
PROBABILITY THEORY

GIOVANNI PANTI

This is a personal geodesic along probability theory. It is not a textbook, nor
an attempt at it. It does not constitute a syllabus for my course. Definitions,
lemmas, and examples are often merged in the text, and it is up to the reader to
discern which is which. Corrections, suggestions, observations, . . ., are most
welcome. Version of December 19, 2024.

1. Basics

Definition 1.1. Let ∅ ∈ C ⊆ P(Ω), for some nonempty set Ω. Then C is:
(1) a semialgebra S if it is closed under finite intersections (including the empty one, so

Ω ∈ S) and, for every A ∈ S, Ac is a finite disjoint union of elements of S;
(2) an algebra A if it is closed under all boolean operations;
(3) a σ-algebra F if it is closed under all boolean operations and countable unions.

Example 1.2. P(Ω). Finite/cofinite subsets of an infinite set. Countable/cocountable subsets
of R. ∅, R, plus all intervals (−∞, b], (a,+∞), (a, b], for a, b in R or in Q.

If A,B belong to the semialgebra S, then A \B is a finite disjoint union of elements of S.
Note that an algebra is an algebra (A,△,∩, ∅,Ω) in the algebraic sense of the word, over the

field F2 = {0, 1} = {∅,Ω}.
The pullback of any semialgebra/algebra/σ-algebra by any function is a

semialgebra/algebra/σ-algebra. In particular, this holds for Ω′ ⊆ Ω.

Lemma 1.3. Given any nonempty C ⊆ P(Ω), the set of all finite intersections of elements of
C and complements of elements of C is a semialgebra (in general larger than C, even though C
might already be a semialgebra).

Proof. Indeed, it contains ∅ and Ω, and is closed under finite intersections. Also, for n ≥ 2,
(A1∩· · ·∩An)

c is the disjoint union of the 2n−1 setsAf(1)
1 ∩· · ·∩Af(n)

n , for f : {1, . . . , n} →
{nothing, c} not identically nothing. □

Lemma 1.4. Let (Ωi,Si)i∈I be a family of semialgebras. Then the set of all finite intersections of
π−1
i Si, for i ∈ I and Si ∈ Si, is a semialgebra in

∏
i∈I Ωi, called the semialgebra of cylinders.

Proof. Look at
(
π−1
1 [S1] ∩ · · · ∩ π−1

t [St]
)c. By the proof of Lemma 1.3, it is a finite disjoint

union of intersections of stuff of the form π−1
i [Si] or

(
π−1
j [Sj ]

)c. We now observe that · · · ∩(
π−1
j [Sj ]

)c ∩ · · · = · · · ∩ π−1
j [∪̇mSj,m] ∩ · · · = ∪̇m · · · ∩ π−1

j [Sj,m] ∩ · · · . □

Example 1.5. The following are semialgebras.
(1) Cylinders in Rd: finite intersections of π−1

i of ∅, R, (−∞, b], (a,+∞), (a, b] in R.
(2) Cylinders in mZ≥0 : finite intersections of π−1

i of subsets of m.
1
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(3) Blocks in mZ≥0 : the emptyset, plus all [a0, . . . , at−1]’s, for a0, . . . , at−1 ∈ m.

Definition 1.6. The intersection of any nonempty family of algebras/σ-algebras is an algebra/σ-
algebra; hence we may speak about the algebra/σ-algebra A(C)/F(C) generated by any C. The
Borel σ-algebra B.

Example 1.7. The intersection of the semialgebras {∅, {a, b, c}, {a}, {b}, {c}} and
{∅, {a, b, c}, {a}, {b, c}} is not a semialgebra.

Definition 1.8. of measurable map F : (Ω,F) → (Ω′,F ′).

Lemma 1.9. Let F : (Ω,F) → (Ω′,F ′) be a map, and let C′ be a subset of F ′ that generates
F ′ as a σ-algebra. Assume that the F -counterimage of every element of C′ is in F . Then F is
measurable. In particular, a continuous map between topological spaces is a measurable map
w.r.t. the relative Borel σ-algebras.

Proof. Just note that {A ⊆ Ω′ : F−1A ∈ F} is a σ-algebra. □

Theorem 1.10. The Borel σ-algebra of R is generated both by the family of all open intervals
with rational endpoints, and by the family of all intervals (−∞, a], with rational a’s. Hence, we
can check measurability of functions just by checking the counterimages of (−∞, a]’s.

Proof. Key point: C ⊆ F(D) implies F(C) ⊆ F(D). We have {open sets} ⊆
F({open intervals}), and hence the first statement. For the second one, we need {(−∞, a]} ⊆
F({open intervals}) and {open intervals} ⊆ F({(−∞, a]}), which is easy. □

Example 1.11. Both cylinders and blocks generate the Borel σ-algebra of mZ≥0 .

Lemma 1.12. The algebra A(S) generated by the semialgebra S is the set Q of all finite disjoint
unions of elements of S.

Proof. One direction is clear. For the other, it is enough to check that Q is an algebra. Closure
by finite intersections is clear. For complements, we have

(S1 ∪̇ · · · ∪̇ St)c = Sc
1 ∩ · · · ∩ Sc

t = (T1,1 ∪̇ · · · ∪̇ T1,r1) ∩ · · · ∩ (T1,t ∪̇ · · · ∪̇ Tt,rt),
which is in Q, since it is a finite intersection of elements of Q. □

Example 1.13. The algebra A generated by blocks in mZ≥0 equals the algebra generated by
cylinders. We have A ∈ A iff A is clopen in mZ≥0 iff A is expressible as a finite boolean
combination of sets of the form (ωi = a). For m = 2, A is the free boolean algebra on
countably many generators.

Definition 1.14. Let C be either a semialgebra, or an algebra, or a σ-algebra on Ω. A [positive]
measure on (Ω, C) is a map µ : C → [0,+∞] satisfying µ(∅) = 0 and conditional σ-additivity.
If µ(Ω) = 0 then µ is trivial; if not otherwise specified, “measure” will always mean “nontrivial
measure”. Relaxing σ-additivity to finite additivity we get the definition of a finitely additive
measure. A measure is finite if µ(Ω) < +∞, and is a probability if µ(Ω) = 1; in this case we
use P for µ. A measure is σ-finite if Ω can be written as a countable union of µ-finite sets.

