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This is a personal geodesic along dynamical systems. Corrections, suggestions,
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1. Basics

A topologic dynamical system is a triple (X, T , R). A measurable dynamical system is a
triple (X,X , R). An metric dynamical system is a quadruple (X,X , µ,R). All spaces are polish
and all measures Borel and σ-finite, thus regular [Rud87, Theorem 2.18]. If µ is finite, then it
is usually normalized to be a probability. Usually R is surjective in the appropriate sense. Note
that in the last case the maps are actually equivalence classes of maps, as in the Lp spaces.

Exercise 1.1. The obvious composition of equivalence classes is well defined.

Example 1.2. (1) Left translations Lg in a topological group: rotations of a circle, the
odometer (Zp,+1).

(2) Continuous endomorphisms of a compact abelian group: x 7→ kx (mod 1), nonsingu-
lar integer matrices acting on d-dimensional tori.

(3) Affine transformations on a compact group.
(4) One-sided and two-sided shifts.
(5) Interval-exchange transformations.
(6) Markov maps of the interval.
(7) Gauss-type maps.

The above can be generalized to the action of a topological monoid or group on a topological,
measurable, or measure space; a key issue here is measure rigidity.

Example 1.3. (1) Flows in smooth differential varieties.
(2) Billiards.
(3) The geodesic and horocycle flow in Γ\PSL2R.

In all three cases, the dynamical systems form the objects of a category. The arrows of the
category are then the continuous, measurable, or measure-preserving [equivalence classes of]
maps that make the appropriate square commute.

Recall that a semialgebra in X is a subset S of P(X) that contains ∅, is closed under finite
intersections, and is such that the complement of every element is a finite disjoint union of
elements.

Example 1.4. (1) Cylinders in R: finite intersections of (−∞, a]’s and their complements.
(2) Cylinders in Rn: finite intersections of π−1

i ’s of cylinders in R.
(3) Cylinders in n = {0, . . . , n− 1}: elements of P(n).
(4) Cylinders in nI : finite intersections of π−1

i ’s of cylinders in n.
1
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(5) Blocks in nω: all [a0, . . . , ar]’s.
(6) Blocks in nZ: all [a−r, . . . , ar]’s.

Lemma 1.5 (The Monotone Class Theorem). Let A be an algebra of sets, and let M be
the smallest monotone (i.e., closed under countable increasing and decreasing limits) class
containing A. Then F(A) =M.

Lemma 1.6. Let (X,X , µ), (Y,Y, ν) be measure spaces, and let S be a semialgebra generating
Y and such that Y is an increasing countable union of ν-finite elementsSn ∈ S. LetR : X → Y
be a map that is measurable and measure-preserving on S . ThenR is measurable and measure-
preserving.

Proof. R is surely measurable; just note that {A ⊆ Y : R−1A ∈ X} is a σ-algebra. Fix Sn,
and letM = {M ∈ Y : µ(R−1(M ∩ Sn)) = ν(M ∩ Sn)}. We haveA(S) ⊆M, andM = Y
by the Monotone Class Theorem. □

2. Topological groups

We restrict to polish topological groups (more generally, Hausdorff and having a countable
basis of open precompact sets).

Theorem 2.1. For every such group G there exists a unique (up to product by constants) left
Haar measure namely a nontrivial measure λ that is:

(1) Radon, i.e.,
• Borel and [0,+∞]-valued;
• regular (i.e., (i) the measure of every Borel set is the infimum of the measures of

the open sets containing it and (ii) the measure of every open set is the supremum
of the measures of compact sets contained in it);
• finite on compact sets;

(2) strictly positive on nonempty open sets;
(3) invariant w.r.t. left translations.

Proof. [Loo53, §29]. □

Remark 2.2. Every Borel measure on a polish space is regular [Rud87, Theorem 2.18].

Example 2.3. (R,+, λ) and (R>0, ·, exp∗ λ) (note that d(exp∗ λ)(x) = x−1 dx). Discrete
finite and countable groups. Tn. Zp and Qp. Zω

p . Linear groups: GLnR, SLnR, OnR, . . ..

Example 2.4. (Q,+) with the topology induced by R is not locally compact and does not
have a Haar measure. Indeed, any countable group possessing a Haar measure λ must be
discrete. Indeed, since λ is notrivial and the group is countable, all singletons have the same
strictly positive measure; outer regularity then implies discreteness. There’s usually no relation
between the Haar measures of a group and that of a subgroup, even if the latter carries the
induced topology: look at R < R2.

Example 2.5. Let
Aff+R =

{( x y
1

)
: x ∈ R>0, y ∈ R

}
.

Then the left measure is x−2 dx dy, while the right one is x−1 dx dy.
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Lemma 2.6. LetG be a polish topological group and λ a left Haar measure. ThenG is compact
iff λ is finite. Also, G is discrete iff G is at most countable iff λ is positive on singletons.

Proof. LetG be not compact, and fix a compact neightborhoodK of 1. By basics of topological
groups, there exists an open neightborhood U of 1 such that U = U−1 and UU ⊆ K. We can
choose a sequence g0, g1, . . . s.t. gn /∈

⋃
k<n gkK. We claim that (gnU) is disjoint. Indeed, if

k < t and h ∈ gkU ∩ gtU , then gt = hu−1 = (gkv)u
−1 ∈ gkUU ⊆ gkK, which is impossible.

Hence λ is infinite.
A discrete group with a countable basis must be countable, and we already established the

other implications. □

For every g ∈ G, (Rg)∗λ is again a left Haar measure; indeed it is surely Borel regular, and[
(Rg)∗λ

]
(xA) = λ(xAg−1) = λ(Ag−1) =

[
(Rg)∗λ

]
(A).

Therefore, the modular function m : G→ R>0 remains defined —independently of the choice
of λ— by (Rg)∗λ = m(g)λ.

Theorem 2.7. (1) m is a continuous homomorphism.
(2) m = 1l iff every left measure is also a right measure, and conversely. Such a group is

said to be unimodular.
(3) Abelian groups and compact groups are unimodular.

Proof. (1) We have m(zw)λ = (Rzw)∗λ = (Rw ◦ Rz)∗λ = (Rw)∗
[
(Rz)∗λ

]
=

(Rw)∗
[
m(z)λ

]
= m(w)m(z)λ. For the continuity, fix f ∈ Cc(G) such that

∫
f dλ ̸= 0.

Then the map

z 7→
∫
f(– z) dλ =

∫
f d(Rz)∗λ = m(z)

∫
f dλ

is continuous. Indeed, for metric spaces, continuity amounts to sequential continuity. Let then
zn → z; without loss of generality all zn belong to a compact neighborhood H of z. Let K be
the support of f . Then:

(a) H−1 is compact;
(b) K ×H−1 is compact (because the induced topology on K ×H−1 is the product of the

induced topologies on K and on H−1), and therefore KH−1 is compact;
(c) for every n, f(– zn) is supported on KH−1. Indeed, w /∈ KH−1 implies w /∈ Kz−1

n

implies wzn /∈ K implies f(wzn) = 0.
(d) the family f(– zn) is dominated by max|f |1lKH−1 ∈ L1(λ), and sequential continuity

follows from the dominated convergence theorem.
Thus m is continuous.
(2) Assume m = 1l, let λ be a left measure, ρ a right one, and fix a nonempty open set U
with compact closure. Normalize so that λ(U) = ρ(U). For every A and every z, λ(Az−1) =[
(Rz)∗λ

]
(A) = m(z)λ(A) = λ(A), so that λ is right invariant and thus a multiple of ρ. By our

normalization, λ = ρ.
(3) When G is compact, the range of m must be a compact subgroup of R>0, containing 1. The
only such subgroup is {1}. □

Exercise 2.8. Compute the modular function for the group of Example 2.5.
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Lemma 2.9. Let G be compact, φ : G → G a surjective continuous homomorphism, µ the
Haar probability. Then (G,µ, φ) is a metric system.

