Cognome Anno imm.

Nome Matricola

Primo compito di Probabilità I, a.a. 2017-18 22 gennaio 2018

Dovete consegnare **solamente** la bella copia, per la quale dovete usare il foglio di testo; lo spazio è sufficiente. Scrivete poco, chiaramente, e in buon italiano; non potete usare calcolatrici, appunti o libri. Scrivete subito il vostro nome, cognome e numero di matricola, e tenete il libretto universitario sul banco. La durata della prova è di 2 ore.

Esercizio 1. Enunciare e dimostrare la legge 0-1 di Kolmogorov.

Esercizio 2. Sia $X=(X_1,X_2):\Omega\to\mathbb{R}^2$ avente la densità m_X . Calcolare la densità di $Y=(2X_1+X_2,X_1-X_2)$.

Esercizio 3. Dimostrare che se φ è una funzione caratteristica, allora lo è pure $|\varphi|^2$.

Esercizio 4. Siano $X_1, X_2, \ldots : \Omega \to \{1, \ldots, 24\}$ i.i.d., con funzione di densità-discreta m mai 0. Siano Y_1, Y_2, \ldots nuove variabili, definite da

$$Y_n(\omega) = P(\{\omega' : \forall i \le n \, X_i(\omega') = X_i(\omega)\}).$$

Dimostrare che $-\log(Y_n)/n$ converge a.e. ad una costante, e calcolare tale costante.

Svolgimento 1.

Svolgimento 2. Siano $\mu_X = X_*P$, $\mu_Y = Y_*P$, e sia $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare invertibile definita da $\varphi(x_1, x_2) = (2x_1 + x_2, x_1 - x_2)$. Allora ho $Y = \varphi \circ X$, e dunque $\mu_Y = \varphi_*\mu_X$.

Per ogni rettangolo A in \mathbb{R}^2 , la formula di trasformazione per integrali doppi, applicata alla biiezione $\varphi^{-1}: A \to \varphi^{-1}[A]$, dà

$$\int_A (m_X \circ \varphi^{-1}) |j_{\varphi^{-1}}| \, \mathrm{d}x \, \mathrm{d}y = \int_{\varphi^{-1}[A]} m_X \, \mathrm{d}x \, \mathrm{d}y,$$

dove $|j_{\varphi^{-1}}|$ è il valore assoluto del determinante della matrice jacobiana di φ^{-1} .

Il lato destro di tale equazione vale $\mu_X(\varphi^{-1}[A]) = \mu_Y(A)$, mentra il lato sinistro è pari all'integrale su \mathbb{R}^2 della funzione caratteristica \mathbb{I}_A di A moltiplicata per una funzione positiva. Poiché A è un rettangolo arbitrario ne segue che μ_Y ha densità, che è pari a tale funzione positiva $m_Y = (m_X \circ \varphi^{-1})|j_{\varphi^{-1}}|$.

Svolgimento 3. Diciamo che $\varphi=\varphi_X$, per una qualche variabile aleatoria $X:(\Omega,P)\to\mathbb{R}$. Siano $Y,Z:(\Omega^2,P^2)\to\mathbb{R}$ definite da $Y(\omega_1,\omega_2)=X(\omega_1)$ e $Z(\omega_1,\omega_2)=-X(\omega_2)$. Allora la variabile Y ha la legge di X, la variabile Z ha la legge di -X, e Y,Z sono P^2 -indipendenti. Ne segue che $\varphi_{Y+Z}=\varphi_Y\varphi_Z=\varphi_X\varphi_{-X}=\varphi_X\overline{\varphi_X}=|\varphi|^2$.

Svolgimento 4. Abbiamo

$$Y_n\omega = P\left(\bigcap_{i=1}^n (X_i = X_i\omega)\right)$$
$$= \prod_{i=1}^n P(X_i = X_i\omega)$$
$$= \prod_{i=1}^n m(X_i\omega).$$

Ne segue che

$$\frac{-\log(Y_n\omega)}{n} = \frac{1}{n} \sum_{i=1}^n (-\log \circ m \circ X_i)(\omega).$$

Durante il corso abbiamo dimostrato che se X_1, X_2, \ldots è un qualsiasi processo stocastico indipendente (rispettivamente, identicamente distribuito), e g è una qualsiasi funzione misurabile, allora $g \circ X_1, g \circ X_2, \ldots$ è pure un processo stocastico indipendente (rispettivamente, identicamente distribuito).

In questo caso, prendendo $g=-\log\circ m$, otteniamo che $-\log\circ m\circ X_1, -\log\circ m\circ X_2,\ldots$ è un processo i.i.d.. La legge forte dei grandi numeri implica allora che $-\log Y_n/n$ converge P-quasi ovunque alla costante

$$E(-\log \circ m \circ X_1) = \sum_{k=1}^{24} m(k) \cdot (-\log(m(k))).$$