if it is proper and is not properly contained in
any proper ideal. Of course, every maximal ideal is prime. We denote by Maxspec(G) the space of maximal
ideals of G, endowed with the topology induced by Spec(G).

Proposition 3.1. [11, Proposition 4.17.] Let 1 ≤ κ ≤ ω, let U ⊆ [0, 1]κ be open, and let h ∈ U . Then there
exists x ∈ M+

κ such that x(h) = 0 and x = 1 over [0, 1]κ \ U .

Proposition 3.2. [11, Proposition 8.1.] Let 1 ≤ κ ≤ ω, h ∈ [0, 1]κ, mh = {x ∈ Mκ: x(h) = 0}. Then
mh ∈ Maxspec(Mκ). The mapping h 7→ mh is a homeomorphism of [0, 1]κ onto Maxspec(Mκ).

Let m ∈ Maxspec(Mκ). By Hölder’s theorem ([2, Corollaire 2.6.7.]) Mκ/m is isomorphic to a subgroup
of R; if we require that 1/m is mapped to 1, then the embedding ϕm: Mκ/m → R is uniquely determined
([2, Lemme 13.2.2.]).

Proposition 3.3. Adopt the above notation, and fix x ∈ Mκ. Then, for any h ∈ [0, 1]κ, we have
ϕmh

(x/mh) = x(h).

Proof. Define σ: [0, 1]κ → R by σ(h) = ϕmh
(x/mh). The function x: [0, 1]κ → R is continuous by definition

of Mκ. It will be sufficient to prove that:
i) σ is continuous;
ii) x = σ on a dense subset of [0, 1]κ.
We first prove ii): let a/b ∈ Q, a ∈ Z, b ∈ N \ {0}, h ∈ [0, 1]κ. We have the following chain of equivalences:
x(h) = a/b iff bx(h) = a = a1(h) iff (bx − a1)(h) = 0 iff bx − a1 ∈ mh iff (bx − a1)/mh = 0/mh iff
ϕmh

(bx/mh) = ϕmh
(a1/mh) = aϕmh

(1/mh) = a iff σ(h) = a/b. Let n ∈ N \ {0} be such that x does not
depend on hn, hn+1 . . .. Consider Q = {h ∈ [0, 1]κ: h1, . . . , hn−1 ∈ Q} (if n = 1, take Q = [0, 1]κ). Then Q is
a dense subset of [0, 1]κ and is a subset of {h ∈ [0, 1]κ: x(h) ∈ Q}. Hence by the above chain of equivalences
x = σ over Q.
About i): we need the following

Claim. Let x ∈ Mκ, h ∈ [0, 1]κ. Then x(h) ≥ 0 iff there exists y ∈ mh such that x + y ≥ 0 in Mκ.

Proof of Claim. The right to left direction is trivial. If x(h) = 0, then x ∈ mh. As mh is directed,
there is z ∈ mh such that x, 0 ≤ z. Take y = z − x. Assume x(h) > 0, and let U be the open set
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{k ∈ [0, 1]κ: x(k) > x(h)/2}. Let M ∈ N be greater than max{|x(k)|: k ∈ [0, 1]κ \ U}. By Proposition 3.1.
there exists z ∈ M+

κ such that z ∈ mh and has value 1 on [0, 1]κ \ U . Now we can take y = Mz.

We prove that σ is continuous by showing that, for any a ∈ Z, b ∈ N\{0}, it is σ−1([a/b,∞)) = x−1([a/b,∞))
and σ−1((−∞, a/b]) = x−1((−∞, a/b]). In fact we have

σ(h) = ϕmh
(x/mh) ≥ a/b iff

ϕmh
(bx/mh) ≥ a = ϕmh

(a1/mh) iff
bx/mh ≥ a1/mh iff

there exists y ∈ mh such that bx− a1 + y ≥ 0 in Mκ iff (by the Claim)
(bx− a1)(h) ≥ 0 iff

x(h) ≥ a/b

We argue analogously (modifying the Claim in the obvious way) to prove that σ(h) ≤ a/b iff x(h) ≤ a/b.

Proposition 3.4. The inverse of the homeomorphism h 7→ mh is the map λ: Maxspec(Mκ) → [0, 1]κ defined
by (λ(m))i = ϕm(pi/m) (pi being the i-th projection, i.e., the i-th free generator).