Example 1.15. The counting measure (Ω,P(Ω), ♯) on a finite, countable, and uncountable set.
Dirac measures. Measures are closed under finite or countable nonnegative combinations, and
probabilities under finite or countable affine combinations.
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Non-principal ultrafilters provide examples of {0, 1}-valued finitely additive probabilities.
Also, setting µ on a countable set to be 0/∞ on finite/infinite subsets we obtain a finitely
additive measure which is not a measure.

Let µ be finitely additive on an algebra. Then A ⊆ B implies µ(A) ≤ µ(B); if µ(B) < ∞,
then µ(B \ A) = µ(B) − µ(A). Moreover, µ(A ∪ B) ≤ µ(A) + µ(B) and µ(A△B) = 0
implies µ(A) = µ(B) = µ(A ∩B).

For every at most countable family {ai}i∈I in [0,+∞], the sum
∑

i ai is well defined and
does not depend on the order.

If Ω is at most countable, we always endow it with the σ-algebra P(Ω); it is then easy to
describe all measures and all probabilities on Ω.

Definition 1.16. Let µ be a f.a. measure on a semialgebra. If for every event and countable
family of events A, {Ai}i<ω we have

A =
⋃
i<ω

Ai implies µ(A) ≤
∑
i<ω

µ(Ai),

then we say that µ is σ-subadditive.

Theorem 1.17. Let µ be a f.a. measure on the algebra A. T.f.a.e.:
(1) µ is a measure;
(2) for every A,A0, A1, . . . ∈ A, if An converges monotonically increasing to A, then

µ(An) converges to µ(A);
(3) µ is σ-subadditive.

If the above conditions hold then:
(4) for every A,A0, A1, . . . ∈ A, if at least one of the An is µ-finite and An converges

monotonically decreasing to A, then µ(An) converges to µ(A).

Proof. (1) implies (2): consider Bi = Ai \Ai−1. (2) implies (3): consider Bi = A0 ∪ · · · ∪Ai

and assume
∑

i<ω µ(Ai) = α < µ(A). Then all partial sums are ≤ α and therefore µ(Bi)

cannot converge to µ(A). (3) implies (1): let A =
⋃̇
Ai. We need µ(A) ≥

∑
µ(Ai), which is

true since µ(A) is ≥ than the measure of any finite union of the Ai’s.
(2) implies (4) by passing to the complements. □

Given a sequence of events (An)n<ω, the functions limsupn 1lAn and liminfn 1lAn (defined
componentwise) exist and are {0, 1}-valued; hence they define sets

B = limsup
n

An =
⋂
n

⋃
k≥n

Ak,

C = liminf
n

An =
⋃
n

⋂
k≥n

Ak.

The function limn 1lAn may or may not exist; if it exists it is {0, 1}-valued and hence defines a
set D = limnAn.

Lemma 1.18. B and C are events with B ⊇ C. B = C iff D exists. If D exists, then it is an
event. In that case, for every measure µ such that µ(

⋃
k≥nAk) is finite for some n, we have

µ(D) = limn µ(An).
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Proof. For the last claim we have, for every n,⋂
k≥n

Ak ⊆ D ⊆
⋃
k≥n

Ak,

as well as ⋂
k≥n

Ak ⊆ An ⊆
⋃
k≥n

Ak.

□

2. Independence and conditional probability

Definition 2.1. A µ-measurable partition of (X,X , µ) is a finite or countable family {Ei}i∈I
of elements of X such that:

(1) Ei ∩ Ej = ∅ for i ̸= j;
(2) µ(X \

⋃
Ei) = 0.

We identify two µ-measurable partitions {Ei} and {E′
i} on the same set of indices if

µ(Ei△E′
i) = 0 for every i.

For the rest of this section we deal with probability spaces (Ω,F , P ) only.

Definition 2.2. A family {Ai}i∈I of events is P -independent if for every finite J ⊆ I we have

P
(⋂
j∈J

Aj

)
=

∏
j∈J

P (Aj).

A family of pairwise P -independent elements is not necessarily P -independent. If A,B are
P -independent, so are A,Bc.

Definition 2.3. LetP (E) > 0; we then have the probability space (Ω,F , P (– |E)), andP (– |E)
is the conditional probability given E.

The events A such that P and P (– |E) agree on A are precisely those events which are
P -independent with E.

Lemma 2.4. Fix A1, . . . , An and assume P (A1 ∩ · · · ∩An−1) > 0. Then

P (A1 ∩ · · · ∩An) = P (A1 ∩ · · · ∩An−1) · P (An|A1 ∩ · · · ∩An−1)

= P (A1) · P (A2|A1) · P (A3|A1 ∩A2) · · ·P (An|A1 ∩ · · ·An−1).

We agree once for all that ∞ · 0 = 0. In particular, if P (E) = 0, then we have that P (A|E)
is undefined, but the product P (A|E)P (E) is defined and equals 0.

Theorem 2.5 (The Bayes Theorem). Let {Ei}i∈I be a measurable partition.
(1)

P =
∑
i

P (Ei)P (– |Ei).

(2) If P (A) > 0 then, for every i, we have

P (Ei|A) = P (A|Ei)
P (Ei)

P (A)
.
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3. Random variables

Lemma 3.1. Let F : (Ω,F) → (Ω′,F ′) be a measurable map, and let µ be a measure on
(Ω,F). Then F∗µ is a measure on (Ω′,F ′).

Definition 3.2. A random variable is a measurable map X : (Ω,F , P ) → (R,B), where R is
any of the topological spaces R,Rd,C. The probability X∗P on R is said to be the distribution,
or the law, of X . The variable X is discrete if X[Ω] is discrete (and hence at most countable,
since R has a countable basis) in R. It is continuous if P (X = x) = (X∗P )({x}) = 0 for
every x ∈ R.

Definition 3.3. Let µ be a measure on (R,B), for R one of R,Rd,C. The support of µ is the
complement of the set of all x such that x belongs to an open set of µ-measure 0. Of course
supp(µ) is closed, and is a subset of the closure of X[Ω].

Definition 3.4. Given any Borel probability µ on R, its cumulative distribution function, or
repartition function, is the functionM : R → [0, 1] defined byM(x) = µ

(
(−∞, x]

)
. Note that

µ((−∞, x)) = limx′↗xM(x′) =M(x− 0) and µ({x}) =M(x)−M(x− 0).
If µ is discrete, then it has strictly positive value only in the points of the finite or countable

set A = supp(µ). Its discrete-density distribution function is then the function m : R → R≥0

defined by

m(x) =

{
µ
(
{x}

)
, if x ∈ A;

0, otherwise.