Proof. Since φ is continuous, φ∗µ is Borel and (1), (3), (4), (5) in Theorem 2.1 hold. Fix g
and let h ∈ φ−1{g}; it is easy to see that φ−1(gA) = hφ−1(A). Therefore (φ∗µ)(gA) =
µ(φ−1(gA)) = µ(hφ−1(A)) = µ(φ−1(A)) = (φ∗µ)(A), and φ∗µ is a left Haar probability.
Hence φ∗µ = µ. □

Compactness of G is essential: look at x 7→ 2x in R.

Lemma 2.10. Let (X,X , µ,R) be a metric system, let (Y,Y, S) be a measurable system, and
assume thatM : (X,X )→ (Y,Y) makes the square commute. Then (Y,Y,M∗µ, S) is a metric
system, called a factor of (X,µ,R).

Proof. For every A ∈ Y we have (M∗µ)(S
−1A) = µ(M−1S−1A) = µ(R−1M−1A) =

µ(M−1A) = (M∗µ)(A). □

Example 2.11. If X is an interval in R and the repartition function of µ is a homeomor-
phism onto [0, 1], then we can take it for M and obtain a conjugacy between (X,µ,R) and
([0, 1], λ,MRM−1). This is the case for the Farey map and the tent map.

Example 2.12. Tent maps and Chebyshev polynomials.

3. Recurrence

Let (X,X , R) be a measurable system. The set A ∈ X is wandering if A,R−1A,R−2A, . . .
are pairwise disjoint. A metric system (X,µ,R) is conservative is every wandering set has 0
measure (this is surely true if µ is finite).

The following is Halmos’s version of the Poincaré recurrence theorem; it is related to Zer-
melo’s gas paradox.

Theorem 3.1. Let (X,X , µ,R) be conservative, A ∈ X , NRA = {x :
x enters A at least once, and finitely many times}. Then NRA ∈ X and has µ-measure 0.
In particular:

• µ-every x either never enters A, or enters A infinitely many times;
• µ-every x ∈ A returns to A infinitely many times.

Proof. For every k ≥ 0, the set

Nk = R−kA ∩
⋂
h>k

R−hAc ∈ X ,

of all points entering A at time k and leaving it forever, is wandering; indeed, R−qNk = Nk+q.
Hence it has measure 0, and so does NRA =

⋃̇
k≥0Nk. □

The point x in the topological system (X,R) is recurrent if it returns infinitely many times
to any of its neighbourhoods.
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4. Ergodicity

Let (X,X , R) be a measurable system. The orbit of x isO(x) = {Rk(x) : k ≥ 0}; the grand
orbit of x is GO(x) = {y : there exist h, k ≥ 0 with Rh(x) = Rk(y)}. We say that A ∈ X is:

(1) waterproof from inside if R[A] ⊆ A;
(2) waterproof from outside if R−1A ⊆ A;
(3) invariant if A = R−1A, i.e., A is two-sided waterproof, i.e., A is a (disjoint) union of

grand orbits;
(4) fully invariant if A = R−1A = R[A].

If R is surjective, then invariant sets are fully invariant.
It is worth noting that a (σ)-algebra of sets is indeed an algebra (X ,△,∩, 0, 1) in the algebraic

sense of the word, the base field being F2 = {0, 1} = {∅, X}. In particular, (σ)-congruences
and (σ)-ideals are in 1-1 correspondence. Note also that

Ac = 1△A, A \B = A ∩ (1△B) = A△(A ∩B), A ∪B = A△B△(A ∩B).

Lemma 4.1. Let (X,X , µ) be a measure space, and define A ∼ B by µ(A△B) = 0. Then:
• ∼ is an equivalence;
• actually, ∼ is a σ-algebra congruence, corresponding to the σ-ideal of nullsets;
• µ is constant on equivalence classes;
• in particular, if µ(A) = 0 then µ(A△B) = µ(∅△B) = µ(B).

Theorem 4.2. Let (X,X , µ,R) be a conservative metric system; then the following are equiva-
lent and define an ergodic system.

(1) if A is invariant, then either µ(A) = 0 or µ(Ac) = 0;
(2) if A ∼ R−1A, then either µ(A) = 0 or µ(Ac) = 0;
(3) if µ(A) > 0 and B =

⋃
k≥0R

−kA, then µ(Bc) = 0;
(4) if µ(A), µ(B) > 0, then there exists k ≥ 0 with µ(A ∩R−kB) > 0.

Proof. (1)⇒(2) Let A∞ be the set of all x ∈ X that enter A infinitely many times; it is clearly
invariant. We have A∞△A = (A∞ \ A) ∪̇ (A \ A∞), and A \ A∞ is µ-null by Poincaré. On
the other hand

A∞ \A ⊆ (R−1A \A) ∪ (R−2A \R−1A) ∪ · · ·
and each of the right-hand-side sets is µ-null. Hence A∞ ∼ A; since A∞ is null or conull, so is
A.
(2)⇒(3) We have B \ R−1B = A \ R−1B = {elements in A that never return to A}. This set
is null, and equals B△R−1B because B ⊇ R−1B. Hence B is null or conull, and the first
alternative does not hold since B ⊇ A.
(3)⇒(4) By (3), µ

[
(
⋃

k R
−kB)c

]
= 0. Hence

0 < µ(A) = µ
(
A ∩ (

⋃
k

R−kB)
)
= µ

(⋃
k

(A ∩R−kB)
)
,

which establishes (4).
(4)⇒(1) Let A be invariant, and assume by contradiction µ(A), µ(Ac) > 0. Then, for some
k ≥ 0, µ(Ac ∩R−kA) > 0, which is absurd since R−kA = A. □
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Lemma 4.3. Let (X,X , µ) be a finite measure space, withX generated by the algebraA. Then,
for every B ∈ X and every ε > 0, there exists A ∈ A such that µ(A△B) < ε.

Proof. LetD be the set of elements ofX satisfying the above property; it is enough to show thatD
is a σ-algebra. SinceA△B = Ac△Bc, we have closure under complements. LetD =

⋃
i∈I Di

be a countable union of elements of D. Fix ε > 0, and find J ⊆ I of finite cardinality n
such that µ(D \

⋃
j Dj) < ε/2. For every j, choose Aj such that µ(Dj△Aj) < (ε/2)/n.

Then A =
⋃

j Aj satisfies the requirement. Indeed, D△A = (D△
⋃

j Dj)△(
⋃

j Dj△A), and
(
⋃

j Dj)△(
⋃

j Aj) ⊆
⋃

j(Dj△Aj). □

In particular, |µ(Ac)−µ(Bc)| = |µ(A)−µ(B)| = |(µ(A \B)+µ(A∩B))− (µ(B \A)−
µ(A ∩B))| = |µ(A \B)− µ(B \A)| ≤ µ(A \B) + µ(B \A) < ε.

Theorem 4.4. The full two-sided Bernoulli shift (mZ, (p0, . . . , pm−1), S) is ergodic.

