Esercizi su trasformazioni lineari e matrici

- (1) Sia $F: \mathbb{R}^n \to \mathbb{R}^m$ una trasformazone lineare.
 - (a) Sia $F: \mathbb{R}^2 \to \mathbb{R}^2$ la trasformazione lineare data da F(x,y) =(y,x). Se v è un vettore che si trova sulla bisettrice del primo e terzo quadrante del Piano Cartesiano, quanto vale F(v)? La trasformazione F è una rotazione oppure una simmetria? In quest' ultimo caso, rispetto a quale asse?
 - (b) Determianare una trasformazione lineare F che mandi un qualsiasi vettore $v \in \mathbb{R}^2$ nel vettore simmetrico rispetto all'asse x. Determinare una trasformazione lineare F che mandi un qualsiasi vettore $v \in \mathbb{R}^2$ nel vettore simmetrico rispetto alla bisettrice fra il secondo e il quarto quadrante del Piano Cartesiano.
 - (c) Sia A la seguente matrice:

$$\left(\begin{array}{ccccc}
\sqrt{2} & 0 & 1 & -1 \\
3 & 0 & -1 & 2 \\
0 & 0 & 1 & -1/\pi
\end{array}\right)$$

Sia $L_A: \mathbb{R}^4 \to R^3$ è la trasformazione lineare che corrisponde ad A, cioè

$$L_A(x_1, x_2, x_3, x_4) = \begin{pmatrix} \sqrt{2} & 0 & 1 & -1 \\ 3 & 0 & -1 & 2 \\ 0 & 0 & 1 & -1/\pi \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

- (i) Calcolare $L_A(1, -1, 0, 1)$.
- (ii) Quanto vale L_A sui vettori della base canonica?
- (iii) Esprimere il vettore $L_A(1-2,1,0)$ come combinazione lineare delle colonne di A.
- (d) Stabilire quali fra le seguenti applicazioni sono trasformazioni lineari; in caso positivo determinare la matrice corrispondente alla traformazione (relativamente alle basi canoniche).

 - (i) $F: \mathbb{R}^2 \to \mathbb{R}^3$ con F(x,y) = (x+y,x,x-y); (ii) $F: \mathbb{R}^3 \to \mathbb{R}^2$ con $F(x,y,z) = (x+y+z,\sqrt{2}x+1)$; (iii) $F: \mathbb{R}^2 \to \mathbb{R}^3$ con $F(x,y) = (x^2,x,x-y)$;

 - (iv) $F: \mathbb{R}^4 \to \mathbb{R}^3$ con F(x, y, z, w) = (w, y, x).
- (e) Se i vettori v_1, \ldots, v_k sono linearmente dipendenti in \mathbb{R}^n , allora i vettori $F(v_1), \ldots, F(v_k)$ sono linearmente $\mathbf{V} | \mathbf{F}$ dipendenti in \mathbb{R}^m .
- (f) Se i vettori v_1, \ldots, v_k sono linearmente indipendenti, allora i vettori $F(v_1), \ldots, F(v_k)$ sono linearmente $\mathbf{V} | \mathbf{F}$ indipendenti.

- (g) Se i vettori v_1, \ldots, v_k generano \mathbb{R}^n , allora i vettori $F(v_1), \ldots, F(v_k)$ generano \mathbb{R}^m .
- (h) Se (v_1, \ldots, v_n) è una base di \mathbb{R}^n allora $(F(v_1), \ldots, F(v_n))$ è una base di \mathbb{R}^m .
- (i) Se F è iniettiva e (v_1, \ldots, v_n) sono linearmente indipendenti in \mathbb{R}^n , allora i vettori $F(v_1), \ldots, F(v_n)$ sono linearmente indipendenti in \mathbb{R}^m .
- (j) Se F è suriettiva e (v_1, \ldots, v_n) generano \mathbb{R}^n allora i vettori $F(v_1), \ldots, F(v_n)$ generano \mathbb{R}^m $\boxed{\mathbf{V} \mid \mathbf{F}}$
- (2) Determinare una matrice $A_{2\times 2}$ tale che, per ogni vettore $v=(x,y)\in\mathbb{R}^2$ il vettore $A\begin{pmatrix}x\\y\end{pmatrix}$ sia uguale al vettore v ruotato di $\frac{\pi}{6}$ in senso orario.

Determinare una matrice $B_{2\times 2}$ tale che, per ogni vettore $v=(x,y)\in\mathbb{R}^2$ il vettore $B\begin{pmatrix}x\\y\end{pmatrix}$ sia uguale al vettore v ruotato di $\frac{\pi}{6}$ in senso antiorario.

Determinare la matrice AB.

(3) Sia \mathbb{P}^2 l'insieme dei polinomi di grado minore o uguale di 2:

$$\mathbb{P}^2 = \{a_0 + a_1 x + a_2 x^2 : a_1, a_2, a_3 \in \mathbb{R}\}.$$

Dimostrare che \mathbb{P}^2 è uno spazio vettoriale, con le operazioni definite da:

$$(a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$
$$\lambda(a_0 + a_1x + a_2x^2) = \lambda a_0 + \lambda a_1x + \lambda a_2x^2.$$

Trovare inoltre una base di \mathbb{P}^2 .

- (4) Se \mathbb{P}^2 è uno spazio vettoriale è lo spazio vettoriale definito al punto precedente, sia F la funzione $F: \mathbb{P}_2 \to \mathbb{R}^2$ definita da F(p) = (p(0), p(1)) (ad esempio, se $p = 1 + x + 2x^2$ allora F(p) = (1, 4)).
 - (a) Dimostrare che F è una trasformazione lineare.
 - (b) Trovare un polinomio p, diverso dal polinomio nullo, tale che F(p) sia il vettore nullo di \mathbb{R}^2 .
 - (c) F è iniettiva? F è suriettiva?
- (5) Siano V, W spazi vettoriali vettoriali su $\mathbb{R}, B = (v_1, \dots, v_n)$ una base di $V \in T$ una trasformazione lineare $T : V \to W$.
 - (a) dimostrare che l'immagine di T, cioè

$$Im(T) = \{T(v) : v \in W\}$$

è un sottospazio vettoriale di W.

(b) Dimostrare che Im(T) è generato dai vettori $T(v_1), \ldots, T(v_n)$, cioè

$$Im(T) = L(T(v_1), \dots, T(v_n)).$$

(c) Trovare un esempio di trasformazione lineare in cui i vettori $T(v_1), \ldots, T(v_n)$ siano dipendenti.