Example 3.5. The following are examples of discrete distributions on R; plots done with
SageMath, http://www.sagemath.org/.

(1) The Binomial, or Bernoulli distribution, Bin(n, p), for n ∈ Z>0 and p ∈ (0, 1):

m(k) =

(
n

k

)
pk(1− p)n−k.

(2) The Hypergeometric distribution, Hyp(N,K, n), for 1 ≤ K,n ≤ N , see Figure 1:

m(k) =

(
K
k

)(
N−K
n−k

)(
N
n

) .

(3) The Poisson distribution, Poisson(µ), for µ ∈ R>0, see Figure 2:

m(k) = exp(−µ)µ
k

k!
.

(4) The Geometric distribution, Geom(p), for p ∈ (0, 1):

m(k) = p(1− p)k.

(5) The Zeta distribution, Zeta(α), for α ∈ R>1:

m(k) = ζ(α)−1 1

kα
.
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4. Construction of measures

Theorem 4.1 (The Monotone Class Theorem). Let C ⊆ P(Ω) be closed under finite inter-
sections (in particular, Ω ∈ C). Let M be the smallest overclass of C which is closed under
countable increasing unions and increasing differences. Then M = F(C).

Proof. [JP03, Theorem 6.2 p. 36] □

Lemma 4.2. Let A be the algebra generated by the semialgebra S, and let µ be a f.a. measure
on S. Then µ can be extended uniquely to a f.a. measure on A. If µ is σ-subadditive on S, then
the extension remains σ-subadditive, and hence is a measure on A.

Theorem 4.3 (The Carathéodory-Hahn-Kolmogorov Extension Theorem). Let F be the σ-
algebra generated by the algebra A. Then every σ-finite measure on A can be uniquely
extended to F , and the extension is again σ-finite.
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Proof. If an extension exists, then it is clearly σ-finite. Uniqueness is easy: let µ, ν be measures
on F that agree on A. For every A ∈ A such that µ(A) = ν(A) is finite, let MA = {B ∈
F : µ(B ∩ A) = ν(B ∩ A)}. Then MA is a monotone overclass of A, and hence equals F .
Using σ-finiteness we can write Ω =

⋃̇
i<ω Ai with Ai ∈ A of finite (µ = ν)-measure. Then,

for every B ∈ F , µ(B) =
∑

i µ(B ∩ Ai) =
∑

i ν(B ∩ Ai) = ν(B). Existence is difficult:
see [Bil95, Theorems 11.2 and 11.3]. □

Lemma 4.4. Let µ, ν be measures on (X,X ), and let S be a semialgebra that generates X .
Assume that µ = ν on S and that X is the union of at most countably many elements of S of
finite µ(= ν)-measure. Then µ = ν.

Corollary 4.5. There exists a unique σ-finite measure on (R,B) that assigns to each interval its
lenght. This measure is translation-invariant; it is named the Lebesgue measure, and denoted
by λ.

Proof. Let S be the semialgebra of Example 1.2. Define λ to have value a− b on (b, a], value
0 on ∅, and +∞ on all unbounded intervals. Then λ is a f.a., σ-subadditive measure on S
(additivity is clear, while σ-subadditivity requires a compactness argument). Hence it extends
uniquely to a measure on the generated σ-algebra, namely B. For translation-invariance, fix r
and let µ = (Tr)∗λ. Then µ = λ on S. □

Corollary 4.6. Given any probability vector (p0, . . . , pn−1), there exists a unique probability
on (nω,B) that assigns to each block [a0, . . . , at−1] the number pa0 · · · pat−1 .

5. Probability measures on R

A function M : R → R is right continuous in c if for every ε > 0 there exists δ > 0 such
that for every x ∈ [c, c + δ) we have |Mx −Mc| < ε. If M is nondecreasing, then M is
right continuous in c iff for every sequence x0 ≥ x1 ≥ · · · converging to c the sequence Mxn
converges to Mc iff there exists a sequence x0 ≥ x1 ≥ · · · converging to c such that Mxn
converges to Mc,

Probability measures on R are completely described by the following theorem.

Theorem 5.1. A function M : R → [0, 1] is the repartition function of a probability µ on R iff
M is nondecreasing, right continuous, tending to 0 for x→ −∞ and to 1 for x→ +∞. If this
happens, then µ and M determine each other.

Remark 5.2. We have {b} =
⋂

a↗b(a, b], and therefore µ({b}) = lima↗b(Mb − Ma) =

Mb − M(b − 0), with M(b − 0) = sup{Mx : x < b}. Thus the random variable X is
continuous according to Definition 3.2 iff the repartition function of X∗P is continuous.

Example 5.3. The following are examples of continuous probability distributions on R which
are induced by a Riemann-integrable density function.

(1) The Uniform distribution with parameters α < β, given by m = (β − α)−11l[α,β].
(2) The Exponential distribution with parameter β > 0, given by m(x) = β exp(−βx) for

x > 0, and m(x) = 0 otherwise.
(3) More generally, the Gamma distribution with parameters α, β > 0, given by

m(x) =
βα

Γ(α)
xα−1 exp(−βx)
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if x > 0, and m(x) = 0 otherwise; see Figure 3.
(4) The Normal, or gaussian distribution, Normal(µ, σ2); see Figure 4.

m(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
.

Example 5.4. Repartition functions can be extremely slippery. Let P be the (5/7, 2/7)-
probability on Ω = 2N, and let X : Ω → R be the random variable induced by the binary
expansion. The repartition function of µ = X∗P is a typical devil’s staircase; see Figure 5.
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6. Integration theory

We see [0,+∞] and [−∞,+∞] as topological spaces, homeomorphic to [0, 1] and [−1, 1]
via, e.g., the cotangent function. They are then endowed with the Borel σ-algebra B. We agree
that 0 · (+∞) = 0.

Lemma 6.1. Let f0, f1, . . . : (X,X ) → ([−∞,+∞],B) be measurable.

(1) sup fn, inf fn, limsup fn, liminf fn (all of them pointwise defined) are all measurable.
(2) If the pointwise limit lim fn exists, then it is measurable.
(3) If f1, . . . , fd : X → R are measurable, then (f1, . . . , fd) : X → Rd is measurable.
(4) If, moreover, g : Rd → R is measurable, then g(f1, . . . , fd) : X → R is measurable; in

particular, the set of measurable functions from X to R is an R-algebra.