Proof. Let B ∈ B be S-invariant, fix ε > 0, and let A be in the algebra generated by cylinders,
and such that µ(A△B) < ε. Since A is defined by finitely many conditions, for some (indeed,
for every) n > 0 large enough we have that S−nA is µ-independent from A and from Ac. We
claim that µ(A)µ(Ac) < 2ε. Indeed,

µ(A)µ(Ac) = µ(S−nA)µ(Ac) = µ(S−nA ∩Ac),

and
S−nA ∩Ac ⊆ (A△B) ∪ (S−nA△B) = (A△B) ∪ S−n(A△B),

which establishes our claim (the first containment holds by considering the two cases ω ∈ B
and ω /∈ B; the second equality from B = S−nB).

We conclude that µ(B)µ(Bc) ≤ (µ(A) + ε)(µ(Ac) + ε) < 2ε + ε + ε2. As ε is arbitrary,
we must have µ(B)µ(Bc) = 0, and thus B is null or conull. □

Lemma 4.5. Any factor of an ergodic system is ergodic.

It follows that the one-sided Bernoulli shift is ergodic.

5. Banach spaces

From here on X is compact Hausdorff, with a countable basis of open precompact sets (thus
X is metrizable), and µ is a Borel probability on it. We then have the (complex or real) Banach
spaces

L1(µ) ⊇ L2(µ) ⊇ · · · ⊇ L∞(µ) ⊇ C(X).

Let V = V (X) be any of the above Banach spaces. An algebra of operators on V is any (C or
R)-algebra of continuous linear endomorphisms of V , with composition as multiplication. The
dual V ∗ of V is the vector space of all (C or R)-valued continuous —equivalently, bounded—
linear functionals on V . Each V (X) is a function space over X so, for appropriate maps
R : X → Y , we have natural maps

V (X)← V (Y ) : R∗

f ◦R← f

R∗ : V (X)∗ → V (Y )∗

Φ 7→ Φ ◦R∗
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For example in the case of C(X)∗, seen as the space of complex measures on X , the 2nd map
reads ∫

Y
f dR∗µ =

∫
Y
R∗f dµ =

∫
Y
f ◦R dµ, for every f ∈ C(X).

The weakest topology on V ∗ that makes all evaluation functions Φ 7→ Φf continuous is the
weak-∗ topology; it is usually weaker than the norm topology.
Theorem 5.1 (Banach-Alaoglu). Let V be a normed space. Then the unit sphere {Φ ∈ V ∗ :
∥Φ∥ = 1} in V ∗, as well as the unit ball, are compact in the weak-∗ topology.

In the infinite-dimensional case the unit sphere is never compact in the norm topology.
Consider, for example, the unit sphere in (C[0, 1])∗: every countable set of Direc measures has
a weak accumulation point. However, two different Dirac measures are always at distance 2 in
the norm metric, and by the triangle inequality there is no accumulation point.
Theorem 5.2 (Riesz representation theorem). There exists a natural bijection between the
positive Borel probabilities on X and the positive normalized functionals in C(X)∗.
Lemma 5.3. Let (X,µ,R) be a metric system.

(1) If f ∈ L1, then ∫
R∗f dµ =

∫
f dR∗µ =

∫
f dµ.

(2) For every 1 ≤ p ≤ ∞, R∗ : Lp → Lp is an isometric vector space immersion (hence of
norm 1), having all its eigenvalues in S1.

(3) If the system is invertible, then R∗ is a unitary operator on the Hilbert space L2 (it is
then denoted by U , and named the Koopman operator).

Proof. (2) Assume p < ∞. Then |f |p ∈ L1 and ∥f∥pp =
∫
|f |p dµ =

∫
|f |p ◦ R dµ =∫

|f ◦R|p dµ = ∥R∗f∥pp.
Assume p =∞. Then, for every M > 0, we have {x : |(R∗f)(x)| < M} = R−1{x : |f(x)| <
M}, and thus µ(|R∗f | < M) = µ(|f | < M). This implies ∥f∥∞ = ∥R∗f∥∞.
If R∗f = αf , then ∥f∥p = ∥R∗f∥p = |α|∥f∥p, so that, for f ̸= 0, we have |α| = 1.
(3) Let U = R∗; we have to prove UU∗ = U∗U = I . For every f, g ∈ L2 we have

⟨Uf,Ug⟩ =
∫

(f ◦R)(g ◦R) dµ =

∫
(fg) ◦R dµ =

∫
fg dµ = ⟨f, g⟩,

which implies U∗U = I . Since R is invertible, so is U , with inverse U−1 = (R−1)∗. Applying
the above to U−1, we obtain (U−1)∗U−1 = I , and thus UU∗ = I . □

The following theorem says that ergodicity is a spectral property.
Theorem 5.4. Let (X,µ,R) be a metric system, 1 ≤ p ≤ ∞. The following are equivalent:

(1) the system is ergodic;
(2) the 1-autospace of R∗ in Lp boils down to the constants C · 1l.

Proof. (2) implies (1). Let µ(A△R−1A) = 0. Of course 1lA ∈ Lp, and R∗1lA = 1lR−1A; thus
the assumption implies 1lA = R∗1lA in Lp. Therefore 1lA is constantly 0 or 1.
(1) implies (2). □

If (X,µ,R) is a continuous metric system, the fact that the only continuous invariant functions
are the constants is not sufficient for ergodicity.
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6. Characters for topological abelian groups

Let LCA be the category of locally compact Hausdorff abelian groups. EveryG ∈ LCA has
a dual group Ĝ, whose elements are the characters ofG, namely the continuous homomorphisms
χ : G → S1. We endow Ĝ with the compact-open topology (note that the defining subbasis is
not necessarily a basis).

Theorem 6.1 (Pontryagin). (1) Ĝ ∈ LCA and ˆ : LCA → LCA is a contravariant
functor.

(2) G is naturally isomorphic to ˆ̂
G, via g 7→ (χ 7→ χ(g)).

(3) G is compact iff Ĝ is discrete.
(4) Let H be a closed subgroup of G. Then the restriction map χ 7→ χ ↾ H is an

epimorphism Ĝ → Ĥ ≃ Ĝ/H ′, where H ′ = {χ ∈ Ĝ : χ is trivial on H}. Moreover,
the map H 7→ H ′ is a Galois correspondence between the lattice of closed subgroups
of G and that of Ĝ.

(5) ˆ is a categorical equivalence; in particular, Ĝ×H ≃ Ĝ× Ĥ .
(6) G is 2nd countable iff so is Ĝ.