Proof. For any i, we have (λ(mh))i = ϕmh
(pi/mh) = pi(h) = hi; hence λ(mh) = h. On the other hand, fix

m ∈ Maxspec(Mκ). It is then m = mh for a unique h ∈ [0, 1]κ. Hence m = mh = mλ(mh) = mλ(m).

We say that m is localized in λ(m). In the light of the above results, we will not hesitate to identify an
ideal m ∈ Maxspec(Mκ) with the point h ∈ [0, 1]κ such that m = mh. Moreover, for x ∈ Mκ, we will not
distinguish between x(m) (the value of x at m) and x/m (the coset of x in Mκ/m).

Let α be an automorphism of Mκ. It is clear that the map α̃: Maxspec(Mκ) → Maxspec(Mκ) defined
by α̃(m) = α[m] = {α(x): x ∈ m} is a homeomorphism. We claim that

pi/α̃(m) = α−1(pi)/m

In fact, assume pi/α̃(m) = pi/α[m] = a/b ∈ Q. Then

bpi/α̃(m) = a = a1/α̃(m)
(bpi − a1)/α̃(m) = 0

bpi − a1 ∈ α̃(m) = α[m]
bα−1(pi)− a1 ∈ m

bα−1(pi)/m = a1/m = a

α−1(pi)/m = a/b

A continuity argument as in Proposition 3.3. shows now that pi/α̃(m) = α−1(pi)/m.
We have then (λ(α̃(m)))i = pi/α̃(m) = α−1(pi)/m = (α−1(pi))(m). By Proposition 3.2. we consider

α̃ to be a homeomorphism of [0, 1]κ onto itself; the last equality tells us that, for any h ∈ [0, 1]κ, it is
(α̃(h))i = (α−1(pi))(h); equivalently, piα̃ = α−1(pi).

Definition 3.5. Let n ∈ N \ {0}. A piece of [0, 1]n is a finite union of closed convex n-dimensional
polyhedra any two of which are either disjoint or intersect in a common face. A tessellation of [0, 1]n is a
finite set of pieces {T1, . . . , Tk} such that [0, 1]n = T1 ∪ · · · ∪ Tk and for each i, j, Ti ∩ Tj does not contain a
ball of affine dimension n.

Definition 3.6. Let n ∈ N\{0}. A McNaughton homeomorphism a: [0, 1]n → [0, 1]n is a homeomorphism
such that there exist a tessellation {T1, . . . , Tk} of [0, 1]n and square matrices A1, . . . , Ak ∈ Matn+1(Z) such
that:
i) each Aj has its last column of the form 

0
...
0
1
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ii) each Aj is unimodular, i.e., has determinant of absolute value 1. Moreover, det(A1) = · · · = det(Ak) = +1
or det(A1) = · · · = det(Ak) = −1;
iii) for each j, a = Aj over Tj (the map Aj is defined as follows: for h = (h1, . . . , hn) ∈ Tj , let
(h1, . . . , hn, 1)Aj = (k1, . . . , kn, 1), and define Aj(h) = (k1, . . . , kn)).

Our terminology will be justified after the proof of Theorem 3.9., from which it will follow that a is a Mc-
Naughton homeomorphism of [0, 1]n if and only if there exist 2n McNaughton functions x1, . . . , xn, y1, . . . , yn

such that a(h) = (x1(h), . . . , xn(h)) and a−1(h) = (y1(h), . . . , yn(h)). Assume that a, b: [0, 1]n → [0, 1]n are
McNaughton homeomorphisms. It is easy to see, by refining tessellations, that the homeomorphism ab,
defined by (ab)(h) = a(b(h)), is a McNaughton homeomorphism. It is also easy to see that the inverse of
a McNaughton homeomorphism is a McNaughton homeomorphism. We denote by Hom([0, 1]n) the (not
necessarily abelian) group of McNaughton homeomorphisms over [0, 1]n.

Let a: [0, 1]n → [0, 1]n be a McNaughton homeomorphism. For i ∈ {1, . . . , n}, the function pia
−1 is a

McNaughton function with range in [0, 1], i.e., an element of the free MV-algebra over n generators An.