Proof. {x : (sup fn)(x) ≤ a} =
⋂

n{x : fn(x) ≤ a} and sup fn is measurable. Analogously
inf fn is measurable. We have limsupn fn = infn(supm≥n fm), which is thus measurable.
One proves the last two items by noting that the set of all products of open intervals with
rational endpoints is a countable basis for the topology of Rd, and therefore generates the Borel
σ-algebra. □

Definition 6.2. Let (X,X , µ) be a σ-finite measure space. A step function is a measurable
function s : X → R≥0 whose range is finite; equivalently, it is a function that can be written
(nonuniquely) as a finite sum s =

∑
i<n ai1lAi .

Lemma 6.3. Every step function can be written in disjoint form s =
∑̇

j<mbj1lBj in such a way
that ∑

i<n

aiµ(Ai) =
∑
j<m

bjµ(Bj), (it may be +∞).

If
∑̇

j<mbj1lBj =
∑̇

k<tck1lCk
, then

∑
j<m bjµ(Bj) =

∑
k<t ckµ(Ck).
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Definition 6.4. Let s =
∑

i<n ai1lAi : X → R≥0 be a step function. We define

µ(s) =

∫
X
s dµ =

∑
i<n

aiµ(Ai) ∈ [0,+∞],

and note that µ(–) is positively linear.
Let f : X → [0,+∞] be measurable. We define

µ(f) =

∫
X
f dµ = sup{µ(s) : 0 ≤ s ≤ f} ∈ [0,+∞],

and note that f ≤ g implies µ(f) ≤ µ(g).

Lemma 6.5. Let f : X → [0,+∞] be measurable.
(1) There exists an increasing sequence s0, s1, . . . : X → R≥0 of step functions that

converges pointwise to f .
(2) For every such sequence, µ(sn) converges to µ(f) (this is a preliminary version of the

Monotone Convergence Theorem).
(3) µ(–) is positively linear (i.e., if g is another such function and r ≥ 0, then µ(f + g) =

µ(f) + µ(g) and µ(rf) = rµ(f)).

For f : X → [−∞,+∞] we set f+ = f ∨ 0, f− = (−f)∨ 0, |f | = f+ + f− = f+ ∨ f− =
f ∨ (−f).

If at least one of µ(f+), µ(f−) is finite, then we say that f is integrable w.r.t. µ, and set∫
f dµ =

∫
f(x) dµ(x) =

∫
f(x)µ( dx) =

∫
f+ dµ−

∫
f− dµ ∈ [−∞,+∞].

Since f+, f− ≤ |f | = f+ + f−, we have that both of µ(f+) and µ(f−) are finite iff so is
µ(|f |).

Definition 6.6. If f = f1 + if2 : X → C is measurable, we say that f ∈ L1(µ) = L1(µ,C) if
µ(|f |) < +∞. Since |f1|, |f2| ≤ |f | ≤ |f1|+ |f2|, this is equivalent to f1, f2 ∈ L1(µ,R); we
then set µ(f) = µ(f1) + iµ(f2).

Theorem 6.7. (1) L1 is a complex vector space, and µ : L1 → C is a positive C-linear
functional.

(2) If f ∈ L1, then |µ(f)| ≤ µ(|f |).

Theorem 6.8. Let f : X → C be a measurable function with finite or countable range. Then
f ∈ L1 iff the series ∑

{aµ(f−1a) : a ∈ range(f)}

is absolutely convergent (this clearly requires that µ(f−1a) < +∞ for every a ̸= 0). If this
happens, then µ(f) equals the sum of that series.

Theorem 6.9. Let R : (X,X , µ) → (Y,Y) and f : (Y,Y) → (C,B) be measurable. Then
f ∈ L1(R∗µ) iff f ◦R ∈ L1(µ). If this happens (or if f is [0,+∞]-valued), then∫

X
f ◦R dµ =

∫
Y
f d(R∗µ).
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Proof. Case 1: f is a step function. Case 2: f is [0,+∞]-valued. Use the MCT for step
functions. Case 3: R-valued. Case 4: C-valued. □

Theorem 6.10 (The Monotone Convergence Theorem). Let f0 ≤ f1 ≤ · · · be a monotone
sequence of R≥0-valued measurable functions, and let f = lim fn. Then µ(f) = limµ(fn).

Theorem 6.11 (The Fatou Lemma). Let f0, f1, . . . be a sequence of R≥0-valued measurable
functions. Then µ(liminf fn) ≤ liminf µ(fn).

Theorem 6.12 (The Dominated Convergence Theorem). Let f0, f1, . . . be a sequence of C-
valued measurable functions. Assume that lim fn = f (µ-a.e.) exists, and that there exists
an R≥0-valued g ∈ L1 such that |fn| ≤ g for every n. Then all fns and f are in L1, and
limµ(fn) = µ(f).

Theorem 6.13 (The Markov and Chebishev Inequalities). Let f : (X,µ) → R≥0 be measurable,
a ≥ 0. Then:

(1) aµ(f ≥ a) ≤ µ(f);
(2) for every p ≥ 1, we have apµ(f ≥ a) ≤ µ(fp).

Proof. Observe that a1l(f≥a) ≤ f and integrate. We obtain (2) by applying (1) to fp and ap. □

Theorem 6.14. Let f0, f1, . . . : X → C be measurable.
(1) If they are R≥0-valued, then

∑
n fn is a [0,+∞]-valued measurable function, and∫

X

(∫
Z≥0

fn(x) d♯(n)

)
dµ(x) =

∫
X

(∑
n

fn
)
dµ

=
∑
n

∫
X
fn dµ =

∫
Z≥0

(∫
X
fn(x) dµ(x)

)
d♯(n). (6.1)

(2) Assume that µ(
∑

n|fn|) =
∑

n µ(|fn|) < +∞. Then:
(i)

∑
n fn converges absolutely a.e., and determines a function in L1(µ).

(ii) (6.1) holds (this is a preliminary form of the Fubini theorem), and the series to the
right converges absolutely;

(iii) limn fn = 0 a.e..

7. Lp spaces

In this section f, g, . . . : (X,X , µ) → (C,B) are complex-valued measurable functions. Let
1 ≤ p < +∞. We set Lp(µ) = {f : fp ∈ L1(µ)}. Let ∥f∥p =

(
µ(|f |p)

)1/p. By Minkowski’s
inequality ∥f + g∥p ≤ ∥f∥p + ∥g∥p; in particular, Lp(µ) is a C-vector space. Moreover, ∥−∥p
is a seminorm on Lp(µ), and a norm on the set Lp(µ) of equivalence classes.