Proof. (3) Assume G compact, and let O be a small neighborhoud of 1 ∈ S1. Then W (G,O)
is open, and equals {1l} because the only subgroup of S1 contained in O is the trivial one.
Conversely —and using (2)— assume G discrete. Since the only compact sets in a discrete
space are the finite ones, the compact-open topology of Ĝ equals the point-open topology,
namely the product topology of (S1)G. Thus Ĝ identifies both algebraically and topologically
with a subgroup of (S1)G. This subgroup is closed (because, for every g, h ∈ G, the function
πgh · (πh)−1 · (πg)−1 : (S1)G → S1 is continuous) and hence compact.
The two maps

Ĝ× Ĥ ∋ (χ, η) 7→ ((g, h) 7→ χ(g)η(h)) ∈ Ĝ×H,

Ĝ× Ĥ ∋ (ψ ◦ ι1, ψ ◦ ι2)← ψ ∈ Ĝ×H,
are continuous homomorphisms, each the inverse of the other. □

Example 6.2. • The only closed subgroups of S1 are S1 and the finite cyclic ones.
• Each finite cyclic group is selfdual; therefore so is every finite abelian group.
• (S1)d and Zd are dual of each other.
• Zp and the Prüfer group

Zp∞ = {α ∈ S1 : α has order a power of p}

are dual of each other. This can be seen as follows: as χ ∈ Ẑp is determined by χ(1),
the group Ẑp is surely a subgroup of S1 (with the discrete topology, not the induced
one). Any α of order pn surely determines the character 1 7→ α, i.e.,

Zp → Zpn → ⟨α⟩.
Conversely, let χ be any character and let O ⊂ S1 be a small neighborood of 1. By
continuity of χ, there exists n so large that χ[pnZp] ⊆ O; since χ[pnZp] is a subgroup
of S1, it must be trivial. Thus χ[Zp] is a subgroup of the group of pn-roots of 1 in S1,
and thus χ(1) has order a power of p.
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Theorem 6.3. Let G ∈ LCA be compact 2nd countable. Then Ĝ is an at most countable
discrete group, whose elements form an orthonormal basis for L2(G). Moreover, the map

L2(G)→ L2(Ĝ) = ℓ2

f 7→ (αχ)χ∈Ĝ

where αχ = ⟨χ, f⟩ is the χ-th Fourier coefficient of f , is an isometric isomorphism of Hilbert
spaces, with inverse (αχ) 7→

∑
χ αχχ.

Proof. We only prove orthonormality; clearly ∥χ∥2 = 1 for every χ. If χ ̸= ψ, then η =
χ−1ψ ̸= 1l and we claim

∫
η dµ = 0. Let η(h) ̸= 1; since µ is invariant under translation by h

we have ∫
η(x) dµ(x) =

∫
η(hx) dµ(x) = η(h)

∫
η(x) dµ(x),

and our claim follows. □

Theorem 6.4. Let R(x) = ax be a rotation in the compact group G. T.f.a.e.:
(1) R is ergodic;
(2) a is a topological generator for G (i.e., ⟨a⟩f = G);
(3) G is abelian and the only character χ which is trivial on a (i.e., χ(a) = 1) is 1l.

Example 6.5. • (a1, . . . , ad) ∈ Td is a topological generator iff 1, a1, . . . , ad are linearly
independent over Q.
• The topological generators of Zp are precisely the invertible elements of the local ring
Zp, namely those not in the maximum ideal pZp.

Lemma 6.6. Let G be compact abelian, (G,µ, φ) as in Lemma 2.9. Write φ̂ for φ∗ ↾ Ĝ. Then
φ̂ : Ĝ→ Ĝ is an injective homomorphism.

Theorem 6.7 (The Rokhlin-Halmos Theorem). The system (G,µ, φ) is ergodic iff all elements
of Ĝ, except 1l, have infinite φ̂-orbit.

Example 6.8. • No examples for G finite. Indeed, every surjective homomorphism is an
automorphism, and {0} is invariant.
• No examples for Zp.
• Epimorphisms of Td correspond to nonsingular matrices with integer entries. Such an

epimorphism is ergodic iff the corresponding matrix has no eigenvalues which are roots
of unity.

7. The von Neumann mean ergodic theorem

Let H be a Hilbert space, T : H → H an isometry, preserving the scalar product but not
necessarily invertible, and let An = n−1

∑n−1
k=0 T

k. The operator I − T is the coboundary
operator; its kernel is the closed subspace Inv = {f ∈ H : f = Tf}, and its image the —not
necessarily closed— subspace Cob of coboundaries. We have an orthogonal decomposition
H = Cob⊥⊕Cob⊥⊥ = Cob⊥⊕Cobf , with projectionsP : H → Cob⊥ andQ : H → Cobf .

Theorem 7.1. The following facts hold.
(1) Cob⊥ = Inv.
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(2) If g ∈ Cobf , then Ang → 0.
(3) For every f , Anf → Pf .

Proof. (1) We claim that Tf = f iff T ∗f = f . For the “only if” implication, T ∗T = I for
every isometry. Conversely, ∥f − Tf∥2 = ⟨f − Tf, f − Tf⟩ = 2∥f∥2 − ⟨f, Tf⟩ − ⟨Tf, f⟩ =
2∥f∥2 − ⟨T ∗f, f⟩ − ⟨f, Tf⟩ = 2∥f∥2 − ⟨T ∗f, f⟩ − ⟨T ∗f, f⟩ = 0.

Now we get f ∈ Cob⊥ iff, for every g, ⟨f, g − Tg⟩ = 0 iff, for every g, ⟨f, g⟩ = ⟨f, Tg⟩ iff,
for every g, ⟨f, g⟩ = ⟨T ∗f, g⟩ iff f = T ∗f iff f = Tf .
(2) If g is a true coboundary, say of f , then

Ang = n−1
n−1∑
k=0

T k(f − Tf) = n−1(f − Tnf),

whose norm is bounded, by the triangle inequality, by n−12∥f∥. Hence Ang → 0 in norm.
Let now ε > 0; we shall prove that for every n sufficiently large ∥Ang∥ < ε. Let h

be a true coboundary at distance ≤ ε/2 from g. Then ∥Ang∥ = ∥An(g − h) + Anh∥ ≤
∥An(g − h)∥+ ∥Anh∥. Now,

∥An(g − h)∥ = ∥n−1
n−1∑
k=0

T k(g − h)∥ ≤ n−1
n−1∑
k=0

∥T k(g − h)∥ = ∥g − h∥ ≤ ε/2.

(3) We have f = Pf +Qf , and thus Anf = AnPf + AnQf = Pf + AnQf , that converges
to Pf . □

Corollary 7.2 (von Neumann, 1930). Let (X,µ,R) be a metric system. Then, for every
f ∈ L2(µ), the average n−1

∑n−1
k=0 f ◦ Rk converges to an invariant function f+ = f+ ◦ R in

L2(µ).

If (X,µ,R) is ergodic, then Cobf = Inv⊥ = 1l⊥ = {f :
∫
f dµ = 0}. Livsic-type theorems

say that, under appropriate additional conditions, every f such that
∫
f dµ = 0 is a coboundary.

8. The Birkhoff pointwise ergodic theorem

Theorem 8.1 (The Maximal Inequality). Let Q : L1(µ,R) → L1(µ,R) be a positive linear
operator of norm ≤ 1. For f ∈ L1(µ,R) and n,N ≥ 1, let

Snf = f +Qf +Q2f + · · ·+Qn−1f,

FN = 0 ∨ f ∨ S2f ∨ · · · ∨ SNf.

We then have
(f > 0) = (F1 > 0) ⊆ (F2 > 0) ⊆ (F3 > 0) ⊆ · · · ,

and thus ∫
(F1>0)

f dµ ≥
∫
(F2>0)

f dµ ≥ · · · .

However, for every N , we have ∫
(FN>0)

f dµ ≥ 0,
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whence ∫
⋃

N (FN>0)
f dµ ≥ 0.

In our case, this means that f has nonnegative integral over the set of all x ∈ X such that f
has positive average at least once along the forward orbit of x.

Theorem 8.2 (The Wiener Maximal Ergodic Theorem, 1939). Let (X,µ,R) be a metric system,
g ∈ L1(µ,R), a ∈ R. Let

Ba = (a < sup
n≥1

Ang),

and let Y be R-invariant. Then

a · µ(Ba ∩ Y ) ≤
∫
Ba∩Y

g dµ.