Definition 3.7. Let a: [0, 1]n → [0, 1]n be a McNaughton homeomorphism. We denote by a the MV-
algebra homomorphism a: An → An defined by a(pi) = pia

−1. By abuse of notation, we also denote by a
the associated unital `-homomorphism a: Mn → Mn, which is defined in the same way.

Lemma 3.8. Let a, b ∈ Hom([0, 1]n). Then a, b are automorphisms of An (and hence automorphisms of
Mn), 1[0,1]n = 1An

and ab = ab.

Proof. Is clear that 1[0,1]n = 1An
. It will be sufficient to prove that ab = ab, because it will then follow

immediately that a,b are invertible, the inverses being a−1,b−1, respectively. Let xi = pia
−1 = a(pi) and

yi = pib
−1 = b(pi). By McNaughton’s theorem there are polynomials Xi(p1, . . . , pn), Yi(p1, . . . , pn) in the

language of MV-algebras such that xi = Xi(p1, . . . , pn) and yi = Yi(p1, . . . , pn). For any generator pi we have
(ab)(pi) = a(b(pi)) = a(Yi(p1, . . . , pn)) = Yi(a(p1), . . . , a(pn)) = Yi(X1(p1, . . . , pn), . . . , Xn(p1, . . . , pn)) =
yia

−1 = pib
−1a−1 = pi(ab)−1 = (ab)(pi); hence ab = ab.

Theorem 3.9. Let n ∈ N \ {0}. Then

˜ : Aut(Mn) → Hom([0, 1]n)
: Hom([0, 1]n) → Aut(Mn)

are group isomorphisms, which are each the inverse of the other.

Proof. Let α ∈ Aut(Mn). We already showed that α̃: [0, 1]n → [0, 1]n defined by (α̃(h))i = (α−1(pi))(h) is
a homeomorphism (h = (h1, . . . , hn) ∈ [0, 1]n, i ∈ {1, . . . , n}). We want to prove that it is a McNaughton
homeomorphism. Consider α−1(p1), . . . , α−1(pn) ∈ Mn. We can find a tessellation {T1, . . . , Tk} of [0, 1]n

such that ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , k} we have (α−1(pi))(h) = c1ijh1 + · · ·+ cnijhn + c(n+1)ij over Tj , for
some integers c1ij , . . . , c(n+1)ij . Let A1, . . . , Ak ∈ Matn+1(Z) be defined by (Aj)rs = crsj for 1 ≤ r ≤ n + 1
and 1 ≤ s ≤ n, (Aj)r(n+1) = 0 for 1 ≤ r ≤ n, (Aj)(n+1)(n+1) = 1. In order to show that α̃ fulfils the
requirements of Definition 3.6., we need only to show that the Aj ’s have the same determinant, either +1
or −1.
We first prove that the Aj ’s are unimodular. Choose j ∈ {1, . . . , k}, and choose h = (h1, . . . , hn) ∈ Tj

such that h1, . . . , hn, 1 are independent over Q. Then Mn/h is isomorphic to the totally ordered group
Z[h1, . . . , hn, 1] = {d1h1 + · · · + dnhn + dn+1: d1, . . . , dn+1 ∈ Z}. Let (k1, . . . , kn, 1) = (h1, . . . , hn, 1)Aj .
Then we have Z[h1, . . . , hn, 1] ' Mn/h ' α[Mn]/α[h] = Mn/α̃(h) ' Z[p1/α̃(h), . . . , pn/α̃(h),1/α̃(h)] =
Z[α−1(p1)/h, . . . , α−1(pn)/h,1/h] = Z[k1, . . . , kn, 1]. By [13, Lemma 3.6.] Aj is unimodular.
Let us make a definition: we say that T, T ′ ∈ {T1, . . . , Tk} are mates if there exists F ⊆ T ∩T ′ such that the
affine dimension of F is n− 1. We now prove that all the Aj ’s have determinant of the same sign. This will
follow immediately from the following two Claims.

Claim 1. Let T, T ′ ∈ {T1, . . . , Tk} be mates. Let A,A′ ∈ Matn+1(Z) be the matrices associated to T, T ′,
respectively. Then det(A) and det(A′) have the same sign.