Lemma 7.1. Let f, g ∈ Lp. Then ∥f − g∥p = 0 iff µ(f ̸= g) = 0.

Proof. µ(f ̸= g) = 0 implies |f − g|p = 0 (a.e.) and
∫
|f − g|p = 0. Conversely, for every

n ≥ 1, by Chebishev (1/n)pµ(|f − g| ≥ 1/n) ≤
∫
|f − g|p. Therefore µ(|f − g| ≥ 1/n) = 0

for every n, and µ(f ̸= g) = 0. □
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Let ∥f∥∞ be the infimum of all M ∈ [0,+∞] such that µ(M < |f |) = 0; sometimes ∥f∥∞
is called the essential supremum of f . Let L∞(µ) = {f : ∥f∥∞ < +∞}. Again ∥–∥∞ is
a seminorm, and again ∥f − g∥∞ = 0 amounts to µ(f ̸= g) = 0. Thus the set L∞(µ) of
equivalence classes inherits from L∞(µ) a complex vector space structure.

All Lp’s and Lp’s are closed under complex conjugation.

Theorem 7.2. Let f, g ∈ L2(µ). Then fg ∈ L1(µ), and the Cauchy-Schwarz-Bunyakovsky-
Hölder inequality

|⟨f, g⟩| :=
∣∣∣∣∫

X
f̄g dµ

∣∣∣∣ ≤ ∥f∥2∥g∥2

holds.

Theorem 7.3. Let P be a probability; then

L∞(P ) ⊆ · · · ⊆ L3(P ) ⊆ L2(P ) ⊆ L1(P ).

8. E(X), Var(X), GX(z) for common r.v.s

Suppose X ∈ Lp(P ), with p < ∞. Then E(Xp) is the pth moment of X , and E
(
(X −

E(X))p
)

its pth central moment.
If X ∈ L2(P ) and E(X) = µ (= expectation = mean), define

Var(X) = E(|X − µ|2) = σ2 ∈ R≥0.

We have:

(1) Var(X) = E(|X|2)− |µ|2.
(2) For a ≥ 0, a2P (|X − µ| ≥ a) ≤ σ2.
(3) Var(X + a) = Var(X) and Var(aX) = |a|2Var(X).
(4) If Var(X) = 0, then X = µ1l (a.e.).

Definition 8.1. Let X have values in Z≥0, with X∗P = µ and discrete-density function m.
Then, for every z in the complex closed unit disk, the series

GX(z) =

∞∑
k=0

m(k)zk =

∫
R
zx dµ(x) =

∫
Ω
zX(ω) dP (ω) = E(zX)

(written also Gµ or Gm) converges absolutely, and determines the generating function of X .

Since G can be differentiated termwise inside its disk of convergence, it determines µ via

m(k) =
G(k)(0)

k!
.

We have G(1) = 1 and, if the radius of convergence is > 1, we also have G′(1) = E(X),
G′′(1) = E(X2)− E(X), G′′′(1) = E(X3)− 3E(X2) + 2E(X), . . ..
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X E(X) Var(X) GX(z) or φX(u)

Bin(n, p) np np(1− p) (1− p+ pz)n

Hyp(N,K, n) Kn/N

Poisson(µ) µ µ exp
(
µ(z − 1)

)
Geom(p) (1− p)/p (1− p)/p2 p/

(
1− (1− p)z

)
Zeta(α) ζ(α− 1)/ζ(α) if α > 2

∞ otherwise
Uniform(a, b) (a+ b)/2 (b− a)2/12

Gamma(α, β) α/β α/β2

Normal(µ, σ2) µ σ2 exp(iµu− σ2u2/2)

9. The Borel-Cantelli Lemma

Theorem 9.1. Let (An)n<ω be a sequence of measurable sets in (X,X , µ).
(1) If

∑
n<ω µ(An) <∞, then µ(limsupnAn) = 0.

(2) If µ = P is a probability,
∑

n<ω P (An) = ∞, and the An’s are independent, then
P (limsupnAn) = 1.

10. Stochastic processes

A family (even more than countable) of sub-σ-algebras {Ei}i∈I of F is P -independent if for
every finite subset J of I and for every choice of Aj ∈ Ej we have

P (
⋂
j∈J

Aj) =
∏
j∈J

P (Aj).

A family {Xi}i∈I of random variables is P -independent if the family {X−1
i B}i∈I is P -

independent.

Definition 10.1. A stochastic process is a sequence of r.v.s X0, X1, . . . : (Ω,F , P ) → (R,B)
(R might be replaced by C or Rd). It is:

• independent if the Xn’s are independent;
• identically distributed if (Xn)∗P = (Xm)∗P for every n and m;
• stationary if the push-forward probability X∗P on RZ≥0 is shift-invariant, that is, for

every n and every choice of events A0, . . . , An−1, we have
P (X0 ∈ A0 ∩ · · · ∩Xn−1 ∈ An−1) = P (X1 ∈ A0 ∩ · · · ∩Xn ∈ An−1).

I.i.d. implies stationary, which implies i.d.. Let Ω = {0, 1} with uniform P . Let Xn = id if
n ≡ 0 (mod 3) andXn = 1− id otherwise. ThenX∗P

(
[011]

)
= 1/2 andX∗P

(
[∗011]

)
= 0;

thus X is i.d. and non-stationary.

Lemma 10.2. Let g, g0, g1, . . . be measurable function.
(1) If X0, X1, . . . is independent, then g0 ◦X0, g1 ◦X1, . . . is independent.
(2) IfX0, X1, . . . is identically distributed, then g ◦X0, g ◦X1, . . . is identically distributed.



14 PROBABILITY THEORY

Definition 10.3. For every n, let

Cn =
(
σ-algebra generated by

⋃
m≥n

X−1
m B

)
=

∨
m≥n

X−1
m B.

Then C∞ =
⋂

n Cn is the tail σ-algebra of the process.

Lemma 10.4. Let {Fi}i∈I be a family of independent σ-algebras. Let {Ij}j∈J be a partition
of I and, for every j ∈ J , let Mj =

∨
i∈Ij Fi. Then the family {Mj}j∈J is independent.

Proof. [Bil95, Theorem 4.2 p. 50] □

Theorem 10.5 (The Kolmogorov 0-1 Law). The tail σ-algebra of an independent process is
trivial.