As an example, take B ⊆ Y = X , g = 1lB , a = µ(B)ϵ > µ(B) for some 0 < ϵ < 1. Then

Ba = (µ(B)ϵ < supAn1lB)

is the set of points that, sometimes in the future, will have spent in B more time than due (in
particular, Ba ⊇ B). The theorem then says that

µ(B)ε · µ(Ba) ≤ µ(B),

i.e.,

µ(Ba) ≤ µ(B)1−ε.

As ε decreases, Ba shrinks and µ(B)1−ε gives an upper bound for the shrinking.

Theorem 8.3 (G. D. Birkhoff, 1930/31). Let (X,µ,R) be a metric system, f ∈ L1(µ), Anf =
n−1

∑
k<n f ◦Rk.

(1) For µ-every x, limn(Anf)(x) exists in C.
(2) Let f+ be the limit function. Then f+ ∈ L1(µ), f+ is R-invariant,

∫
f+ dµ =

∫
f dµ;

in particular, if the system is ergodic then f+ is constant.
(3) If the system is invertible and f− is defined as above using R−1, then f+ = f−.

9. Normal numbers

Theorem 9.1 (E. Borel, 1909, with an erroneous proof). Lebesgue-all numbers α ∈ [0, 1] are
normal to every base b ≥ 2 (i.e., the expansion of α in base b contains every block of digits with
the correct frequency).

Proof. It follows either from the strong law of large numbers, or from the pointwise ergodic
theorem (these tools have been rigorously established independently and more-or-less simulta-
neously). □
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10. The Gauss map

The ordinary continued fraction expansion provides a homeomorphism between the Baire
space N = NN and [0, 1] \Q. It conjugates the Gauss map G(x) = {1/x} with the one-sided
shift on N . Note that N can be characterized as the only complete metric space which is
separable, 0-dimensional, and not locally compact at any point (i.e., no nonempty open set has
compact closure).

In a letter to Legendre dated January 30, 1812 [AS17, Appendix], Gauss wrote “12 years ago
. . . I found by very simple reasoning that”

lim
n→∞

λ({α = [0, ∗1, . . . , ∗n, αn+1] : 1/αn+1 ≤ x}) = lim
n→∞

λ({α : Gnα ≤ x}) = log2(1+x),

and asks for an extimation of the error term for large n.
We look at G0, G1, G2, . . . : ([0, 1],B, λ) → ([0, 1],B) as a stochastic process. Then

λ(Gn ≤ x) = (Gn
∗λ)[0, x] =Mnx is the repartition function ofGn

∗λ. Gauss’s statement means
then that Gn

∗λ converges weakly to the probability γ whose repartition function is log2(1 + x).
This probability γ has a density, namely

dγ =
1

log 2

1

1 + x
dx,

and is named the Gauss measure. Gauss’s problem took more than a century to be solved.

Theorem 10.1 (Kuzmin 1928). There exists 0 < c < 1 such that, for every x ∈ [0, 1],∣∣λ(Gn ≤ x)− log2(1 + x)
∣∣ = O(c

√
n).

The following year 1929 Lèvy improved the convergence speed to O(0.7n); a footnote
to Lèvy’s paper provides a good glimpse of pre-email and pre-ArXiv mathematics. J’ai
appris depuis, par une lettre de M. G. Pòlya, . . . qu’au sixième Congres international des
Mathèmaticiens (Bologne, septembre 1928), M. Kuzmin a indiqué la démonstration de cette
formule. Cette démonstration n’ayant pas encore été publiée, je ne puis encore la comparer á
celle donnée dans le présent travail.

Kuzmin’s results immediately implies —but it is stronger than— the following lemma.

Lemma 10.2. G preserves γ.

Proof. □
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We thus have a stationary (hence i.d.) stochastic process a1, a2, . . . : ([0, 1],B, γ)→ N with
discrete-density function

m(a) = γ(Ia) = log2

(
1 +

1

a

)
− log2

(
1 +

1

a+ 1

)
= log2

(
1 +

1

a(a+ 2)

)
.

(Un)fortunately this is not an independent process. Indeed,

Ia1,...,an = {[0, a1, . . . , an, αn+1] : 1 < αn+1 < +∞}

=

{(
pn pn−1

qn qn−1

)
∗ αn−1 : 1 < αn+1 < +∞

}
=

[
pn
qn
,
pn + pn−1

qn + qn−1

]
.

Therefore,

γ(I1,1) = γ([1/2, 2/3]) = log2
1 + 2/3

1 + 1/2
̸= (γ(I1))

2.

For every n, we have γ(an ≥ a) = log2(1 + 1/a) and λ(an ≥ a) = 1/a; there exists a
constant C > 1 such that, for every a, these two numbers are within a C,C−1-multiple of each
other. Let ψ : N → N be a function, and consider the family of events (an ≥ ψ(n)). By
Borel-Cantelli we have:

(1) If
∑

log2(1 + 1/ψ(n)) <∞ then

γ{x : an(x) ≥ ψ(n) for infinitely many n} = 0

or, equivalently, if
∑

1/ψ(n) <∞ then λ{x : . . .} = 0.
If the an were γ-independent, we would analogously have

(2) If
∑

1/ψ(n) =∞ then λ{x : . . .} = 1.
The Borel-Bernstein theorem says that (2) holds anyway.

Theorem 10.3. ([0, 1], γ,G) is ergodic.

Theorem 10.4. For γ-every (i.e., λ-every) α = [0, a1, a2, . . .] the following facts are true.
(1) b1 . . . bn of digits appears with frequency∣∣∣∣log2 1 + pn/qn

1 + (pn + pn−1)/(qn + qn−1)

∣∣∣∣.
(2)

lim
n
(a1 · · · an)1/n =

∏
1≤a

(
1 +

1

a(a+ 2)

)log2 a

= Khinchin’s constant K0 = 2.685 · · ·

(analogous results hold for the harmonic mean and other means).
(3)

lim
n

a1 + · · ·+ an
n

=∞.

(4) (Khinchin-Levy, 1935-37)

lim
n

log qn
n

=
ζ(2)

2 log 2
= 1.18656 · · · .
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(5)

χ(α) = lim
n→∞

log
∣∣(Gn)′(α)

∣∣
n

= lim
n→∞

1

n

n−1∑
k=0

log
∣∣G′(Gkα)

∣∣
=
−2

log(2)

∫ 1

0

log(x)

1 + x
dx =

ζ(2)

log(2)
= 2.37313 · · · .

(6)

hγ(G) = lim
n→∞

− log(γ(Ia1,...,an))

n
= lim

n→∞

− log(λ(Ia1,...,an))

n

= lim
n→∞

− log|α− pn/qn|
n

=
ζ(2)

log(2)
.

11. The natural extension

The natural extension for the 1-sided shift, the tent map, and the Gauss map (the Nakada-Ito-
Tanaka construction, 1977).

Lemma 11.1. (1) A factor of an ergodic map is ergodic.
(2) The natural extension of an ergodic map is ergodic.

12. Mixing

Let (an) be a sequence and b a point in some topological vector space. The three following
conditions are in increasing order of strength.

(1) Cesàro convergence:
lim
n

1

n

∑
k<n

ak = b;

(2) nameless convergence (for normed spaces): ∥an − b∥ Cesàro converges to 0;
(3) ordinary convergence.

Definition of mixing and weak mixing.