Claim 2. For each T, T ′ ∈ {T1, . . . , Tk} there is a chain T = Tj1 , . . . , Tjr
= T ′ such that, for s ∈ {1, . . . , r−1},

Tjs and Tjs+1 are mates.
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Proof of Claim 1. If T = T ′, we are through. If not, let F ⊆ T ∩ T ′ be as above. Let B,B′ ∈ Matn(Z) be
obtained by A,A′ by removing the last line and the last column. Let πF be the affine hyperplane such that
F ⊆ πF , and let HF ,H ′

F be the halfspaces determined by πF . Let h = (h1, . . . , hn) ∈ F , and let π = πF −h,
H = HF −h, H ′ = H ′

F −h be the translates of πF ,HF ,H ′
F through the origin. For any k = (k1, . . . , kn) ∈ π,

we have kB = kB′. In fact A(h) = A′(h) and A(h + k) = A′(h + k). Let i ∈ {1, . . . , n}. Then

(
n∑

j=1

ajihj) + a(n+1)i = (
n∑

j=1

a′jihj) + a′(n+1)i

and

(
n∑

j=1

aji(hj + kj)) + a(n+1)i = (
n∑

j=1

a′ji(hj + kj)) + a′(n+1)i

(a, a′ are generic names for the entries of A,A′). Hence
∑n

j=1 ajikj =
∑n

j=1 a′jikj and, as i is arbitrary,
kB = kB′.
We also have that HB = {(k − h)B: k ∈ HF } = {kB: k ∈ HF } − hB is a translate of A[HF ] = {kB: k ∈
HF }+ (a(n+1)1, . . . , a(n+1)n), and analogously H ′B′ is a translate of A′[H ′

F ]. Hence HB and H ′B′ are the
halfspaces determined by πB = πB′. Choose a basis {k(1), . . . , k(n)} of Rn such that k(1), . . . , k(n−1) ∈ π
and k(n) ∈ H. Then −k(n) ∈ H ′. For i ∈ {1, . . . , n − 1}, let w(i) = k(i)B = k(i)B′. Then both −(k(n)B)
and (−k(n))B′ lie in H ′B′. It follows that there exists C ∈ Matn(R) such that det(C) is positive nonzero,
w(i)C = w(i) for i ∈ {1, . . . , n − 1}, and (−(k(n)B))C = (−k(n))B′. Hence the maps induced by BC and
B′ coincide over the basis {k(1), . . . , k(n−1),−k(n)}, and so BC = B′ as matrices. It follows that det(B)
(= det(A)) and det(B′) (= det(A′)) have the same sign.

Proof of Claim 2. Induction over k. If k = 1, there is nothing to prove. Assume that the statement is true
for k − 1, and choose T, T ′ ∈ {T1, . . . , Tk}, T 6= T ′. There must be a T ′′ ∈ {T1, . . . , Tk} such that T, T ′′ are
mates. If T ′′ = T ′, we are through. Otherwise, consider the tessellation {R1, . . . , Rk−1} = {T ∪ T ′′} ∪ {R ∈
{T1, . . . , Tk}: R 6= T and R 6= T ′′}. By inductive hypothesis, there is a chain T ∪ T ′′ = Rj1 , . . . , Rjr

= T ′

such that for s ∈ {1, . . . , r−1}, Rjs
and Rjs+1 are mates. We may also assume that T ∪T ′′ /∈ {Rj2 , . . . , Rjr

}.
It is now sufficient to observe that Rj2 must be mate either to T or to T ′′ (or both).

It follows that α̃ is a McNaughton homeomorphism and range(˜) ⊆ Hom([0, 1]n). We prove that ˜ is an
isomorphism: clearly 1̃Mn = 1[0,1]n . Let αβ ∈ Aut(Mn). Then, for any h ∈ [0, 1]n ' Maxspec(Mn),
α̃β(h) = (αβ)[h] = α[β[h]] = α[β̃(h)] = α̃β̃(h); hence α̃β = α̃β̃. Moreover (α̃)−1 = α̃−1, because α̃α̃−1 =
α̃α−1 = 1[0,1]n = α̃−1α = α̃−1α̃.
By Lemma 3.8. : Hom([0, 1]n) → Aut(Mn) is an isomorphism. For any generator pi, it is α̃(pi) = pi(α̃)−1 =
piα̃−1 = α(pi); hence α̃ = α.
For any h ∈ [0, 1]n, it is ã(h) = (((a)−1(p1))(h), . . . , ((a)−1(pn))(h)) = ((a−1(p1))(h), . . . , (a−1(pn))(h)) =
((p1a)(h), . . . , (pna)(h)) = a(h); hence ã = a. This completes the proof of Theorem 3.9..
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4. Some computations

McNaughton homeomorphisms have rather strong properties: first of all, they preserve volumes.