Example 10.6. Fix p ∈ [0, 1], and let Np be the set of all x ∈ [0, 1] such that 5 appears in the
decimal expansion of x with frequency p. Then either λ(Np) = 0 or λ(Np) = 1.

11. Product measures

Definition 11.1. Let (X,X ), (Y,Y) be measurable spaces. By Lemma 1.4, the class

S = {π−1
1 A ∩ π−1

2 B : A ∈ X , B ∈ Y} = {A×B : A ∈ X , B ∈ Y}

is a semialgebra. We define X × Y = F(S).

Lemma 11.2. Let X,Y be topological spaces with a countable basis, X ,Y their Borel σ-
algebras, B the Borel σ-algebra of X × Y . Then B = X × Y .

If X,Y : Ω → R are r.v.s, then (X,Y ) : Ω → R2 is a r.v.. Since r.v.s are closed under
postcomposition with continuous functions, the set of all r.v.s from Ω to R is an R-algebra.

Lemma 11.3. Let f : X ×Y → C be X ×Y-measurable. Then every f(a, –) is Y-measurable
and every f(–, b) is X -measurable.

Let C ∈ X × Y , and define

φC(x) =

∫
Y
1lC(x, –) dν ∈ [0,∞],

ψC(y) =

∫
X
1lC(–, y) dµ ∈ [0,∞].

Theorem 11.4. φC is X -measurable, ψC is Y-measurable, and∫
X
φC dµ =

∫
Y
ψC dν.

The function ρ that associates that number to C is a σ-finite measure, satisfies ρ(A × B) =
µ(A)ν(B), and is the only measure on (X×Y,X ×Y) that satisfies such an identity. We denote
it by ρ = µ× ν, and call it the product measure of µ and ν.

Theorem 11.5 (The Tonelli-Fubini Theorem). Let (X,X , µ), (Y,Y, ν), (X×Y,X ×Y, µ×ν)
be as above, and assume that f : X × Y → C is X × Y-measurable.
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(1) If f ≥ 0, then

φf (x) =

∫
Y
f(x, –) dν is X -measurable,

ψf (y) =

∫
X
f(–, y) dµ is Y-measurable,

and the identity ∫
X×Y

f dµ× ν =

∫
X
φf dµ =

∫
Y
ψf dν (11.1)

holds.
(2) If any of the integrals in (11.1), with |f | for f , is finite, then:

(a) f ∈ L1(µ× ν);
(b) f(x, –) ∈ L1(ν) for µ-every x, and φf ∈ L1(µ);
(c) f(–, y) ∈ L1(µ) for ν-every y, and ψf ∈ L1(ν);
(d) the identity in (11.1) holds.

12. The Multiplication Theorem

Theorem 12.1. Let X,Y be r.v.’s and define Z(ω) = (X(ω), Y (ω)). Then Z is a r.v., and X ,
Y are independent iff Z∗P = X∗P × Y∗P .

Corollary 12.2. Let X,Y ∈ L1(P ) be independent. Then XY ∈ L1(P ) and E(XY ) =
E(X)E(Y ).

Corollary 12.3. Let X,Y be Z≥0-valued and independent, and assume that GX , GY have
radius of convergence ≥ r > 1. Then GX+Y (z) = GX(z)GY (z) for |z| < r.

Taking into account the fact that a generating function determines the variable, this implies
that the sum of two independent Poisson variables, of parametersµ and ν, is Poisson of parameter
µ+ ν.
Proposition 12.4. Let X : (Ω, P ) → R and X ′ : (Ω′, P ′) → R be r.v.s. Let Y = X ◦ π1, Y ′ =
X ′ ◦ π2 : (Ω×Ω′,F ×F ′) → R. Then X and Y have the same law, X ′ and Y ′ have the same
law, and Y, Y ′ are independent.

13. Covariance

Let X,Y ∈ L2(P ), µ = E(X), ν = E(Y ). The covariance of X and Y is

Cov(X,Y ) = E
(
(X − µ)(Y − ν)

)
∈ C.

Lemma 13.1. (1) Var(X) = Cov(X,X);
(2) Cov is hermitian sesquilinear;
(3) Cov(X,Y ) = E(XY )− µν;
(4) if X,Y are independent, their covariance is 0;
(5) the variance of a finite sum of independent variables is the sum of the variances.

The correlation coefficient of X,Y is

ρ =
Cov(X,Y )(

Var(X) Var(Y )
)1/2 .
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Lemma 13.2. ρ belongs to the closed unit disc (it is in [−1, 1] if X,Y are real-valued), and
equals 0 if X,Y are independent.

Proof. ∣∣Cov(X,Y )
∣∣ = ∣∣∣E(

(X − µ)(Y − ν)
)∣∣∣ ≤ [

E(|X − µ|2)E(|Y − ν|2)
]1/2

by Cauchy-Schwarz. □

Definition 13.3. Let X = (X1, . . . , Xd) : Ω → Cd be a r.v., with all components in L2(P ). Its
covariance matrix is the hermitian-symmetrix matrix Σ2 whose ijth entry is Cov(Xi, Xj).

Lemma 13.4. Let S : Cd → Cm be a linear map. Then the covariance matrix of S ◦ X is
SΣ2S⊤. In particular, Σ2 is positive semidefinite.

14. Densities

Lemma 14.1. Let m : Rd → R≥0 be in L1(λ), with
∫
mdλ = 1. Then the function µm : B →

[0, 1] defined by

µm(A) =

∫
Rd

1lAm dλ

is a probability. The map m 7→ µm is injective.

If µ is in the range of the above map, then we say that µ has a density (which is unique).

Lemma 14.2. Let f : Rd → C be measurable. Then f ∈ L1(µm) iff fm ∈ L1(λ). If this
happens, then ∫

Rd

f dµm =

∫
Rd

fmdλ.

Let A : R → R be a homeomorphism, µ a probability on R with repartition function M .
Then A∗µ has repartition function M ◦ A−1 if A is increasing, and 1 −M(A−1x − 0) if A is
decreasing.

Let T : I → R, with I an interval in R and T piecewise C1 and strictly monotone. Let µ be
the probability on I induced by the continuous density m : I → R≥0.

Theorem 14.3. Under the above hypotheses T∗µ has a density Lm, which is explicitly given by

(Lm)(y) =
∑{

m(x)

|T ′(x)|
: x ∈ T−1{y}

}
=

∑
{|A′(y)|m(A(y)) : A is an inverse branch of T and y ∈ dom(A)}.