Theorem 12.1. Let (X,µ,R) be a metric system. T.f.a.e.:
(1) the system is wmixing;
(2) (X2, µ2, R2) is ergodic;
(3) (X2, µ2, R2) is wmixing;
(4) for every ergodic (Y, ν, S), the system (X × Y, µ× ν,R× S) is ergodic;
(5) for every A,B, there exists J ⊂ ω of density 0 such that

lim
J ̸∋n→∞

|µ(A ∩R−nB)− µ(A)µ(B)| = 0.

If R is invertible, then all of the above is equivalent to
(6) U = R∗ has continuous spectrum on L2(µ) (i.e., no eigenvalues and eigenfunctions,

except for 1 and C1l).

An ergodic rotationRa in a compact abelian group is never wmixing. Indeed, every character
χ is an eigenfunction for U = R∗

a, with eigenvalue χ(a).
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Theorem 12.2. Every ergodic endomorphism of a compact abelian group is strong mixing.

13. Stochastic processes

Let (Xk) : (Ω, P ) → (C, C) be a stochastic process, indexed by either ω or Z. If for every
finite index set J and every {Cj}j∈J we have

P
(⋂
{X−1

j Cj : j ∈ J}
)
= P

(⋂
{X−1

j+1Cj : j ∈ J}
)
,

we say that the process is stationary. We have i.i.d. implies stationary implies i.d. Note that the
reverse implications does not hold: take X0 nontrivial simmetrically distributed, and consider
X0, X0,−X0,−X0, X0, X0,−X0,−X0, . . ..

For simplicity’s sake we take C = n, a finite alphabeth; let A = X−1
0 P(n).

Example 13.1. Let (X,X , µ,R) be a metric system, with µ a probability. Let φ0 : X → n be
a measurable map, with associated partition A0, . . . , An−1. Then φk = φ0 ◦Rk is a stationary
process.

The process Xk : ([0, 1], λ) → {0, . . . , 9} given by Xk(ω) = kth decimal digit of ω is of
this type.

Every stationary processes arises in this way. Indeed, any stochastic process amounts
to a random variable X : (Ω, P ) → (

∏
k C,

∏
k C), and the stationarity condition cor-

responds to the shift-invariance of X∗P . Applying the construction in the example to
(
∏

k C,X∗P, shift, projection to the 0th component) gives us the process we started with.
The best setting is when the “metric system with random variable” (X,X , µ,R, φ0) is

independent because, in that case, we have an i.i.d. process and lots of tools available: the
Kolmogorov 0-1 law, the weak and strong law of large numbers, the central limit theorem.
Independence means that, for every r, the σ-algebras A,R−1A,. . . ,R−rA are µ-independent.
More explicitely, for every r and every tuple (i0, . . . , ir) ∈ nr+1, we must have

µ(Ai0 ∩R−1Ai1 ∩ · · · ∩R−rAir) = µ(Ai0)µ(Ai1) · · ·µ(Air).

If, in addition, X =
∨

k R
−kA, then we say that A is an independent generator. The existence

of an independent generator is the maximum degree of stochasticity: it means that the system is
conjugate to a full Bernoulli shift.

14. Kryloff-Bogoliuboff and extreme points

Let (X,R) be a topological system, withX compact Hausdorff 2nd countable (hence metriz-
able).

Theorem 14.1. C(X)∗ is a topological vector space under the weak-∗ topology. Its subset
P(X) of positive norm-1 functionals is closed, compact and convex. R∗ is continuous and
affine, and hence P(X,R) = {µ ∈ P(X) : R∗µ = µ} is closed, compact and convex, too.

Theorem 14.2. Let E(X,R) be the set of extreme points of P(X,R). Then:
(1) if µ ∈ P(X,R) is ergodic and ν ≪ µ, then Rn

∗ν Cesàro weakly converges to µ;
(2) the points of E(X,R) are precisely the R-invariant ergodic measures;
(3) if µ, ν ∈ E(X,R) are distinct, then µ⊥ν.
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Actually, Theorem 14.2(1) is an iff, and a similar characterization holds for wmixing and
mixing [Wal82, Theorem 6.12].

Theorem 14.3. Let (νn)n<ω be any sequence in P(X). For every n, let

µn =
1

n

∑
k<n

Rk
∗νn.

Then every accumulation point for (µn) is in P(X,R).

Corollary 14.4 (Kryloff-Bogoliuboff). P(X,R) ̸= ∅ (and hence E(X,R) ̸= ∅).

Example 14.5. (1) The South-North map x 7→ 2x on P1R.
(2) x 7→ x2 on (0, 1).
(3) x 7→ x2 on (0, 1) and x 7→ 1/2 on {0, 1}.

15. Unique ergodicity

Theorem 15.1 (The Stone-Weierstrass Theorem). LetX be a compact 2nd countable metrizable
space. Let A be:

(1) either an R-subalgebra of C(X,R), containing 1l and separating points;
(2) or a sub-R-vector lattice of C(X,R), containing 1l and separating points;
(3) or a C-subalgebra of C(X,C), closed under complex conjugation, containing 1l and

separating points.
Then, in each case, A is uniformly dense in the ambient space.

Corollary 15.2. C(X) is separable (i.e., contains a countable ∥ ∥∞-dense subset).

Theorem 15.3. Let (X,R) be a topological system, withX compact Hausdorff with a countable
basis. The following conditions are equivalent, and define the unique ergodicity of the system.

(1) P(X,R) is a singleton;
(2) E(X,R) is a singleton;
(3) for every f ∈ C(X) there exists cf such that Anf converges pointwise to cf1l;
(4) as in (3), with the further requirement that the convergence be uniform;
(5) as in (3), with the restriction that the convergence holds for functions in some set whose

C-span is uniformly dense in C(X);
(6) there exists µ ∈ P(X) such that, for every x, (Rn

∗ δx) Cesàro converges to µ.
If the above conditions hold, then the probability µ in (6) is the unique element in P(X,R) =
E(X,R), and cf in (3) is

∫
f dµ.

Corollary 15.4. The orbit of any point under any ergodic rotation in a compact abelian group
is uniformly distributed w.r.t. the Haar measure.

Definition 15.5. Let (X,R) be a topological system, µ ∈ P(X,R), x ∈ X . If (Rn
∗ δx) Cesàro

converges to µ, then we say that x is µ-generic.

Theorem 15.6. If µ ∈ E(X,R), then the set of µ-generic points has full µ-measure.



GENERAL THEORY OF DYNAMICAL SYSTEMS 17

Let the invertible topological system (X,R) be uniquely ergodic, with P(X,R) = {µ}. Let
(G, ν) be a compact group, not necessarily abelian, and let c : X → G be a continuous function.
These data determine the skew product

S : X ×G→ X ×G
(x, g) 7→ (Rx, c(x)g).

Theorem 15.7. µ× ν ∈ P(X ×G,S). If µ× ν ∈ E(X ×G,S), then S is uniquely ergodic.

Theorem 15.8. Let α be irrational. Then

Sn : Tn → Tn
x1
x2
...
xn

 7→


α+ x1
x1 + x2

...
xn−1 + xn


is uniquely ergodic.

Theorem 15.9 (The Weyl Equidistribution Theorem). Let g(x) = anx
n+· · ·+a1x+a0 ∈ R[x],

with at least one of an, . . . , a1 irrational. Then
(
g(t)

)
t<ω

is uniformly distributed modulo 1.
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Figure 1. Gap distribution of n/
√
3 and of n2/

√
3

16. Uniform distribution

Theorem 16.1. Let (xn)n<ω be a sequence in [0, 1]. T.f.a.e., and define the fact that the sequence
is uniformly distributed (or equidistributed).