Proposition 4.1. Let a: [0, 1]n → [0, 1]n be a McNaughton homeomorphism, and let µ denote Lebesgue
measure on [0, 1]n. Then for any measurable set S ⊆ [0, 1]n, µ(S) = µ(a[S]).

Proof. Immediate, since unimodular matrices preserve measure, and each a|Tj
can be expressed as a product

by an n× n unimodular matrix followed by a translation.

Second, they preserve denominators.

Proposition 4.2. Let a as above, let c1, . . . , cn, d ∈ N be relatively prime, d 6= 0, a((c1/d, . . . , cn/d)) =
(e1/d, . . . , en/d). Then e1, . . . , en, d are relatively prime.

Proof. Assume h = (c1/d, . . . , cn/d) ∈ Tj . We may express a|Tj
by using homogeneous coordinates, so that

a(h) = (c1, . . . , cn, d)Aj = (e1, . . . , en, d) (in homogeneous coordinates). Now just observe that Aj (as a
mapping Aj : Zn+1 → Zn+1) is an automorphism of Zn+1 (as an abelian group).

In a sense, we may think of McNaughton homeomorphisms as stresses of a crystal: the volume of the
unit cell is preserved, and points of the base lattice are mapped to points of the same kind.

Of course, Hom([0, 1]n) contains at least the symmetry group of the n-cube, let us call it Cn. It
corresponds to the group of automorphisms of Mn which are obtained by permuting the generators and
flipping some of them (here we mean the following: if x ∈ An = Γ(Mn,1), the flip of x is 1 − x). Clearly,
Cn has n!2n elements. The following observation is due to Mundici.

Proposition 4.3. Aut(M1) = C1 ' Z2.

Proof. Let a ∈ Hom([0, 1]). Assume a(0) = 0. By Proposition 4.1. we have, for any x ∈ [0, 1], |x − 0| =
|a(x)− a(0)| = |a(x)− 0|; hence a(x) = x and a is the identity. If a(0) = 1 we have |x− 0| = |a(x)− a(0)| =
|a(x)−1|; hence a(x) = 1−x and a is the rotation about 1/2, i.e., a is the automorphism induced by flipping
the generator p1.

On the other hand, the structure of Aut(M2) is still an open problem. It is not an abelian group, since
C2 is nonabelian. We will prove that the free abelian group over ω generators is embeddable in Aut(M2).

Lemma 4.4. Let h1, h2, h3, k1, k2, k3 ∈ Z3, hi = (hi
1, h

i
2, h

i
3), ki = (ki

1, k
i
2, k

i
3), hi

3 = ki
3 for i ∈ {1, 2, 3},∣∣∣∣∣∣

h1
1 h1

2 h1
3

h2
1 h2

2 h2
3

h3
1 h3

2 h3
3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k1

1 k1
2 k1

3

k2
1 k2

2 k2
3

k3
1 k3

2 k3
3

∣∣∣∣∣∣ = +1

Then there exists A ∈ Mat3(Z) such that det(A) = +1, a13 = a23 = 0, a33 = 1 and k1
1 k1

2 k1
3

k2
1 k2

2 k2
3

k3
1 k3

2 k3
3

 =

 h1
1 h1

2 h1
3

h2
1 h2

2 h2
3

h3
1 h3

2 h3
3

 A (∗)

Proof. Both {h1, h2, h3} and {k1, k2, k3} are bases for the free abelian group Z3. As automorphisms of Z3

are in 1–1 correspondence with unimodular, 3 × 3 matrices with entries in Z, it follows that there exists
a unimodular matrix A ∈ Mat3(Z) such that (∗) is satisfied. Clearly det(A) = +1. As {h1, h2, h3} is a
basis, there exist λ1, λ2, λ3 ∈ Z such that

∑3
i=1 λih

i = (1, 0, 0). Hence the first row of A is (1, 0, 0)A =∑3
i=1 λih

iA =
∑3

i=1 λik
i. It follows that a13 =

∑3
i=1 λik

i
3 =

∑3
i=1 λih

i
3 = 0. Analogously a23 = 0 and

a33 = 1.