The map L is the Ruelle-Perron-Frobenius operator, or transfer operator; more generally,
Theorem 14.3 holds for m ∈ L1(λ).

Theorem 14.4. Let T : O → Rd, with O open in Rd and T injective C1 with never 0 jacobian
determinant jT . Assume that the probability µ on O is induced by the density m ∈ L1(λ), and
let A = T−1. Then T∗µ is induced by a density, which is explicitly given by

Lm =
m

|jT |
◦ T−1 = |jA|(m ◦A)

on T [O], and 0 otherwise. There’s an analogous statement for the piecewise case.
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15. Marginals

Definition 15.1. If P is a probability on (Ω×Ω′,F ×F ′), then π1∗P , π2∗P are the marginals
of P . Conversely, any P that projects to a given pair P1, P2 is a joining of P1 and P2.

Theorem 15.2. Let µ be a probability on R2 with marginals µ1, µ2, and assume that µ has a
density m.

(1) µ1 and µ2 have densities, explicitly given by

m1(x) =

∫
R
m(x, –) dλ,

m2(y) =

∫
R
m(–, y) dλ.

(2) π1 and π2 are µ-independent iff m(x, y) = m1(x)m2(y) in L1(λ
2).

(3) The set A = {a ∈ R : m1(a) ̸= 0,+∞} has full µ1-measure, and parametrizes a
family of densities on R, namely

m(y|a) = m(a, y)

m1(a)
.

(4) For every a ∈ A, let (µ|a) be the pushforward via ιa of the probability on R of density
m(– |a); in other words,

(µ|a)(B) =

∫
R
1lB(a, y)m(y|a) dλ(y).

We then have

µ =

∫
R
(µ|x) dµ1(x), .

which is the continuous version of the first Bayes identity.

16. The gaussian in Rd

The standard normal distribution is the distribution of a random variable Z = (Z1, . . . , Zd) :
Ω → Rd with Z1, . . . , Zd independent standard normals. In other words, Z∗P is induced by the
density

m(x1, . . . , xd) =
1√
(2π)d

exp

(
−1

2
(x21 + · · ·+ x2d)

)
=

1√
(2π)d

exp

(
−1

2
⟨x, x⟩

)
.

Applying T (x) = Sx + µ : Rd → Rd we get the general case T ◦ Z ∈ Normal(µ,Σ2). It
has density

m(x) =
1√

(2π)d det(Σ2)
exp

(
−1

2
(x− µ)TΣ−2(x− µ)

)
,

where Σ2 = SST is the covariance matrix, which is positive definite.
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17. Characteristic functions

Definition 17.1. Let µ be a probability on Rd. Its Fourier transform is the function µ̂ : Rd → C
given by

µ̂(s) =

∫
Rd

exp
(
i⟨s, x⟩

)
dµ(x).

If µ = X∗P , then µ̂ is the characteristic function of X , written
φX(s) = E

(
exp(i⟨s,X⟩)

)
.

If X is Z≥0-valued, then φX(s) = GX

(
exp(is)

)
, which is 2π-periodic.

Theorem 17.2. µ̂ is uniformly continuous, bounded by 1l, and µ̂(0) = 1.
Theorem 17.3. (1) φaX = φX(a –);

(2) φ−X = φX ;
(3) if X = −X in law, then φX is R-valued;
(4) if X and Y are independent, then φX+Y = φXφY .

It is not true that φX+Y = φXφY implies that X and Y are independent [JP03, p. 113].
Example 17.4. If X is Uniform(−a, a), then φX(s) = sin(as)/(as).

Theorem 17.5 (The Theorem of Moments). Let X : Ω → R be in Lm(P ), for some m ≥ 1.
Then φX ∈ Cm(R) and

φ
(m)
X (s) = E

(
(iX)m exp(isX)

)
.

In particular, E(Xm) = (−i)mφ(m)
X (0).
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It has a d-dimensional version.

Theorem 17.6. Let X : Ω → Rd, and let m ≥ 1 be such that, for every 1 ≤ r ≤ m and every
j1, . . . , jr, the product Xj1 · · ·Xjr is in L1(P ). Then φX ∈ Cm(Rd) and

(∂sj1 · · · ∂sjmφX)(s) = E
(
(iXj1) · · · (iXjm) exp(i⟨s,X⟩)

)
.

Theorem 17.7. The map µ 7→ µ̂ is injective.

Proof. [JP03, Theorem 14.1] □

Corollary 17.8. (1) φX = φY iff X and Y have the same law.
(2) X = −X in law iff φX is R-valued;

Lemma 17.9. Let X be a standard normal. Then φX(s) = exp(−s2/2).

18. Convolutions

Definition 18.1. Let α :M ×X → X be a left action of a monoid M on a set X . Let µ and ν
be probabilities on M and X , respectively. Then µ ∗ ν = α∗(µ× ν) is the convolution product
of µ and ν, which yields a left action of P(M) on P(X).

The main example is that of a group G acting on itself by left translations; we will deal with
the case G = (R,+) only.

Theorem 18.2. (1) µ̂ ∗ ν = µ̂ν̂.
(2) If X,Y are independent then (X∗P ) ∗ (Y∗P ) = (X + Y )∗P , and therefore φX+Y =

φXφY .

Theorem 18.3. Let µ, ν be probabilities on (R,B), and assume that µ has density m. Then
µ ∗ ν has density r, which is given by

r(z) =

∫
R
m(z − y) dν(y).

If ν has density n as well, then

r(z) =

∫
R
m(z − y)n(y) dλ(y),

which defines the convolution r = m ∗ n of the densities m and n.

19. Convergence of r.v.s

Definition 19.1. Let f, f0, f1, f2, . . . : (X,X , µ) → C be measurable. If, for every ε > 0,
µ(|fn − f | > ε) converges to 0, then we say that fn converges to f in measure.

Lemma 19.2. Let h : R≥0 → [0,M ] be such that h(0) = 0, h is continuous nondecreasing,
and strictly increasing in some right neighborhood of 0. Then Xn → X in probability iff
E
(
h ◦ |Xn −X|

)
→ 0.

Theorem 19.3. Fix 1 ≤ p <∞.
(1) If Xn converges to X either a.e. or in Lp, then it converges in probability.
(2) If Xn converges to X in probability, then there exists a subsequence that converges a.e.
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(3) If Xn converges to X in probability, and there exists 0 ≤ Y ∈ Lp that dominates every
Xn, then Xn converges to X in Lp.