(1) (δxn) Cesàro converges to λ.
(2) For every f ∈ C([0, 1],R),

lim
N→∞

1

N

N−1∑
n=0

f(xn) =

∫ 1

0
f dx.
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(3) As in (2), with f varying in the set of Riemann-integrable functions (or in any set whose
R-span is uniformly dense in C([0, 1],R), such as the polynomials).

(4) For every 0 ≤ a ≤ 1,

lim
N→∞

♯{n < N : xn ≤ a}
N

= a.

(5) As in (2), with f varying in C(T,C).
(6) (The Weyl Criterion) For every 0 ̸= k ∈ Z,

N−1∑
n=0

exp(2πkixn) = o(N).
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Figure 2. Gap and spacing distributions of the Farey sequence

17. The Iwasawa decomposition

Theorem 17.1. Every M ∈ SL2R decomposes uniquely as M = KAN (as well as LAK,
KAL,NAK), withK ∈ SO2R,A =

( a
a−1

)
for some a ∈ R>0,N upper triangular with 1 on

the diagonal. Replacing SO2R with SU2C we obtain an analogous decomposition for SL2C.

18. The hyperbolic plane

Let H be a 2× 2 hermitian-symmetric matrix of determinant < 0; it has the form

H =

(
a β
β̄ d

)
.

Theorem 18.1. The hermitian-symmetric form(
z
1

)∗
H

(
z
1

)
= a|z|2 + 2 re(β̄z) + d

determines a circle CH and its “exterior” and “interior” disks DH in P1C, according to the
value 0,> 0,< 0 of the form. Every generalized circle in R2∪{∞} has that form. Two matrices
determine the same disk iff they differ multiplicatively by a real > 0. We have:
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(1) a = 0 iff C goes through∞ iff C is a straight line in C;
(2) d = 0 iff C goes through 0;
(3) P1R and its interiorH = {z : im(z) > 0} correspond to H =

( −i
i

)
;

(4) S1 and its interior D correspond to H =
(
1
−1

)
;

(5) the action of SL2C on P1C preserves orientation and angles, and is transitive on
disks (for this, the subgroup generated by K = SU2C and the diagonal subgroup
A =

{( a
a−1

)
: a ∈ R>0

}
suffices);

(6) B[DH ] = D(B−1)∗HB−1 ;
(7) the Cayley matrix

C =
1√
2

[
1 −i
−i 1

]
mapsH to D;

(8) the (setwise) stabilizer of D in PSL2C = PGL2C is (by definition) PSU1,1C, and

PSU1,1C =

{[
α β
β̄ ᾱ

]
: |α|2 − |β|2 = 1

}
;

(9) the stabilizer ofH is C−1(PSU1,1C)C = PSL2R.

We write points of the tangent bundle TH as pairs (α, τ), with α ∈ H and τ = x+ iy ∈ C∗.
The family of scalar products

⟨(α, τ), (α, τ ′)⟩α =
xx′ + yy′

(imα)2
=

re⟨τ, τ ′⟩
(imα)2

givesH the structure of a riemannian manifold, the hyperbolic plane. Its unit tangent bundle is
then T 1H = {(α, τ) ∈ TH : |τ | = imα}.

Lemma 18.2. (1) For every G =
[
a b
c d

]
∈ PSL2R and α ∈ H, we have

im(G ∗ α) = imα

|cα+ d|2
.

In particular, the left action of PSL2R preserves the riemannian structure, T 1H, and
the area and volume forms

dA =
dx ∧ dy

y2
, dV =

dx ∧ dy ∧ dθ

y2
.

(2) The action of PSL2R on T 1H is transitive with trivial stabilizers, thus inducing a
bijection G↔ G ∗ (i, i); under this bijection the above volume form corresponds to the
left Haar measure.

19. Geodesics

Lemma 19.1. Let t0 < t1. Then the parametric path γ : [t0, t1]→ H given by γ(t) = i exp(t)
has constant speed 1 and length t1 − t0. Any other path connecting α = i exp(t0) with
β = i exp(t1)

• either has strictly greater length;
• or has the same length, and is a reparametrization of γ.
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The distance d(α, β) between points of H is, by definition, the infimum of all lengths of all
paths connecting α with β.

We use

(α1, α2;α3, α4) =
(α1 − α3)(α2 − α4)

(α1 − α4)(α2 − α3)

as our cross-ratio definition; note that (0,∞; z, 1) = z.

Lemma 19.2. Assume the αi are all distinct. Then their cross-ratio is in R∗ iff they lie on the
same generalized circle.

Theorem 19.3. Let (α, β) be an ordered pair of points inH, at distance d > 0.
(1) Then there exists a uniqueG ∈ PSL2R that maps i to α and i exp(d) to β; in particular,

PSL2R acts simply transitively on the set of ordered pairs of points at a fixed distance.
(2) There exists a unique geodesics through α and β, namely the generalized half-circle C

through them that is perpendicular to P1R. The unique unit-speed geodesic path from
α to β is [0, d] ∋ t 7→ G ∗ i exp(t).

(3) Let ξ−, ξ+ be the points in which C intersects P1R, with the agreement that traveling
from ξ− to ξ+ along C we meet α first. Then d = log(ξ−, ξ+;β, α).

All of this determines a right action of R on T 1H: given (α, τ) = G ∗ (i, i), we set

(α, τ)t = G ∗ (i exp(t), i exp(t)) = GAt ∗ (i, i),

where At =
[ exp(t/2)

exp(−t/2)

]
. This is the geodesic flow on T 1H. Under the identification

PSL2R ∋ G 7→ G ∗ (i, i), it corresponds to the action of the diagonal subgroup A on PSL2R
by right translations.

20. Lie groups

Definition 20.1. A Lie group is a group G which is also a C∞ differential variety of dimension
d, such that both the product and the inverse are C∞ maps. A homomorphism of Lie groups is
a C∞ group homomorphism Φ : H → G. If Φ is injective and an embedding of varieties (i.e.,
the tangent map is injective), then it is an embedding of Lie groups. If, moreover, Φ[H] is closed
in G, then we say that Φ is a closed embedding.

Theorem 20.2 (Cartan). If F is a closed subgroup of G, then there exists a unique Lie group
structure on F that makes the identity map an embedding (automatically closed) of Lie groups.

Definition 20.3. A closed linear group is a closed subgroup of some GLnR, with the Lie group
structure given by Cartan’s theorem.

Example 20.4. PSL2R acts by conjugation on the space of trace 0 matrices in Mat2R. Using
this, one shows thatPSL2R is isomorphic to the connected component of the identity in SO2,1R,
and hence is a closed linear group.

If q is any quadratic form on Rn, with associated symmetric matrix Q, then OQR = {G ∈
GLnR : G⊤QG = Q}. If Q is nonsingular then, up to conjugation, we only have OnR,
On−1,1R, . . ., O0,nR; the first and last are compact, the others are not.
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21. The exponential map

The exponential map exp : Rn×n → Rn×n is defined by the absolutely convergent series

exp(U) =
∑
k≥0

1

k!
Uk.

Theorem 21.1. (1) exp distributes under conjugation by elements of GLnR.
(2) det(expU) = exp(trU); in particular, exp has range in GLnR.
(3) if U and V commute, then exp(U + V ) = exp(U) exp(V ).
(4) for every U , t 7→ exp(Ut) is a Lie group homomorphism from R to GLnR.
(5)

d

dt

∣∣∣∣
t=t0

(
G exp(Ut)H

)
= GU exp(Ut0)H = G exp(Ut0)UH.