Let us work in projective coordinates. For h1, . . . , hm ∈ [0, 1]2, hi = (hi
1, h

i
2, h

i
3), let h1, . . . , hm be the

closed convex hull generated by h1, . . . , hm, i.e., the set {
∑m

i=1 rih
i: the ri’s are positive reals, not all zero}.
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For n ∈ N, consider the tessellations {T1, . . . , T10} and {T ′
1, . . . , T

′
10} given by

T1 = closure of ([0, 1]2 \ (n, n, 2n + 1), (n + 1, n, 2n + 1)

, (n + 1, n + 1, 2n + 1), (n, n + 1, 2n + 1))

T2 = (n, n, 2n + 1), (n + 1, n + 1, 2n + 3), (n, n + 1, 2n + 1)

T3 = (n, n, 2n + 1), (n + 2, n + 1, 2n + 3), (n + 1, n + 1, 2n + 3)

T4 = (n, n, 2n + 1), (n + 1, n, 2n + 1), (n + 2, n + 1, 2n + 3)

T5 = (n + 1, n, 2n + 1), (n + 2, n + 2, 2n + 3), (n + 2, n + 1, 2n + 3)

T6 = (n + 1, n, 2n + 1), (n + 1, n + 1, 2n + 1), (n + 2, n + 2, 2n + 3)

T7 = (n + 1, n + 1, 2n + 1), (n + 1, n + 2, 2n + 3), (n + 2, n + 2, 2n + 3)

T8 = (n + 1, n + 1, 2n + 1), (n, n + 1, 2n + 1), (n + 1, n + 2, 2n + 3)

T9 = (n, n + 1, 2n + 1), (n + 1, n + 1, 2n + 3), (n + 1, n + 2, 2n + 3)

T10 = (n + 1, n + 1, 2n + 3), (n + 2, n + 1, 2n + 3), (n + 2, n + 2, 2n + 3)

, (n + 1, n + 2, 2n + 3)
T ′

1 = T1

T ′
2 = (n, n, 2n + 1), (n + 1, n + 2, 2n + 3), (n, n + 1, 2n + 1)

T ′
3 = (n, n, 2n + 1), (n + 1, n + 1, 2n + 3), (n + 1, n + 2, 2n + 3)

T ′
4 = (n, n, 2n + 1), (n + 1, n, 2n + 1), (n + 1, n + 1, 2n + 3)

T ′
5 = (n + 1, n, 2n + 1), (n + 2, n + 1, 2n + 3), (n + 1, n + 1, 2n + 3)

T ′
6 = (n + 1, n, 2n + 1), (n + 1, n + 1, 2n + 1), (n + 2, n + 1, 2n + 3)

T ′
7 = (n + 1, n + 1, 2n + 1), (n + 2, n + 2, 2n + 3), (n + 2, n + 1, 2n + 3)

T ′
8 = (n + 1, n + 1, 2n + 1), (n, n + 1, 2n + 1), (n + 2, n + 2, 2n + 3)

T ′
9 = (n, n + 1, 2n + 1), (n + 1, n + 2, 2n + 3), (n + 2, n + 2, 2n + 3)

T ′
10 = T10

To be precise, the Tj ’s and the T ′
j ’s, as well as the Aj ’s to be defined in a moment, should bear an index

to express dependence on n, but we omit it in order not to overburden the notation. This should cause no
trouble. The following is a scheme of the Tj ’s (to the left) and the T ′

j ’s (to the right).
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We are planning to describe a family {an: n ∈ N} of McNaughton homeomorphisms an: [0, 1]2 → [0, 1]2.
We will try to reduce our formalism to the minimum compatible with full rigour.