Given a stochastic process X0, X1, . . ., we set

Sn =
∑
k<n

Xk, An =
Sn
n
.

Remark 19.4. The process S0, S1, . . . is the random walk induced by X on the group R.
More generally, if X0, X1, . . . take values in a not necessarily commutative semigroup, then
Ln = Xn−1 · · ·X0 is the induced left random walk and Rn = X0 · · ·Xn−1 the right one.

Theorem 19.5 (The Weak Law of Large Numbers). Assume the process is i.i.d., with all variables
in L2(P ); let µ = E(X0). Then An → µ1l in L2(P ) and in probability.

20. Weak convergence

Let µ, µ0, µ1, . . . be probabilities on Rd. Let Cb(Rd) be the set of all continuous bounded
functions from Rd to R (or C). If, for every f ∈ Cb(Rd),∫

f dµn →
∫
f dµ,

then we say thatµn converges toµweakly. If (Xn)∗P converges toX∗P weakly, then we say that
Xn converges toX weakly (or in distribution, or in law); this amounts toE(f ◦Xn) → E(f ◦X),
for every f ∈ Cb(Rd).

Remark 20.1. One can replace Cb(Rd) with its subset of bounded Lipschitz functions [JP03,
Theorem 18.7], or with any subset whose R-span is uniformly dense.

Example 20.2. A sequence r0, r1, . . . in [0, 1] is uniformly distributed w.r.t. the Lebesgue
measure λ if the sequence of Cesàro averages n−1

∑n−1
k=0 δrk converges weakly to λ. The basic

example is rn = α1n+ α0 (mod 1), with α1, α0 real numbers and α1 irrational. This is a first
instance of the Weyl equidistribution theorem, and can be proved by using as test functions the
family χk = exp(2πik –), for k ∈ Z, whose C-span is uniformly dense in C(R/Z,C).

Theorem 20.3. (1) Convergence in probability implies weak convergence.
(2) Weak convergence to a constant implies convergence in probability.

Theorem 20.4. Let µ, µ0, µ1, . . . be probabilities on R, and let M,M0,M1, . . . be their repar-
tition functions. Then µn → µ weakly iff Mn →M at every point at which M is continuous.

Theorem 20.5. Let µ, µ0, µ1, . . . be probabilities on a finite or countable space, and let
m,m0,m1, . . . be their discrete-density functions. Then µn → µ weakly iffmn → m pointwise.

Example 20.6. Let pn go to 0 as n goes to infinity, in such a way that npn converges to some
constant µ ∈ R>0. Then the sequence Bin(n, pn) weakly converges to Poisson(µ). Thus, a
binomial with large n and small p can be effectively (i.e., the discrete-density function is more
manageable) approximated by a Poisson of parameter np.

Definition 20.7. A family {µi}i∈I of probabilities on Rd is tight if for every ε > 0 there exists
a compact K ⊂ Rd such that, for every i, µi(Kc) < ε.
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Theorem 20.8 (The Helly Selection Theorem). Every sequence extracted from a tight family
contains a weakly converging subsequence.

Theorem 20.9 (Slutski’s Theorem). Let X0, X1, . . . , Y0, Y1, . . . , Z : Ω → Rd. Let ∥ ∥ be any
norm on Rd. Assume that Xn → Z weakly and ∥Xn − Yn∥ → 0 in probability. Then Yn → Z
weakly.

Theorem 20.10 (The Lévy Continuity Theorem). Let (µn)n<ω be a sequence of probabilities
on Rd. Then:

(1) if µn → µ weakly, then µ̂n → µ̂ everywhere (actually, uniformly on compacta);
(2) if µ̂n → f everywhere and f is continuous at 0, then f = µ̂ for some µ and µn → µ

weakly.

21. The Strong Law of Large Numbers

Theorem 21.1. Assume X0, X1, . . . is i.i.d., with all variables in L2(P ); let µ = E(X0). Then
An → µ1l a.e.

This yields, e.g., Monte Carlo integration and Borel’s normal number theorem.

22. The Central Limit Theorem

Theorem 22.1. Let X0, X1, . . . : Ω → R be i.i.d., with variables in L2(P ) having mean µ and
variance σ2 > 0. Let

Yn =
Sn − nµ

σ
√
n

=
An − µ

σ/
√
n
.

Then Yn converges weakly to a standard normal.

Example 22.2. We want to approximate π/4, namely the area of a disk of radius 1/2 inscribed
in the unit square, by firing bullets randomly. We need to compute the minimum n such that with
probability 99% our shooting sequence will approximate the area up to d ≥ 1 correct decimal
places. We have µ = π/4, σ2 = µ− µ2, and thus require

P (|An − µ| < 10−d) = P

(
|An − µ|
σ/

√
n

<
10−d

σ/
√
n

)
≈ P (|Z| < (

√
n/σ)10−d) ≥ 0.99.

The equality ≈ above is not mathematically rigorous, but works well in practice. By looking at
tables, or using a calculator, this happens for (

√
n/σ)10−d >

√
2·1.183, i.e.,n > 2σ21.832100d;

thus 11289 bullets for 2 digits.

Example 22.3. Let the functionsX2, X3, X5, . . . : N → R≥0 be defined byXp(n) = 1 if p | n,
and 0 otherwise. It is an astonishing fact that the Xps behave as if they were an independent
process. This provides heuristics for facts that can often be proved by non-probabilistic means;
here’s an easy example and a difficult one.

(1) Fix d ≥ 2, let l be a large number and let (a1, . . . , ad) vary in {1, . . . , l}d. For p ≤ l we
have P (Xp(a1) = · · · = Xp(ad) = 1) = p−d, . The above heuristics gives then

P (a1, . . . , ad are relatively prime) =
∏
p≤l

(
1− p−d

)
,

which tends to ζ(d)−1 for l tending to infinity.
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(2) Let ω(n) =
∑

pXp(n) be the number of prime divisors of n, and let m be the density
function of a standard normal. Then the Erdös-Kac theorem says that, for every a,

lim
l→∞

1

l
♯

{
n ≤ l :

ω(n)− log log l√
log log l

≤ a

}
=

∫ a

−∞
m(x) dx.

Thus if we pick a number at random in {1, . . . , 1010000}, the number of its prime factors
will be gaussian distributed with average and variance 10.044. Therefore, since 90% of
the mass of a standard normal lies between −1.644 and 1.644, with probability 90% the
number of distinct prime factors of our number will be between 4.83 and 15.25.
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