(6) there are neighborhoods O1 of 0 and O2 of I over which exp is a diffeomorphism, with
inverse

log(G) = (G− I)− 1

2
(G− I)2 + 1

3
(G− I)3 − · · ·

and jacobian matrix at 0 the identity.

Theorem 21.2. Let G ≤ GLnR be a d-dimensional closed linear group. Then there exists an
open (in the topology of G) neightborhood O2 of I such that log[O2] = O1 is a neightborhood
of 0 inside some d-dimensional subspace U = RO1 of Rn×n. Moreover:

(1) exp[U] ⊆ G, and U can be characterized as the maximum subspace of Rn×n having
that property;

(2) the map U 7→ u =
[
exp(Ut)

]′
(0) identifies U with g = TIG;

(3) more generally, for every G ∈ G the map GU 7→
[
G exp(Ut)

]′
(0) identifies G[U] with

TGG;
(4) thus G× U, TG, and

⋃̇{
G[U] : G ∈ G

}
are naturally identified.

Example 21.3. Let G = Oq R. Then U = TIG = {U ∈ Rn×n : I+ εU ∈ G+ o(ε)}. We have
(I+εU)⊤Q(I+εU) = ε(U⊤Q+QU)+ε2U⊤QU , and therefore U = {U : U⊤Q+QU = 0}.
The condition amounts to QU being antisymmetric, and the space on antisymmetric n × n
matrices has dimension (n− 1)n/2; thus, ifQ is nonsingular, OQR has dimension (n− 1)n/2.

22. The Lie algebra

Definition 22.1. A Lie algebra is a vector space a over a field (usually R or C), endowed with a
bilinear map [–, –] : a× a→ a satisfying [u, u] = 0 and the Jacobi indentity

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0.

Any associative R-algebra (for example Rn×n) can be given a Lie algebra structure via
[U, V ] = UV − V U .

Under the above identification of G × U with TG, the group G acts to the left on G × U in
two different ways, via LH and RH−1 :

LH : (G,U) 7→ (HG,U), (22.1)

RH−1 : (G,U) 7→ (GH−1, HUH−1). (22.2)
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In particular:
(1) H –H−1 gives a left action of G on U, i.e., a Lie group homomorphism

Ad : G→ GL(U) = GLdR,
which is called the adjoint representation of G;

(2) equivalently, each H ∈ G acts on G by left conjugation H –H−1, and AdH is the
tangent map at the identity;

(3) the tangent map to Ad, namely
ad : g→ End(U) = Rd×d,

induces a parenthesis on g and U:
[u, v] = w iff (adu)(V ) =W iff [U, V ] =W.

Lemma 22.2. We have [U, V ] = UV − V U , and therefore g ≃ U is a Lie subalgebra of Rn×n.

One can endow a closed linear groupGwith various metrics, all of them inducing the euclidean
topology (for example using any matrix norm), but usually these will not be translation-invariant.
We construct a left-invariant riemannian structure on [the connected component of the identity
of] G by choosing arbitrarily a scalar product ⟨–, –⟩ on U and exporting it to the various tangent
spaces TGG via ⟨(G,U), (G,V )⟩G = ⟨U, V ⟩. By formula (22.1) this determines a left-invariant
riemannian structure on G, and the standard procedure provides a left-invariant metric.

Lemma 22.3. For every elements G of the closed linear group G there exists a neightborhood
of G over which the above metric is Lipschitz-equivalent to the metric induced by any given
vector norm.

Proof. See [EW11, §9.12]. □

Theorem 22.4. Fix G ∈ G = PSL2R. Then the stable manifold of G under the geodesic flow
is

Ws(G) = {H : lim
t→∞

d(HAt, GAt) = 0} = GN,

namely the orbit of G under the stable horocyclic flow
G× R→ G,

(G, x) 7→ G
[
1 x
1

]
.

23. Fuchsian groups

Definition 23.1. Let G be a topological group which acts continuously on a topological space
X . If for every x and every compact subset K of X the set {g : gx ∈ K} is finite, then we say
that the action is properly discontinuous.

Lemma 23.2. Every discrete subgroup of a Hausdorff group is closed.

Theorem 23.3. Let Γ be a subgroup of PSL2R; the following conditions are equivalent and
define a fuchsian group.

(1) the action of Γ onH is properly discontinuous;
(2) every Γ-orbit is discrete, and the stabilizer of every point is finite;
(3) Γ is discrete.
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Definition 23.4. Let Γ be a group that acts faithfully and in a measure-preserving way on
the measure space (X,µ). A fundamental domain for the action is a measurable D such that
X =

⋃
γ γ[D] and µ(D ∩ γ[D]) = 0 for every γ ̸= 1. If D ∩ γ[D] = ∅ for every γ ̸= 1, then

D is a fundamental domain in the strict sense.

Theorem 23.5. For fuchsian groups Γ acting on (H, µ) (µ being the measure induced by the
riemannian area form), one can always construct fundamental domains D which satisfy:

• D is a convex regular closed set (i.e., D = Dof);
• Do ∩G[Do] = ∅ for every G ̸= I;
• µ(∂D) = 0.

Proof. One such construction is due to Dirichlet: fix first z0 with trivial stabilizer in Γ. Then
set

D = {z : for every G ∈ Γ \ {I} we have d(z, z0) ≤ d(z,G ∗ z0)};

it is closed convex because it is an intersection of closed halfplanes. □

We let matrices in PSL±
2 R with determinant −1 act onH via(

a b
c d

)
∗ z = az̄ + b

cz̄ + d
.

Lemma 23.6. The above is an isometric, orientation-reversing action. There is a bijection
between matrices in PSL±

2 R of determinant −1 and trace 0 and reflections in H of mirror a
geodesic.

Example 23.7. Triangle groups.

Figure 3. The (2, 3, 7) and (2, 3,∞) extended triangle groups. By Tamfang -
Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=12806647
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24. Dynamics on Γ\H

Theorem 24.1. LetG be a locally compact Hausdorff group with left Haar measure λ. Let Γ be
a countable discrete subgroup, with π : G → Γ\G = X the canonical projection. Let M , M ′

be measurable transversals (i.e., fundamental domains in the strict sense for the left-translation
action of Γ on G).

(1) λ(M) = λ(M ′).
(2) If λ(M) is finite then Γ has finite comeasure or is a lattice in G; this is surely the case

if M can be taken compact, in which case we say that Γ is cocompact, or is a uniform
lattice. If Γ is a lattice then:
(a) G is unimodular;
(b) the finite measure µ induced on X by µ(A) = λ(π−1A ∩M) does not depend on

the choice of M , and is right G-invariant.

Since the projectionT 1H → H has compact fibers, a fuchsian group is a lattice iff its action on
H has a fundamental domain of finite area. As fuchsian lattices abound, PSL2R is unimodular.

Theorem 24.2 (The Margulis Lemma). Let G be a closed linear group, B ∋ Bt a 1-parameter
subgroup, and Γ < G a lattice. Let d be a left-invariant metric on G, and µ the probability on
Γ\G constructed above. Let f ∈ L2(µ) be B-invariant, and let G satisfy the following:

• for every ε > 0 there exists C ∈ G andB,B′ ∈ B such that d(C,G), d(BCB′, I) < ε.
Then f is G-invariant.

Theorem 24.3. Let Γ be a fuchsian lattice, and let X = Γ\PSL2R and µ be as above. Then
the geodesic flow –At on (X,µ) is ergodic.
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