Two concentric squares are inscribed in [0, 1]2: an outer square of vertices (n, n, 2n + 1), (n + 1, n, 2n +
1), (n + 1, n + 1, 2n + 1), (n, n + 1, 2n + 1), and an inner square, of vertices (n + 1, n + 1, 2n + 3), (n + 2, n +
1, 2n + 3), (n + 2, n + 2, 2n + 3), (n + 1, n + 2, 2n + 3). T1 = T ′

1 is the set of points outside the outer square;
they stay fixed under an, i.e., we define A1 = the 3× 3 identity matrix. T10 = T ′

10 is the set of points inside
the inner square; they rotate clockwise by an angle of π/2 about (1, 1, 2). The matrix A10 that accomplishes
the rotation is

A10 =

 0 −1 0
1 0 0
0 1 1


The points between the outer and the inner square are tessellated into the triangles T2, . . . , T9. These
triangles are mapped to T ′

2, . . . , T
′
9 by matrices A2, . . . , A9. Lemma 4.4. guarantees that A2, . . . , A9 exist and

are appropriate, i.e., have integral entries, determinant +1 and last column of the form

 0
0
1



A bit of computation shows in fact that the hypotheses of Lemma 4.4. are always satisfied; for example

∣∣∣∣∣∣
n n 2n + 1

n + 1 n + 1 2n + 3
n n + 1 2n + 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n n 2n + 1

n + 1 n + 2 2n + 3
n n + 1 2n + 1

∣∣∣∣∣∣ = +1

whence the existence of an appropriate A2 follows. Let an: [0, 1]2 → [0, 1]2 be the mapping so obtained,
according to Definition 3.6.. It is clear that an is a homeomorphism, hence a McNaughton homeomorphism.
Note also that the inner square of an is the outer square of an+1.

As an example, take n = 0. T1 collapses then to the borders of [0, 1]2, and we just disregard it. a0

maps the free generator p1 to x = a0(p1) = p1a
−1
0 and p2 to y = a0(p2) = p2a

−1
0 . We may get an explicit

expression for x as follows: a−1
0 is determined by A−1

2 , . . . , A−1
10 . Each A−1

j maps T ′
j to Tj . For example, it

must be  0 0 1
1 2 3
0 1 1

 A−1
2 =

 0 0 1
1 1 3
0 1 1


whence

A−1
2 =

 1 −1 0
0 1 0
0 0 1


If the point (ξ, ν, 1) (in projective coordinates) belongs to T ′

2, then it gets mapped by a−1
0 to the point

(ξ,−ξ + ν, 1) ∈ T2. Hence x|T ′
2

is the linear affine polynomial ξ and y|T ′
2

is the linear affine polynomial
−ξ + ν. The graph of x is

13



and the graph of y is

Theorem 4.5. The free abelian group over ω generators is embeddable in Aut(M2).

Proof. Let F be the subgroup of Hom([0, 1]2) generated by {a0, a1, . . .}. We claim that F is abelian and
that {a0, a1, . . .} are free generators for F . We must prove:
i) each an has infinite period;
ii) for each n, m, it is anam = aman and ana−1

m = a−1
m an;

iii) if for k1, . . . , kr ∈ Z it is ak1
n1

ak2
n2

. . . akr
nr

= 1[0,1]2 , then k1 = k2 = · · · = kr = 0.
About i): let k ∈ N \ {0}. If k is not a multiple of 4, then no point in the inner square of an is
mapped to itself by ak

n (except (1, 1, 2)), whence ak
n 6= 1[0,1]2 . If k = 4l, then look at the line seg-

ment (n, n, 2n + 1), (n + 1, n + 1, 2n + 3). The point (n, n, 2n + 1) stays fixed under a4l, whereas (n +
1, n + 1, 2n + 3) rotates l times round the inner square. It is clear that a4l cannot be the identity over
(n, n, 2n + 1), (n + 1, n + 1, 2n + 3).
About ii): if n = m, we are through. Assume n < m. The function am acts identically on all points outside
the outer square of am, whence anam = aman for those points. The points inside the outer square of am are
also inside the inner square of an. Then an acts on them by a clockwise rotation of π/2, and it is clear that
such a rotation commutes with am. We argue analogously to prove that an and a−1

m commute.
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About iii): we may assume 0 ≤ n1 < n2 < · · · < nr. The argument in i) shows that, for any n, if
k ∈ Z\{0}, we can find an h inside the outer square and outside the inner square of an such that ak

n(h) 6= h,
i.e., h witnesses ak

n 6= 1[0,1]2 . Now, the points inside the outer square and outside the inner square of an1

are not moved by an2 , . . . , anr
. Hence, as ak1

n1
ak2

n2
. . . akr

nr
= 1[0,1]2 , it follows that k1 = 0. By induction,

k2 = k3 = · · · = kr = 0.
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