- (1) Il sistema $\begin{cases} x = -1 \\ x = 1 \end{cases}$ di due equazioni in una incognita x(2) La base $\{(1,1),(1,0)\}$ dello spazio \mathbb{R}^2 (dotato della metrica standard) è una base ortonormale. (3) La matrice $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ è una matrice diagonale. (4) Il nucleo di un'applicazione lineare è uno spazio vettoriale. (5) Esistono matrici di cambio base a determinante nullo. (6) L'inversa della matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ è la matrice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (7) Un autospazio di una matrice quadrata può ridursi \mathbf{F} al solo vettore nullo. $\overline{\mathbf{F}}$ \mathbf{F} (8) Esistono matrici quadrate invertibili con determinante < 0. (9) Se una matrice quadrata è diagonalizzabile, allora il suo determinante non può essere nullo. \mathbf{F} (10) in un R-spazio vettoriale di dimensione uno esistono infiniti vettori non nulli; \mathbf{F} $\overline{\mathbf{F}}$ (11) due matrici quadrate simili hanno lo stesso determinante; (12) esistono matrici quadrate diagonali che non sono diagonalizzabili; \mathbf{v} \mathbf{F} (13) ogni matrice quadrata invertibile ammette una ed una sola inversa; \mathbf{F} (14) se l' \mathbb{R} -spazio vettoriale V è generato dai vettori $v_1, v_2 \in v_3$, $\overline{\mathbf{F}}$ allora necessariamente V ha dimensione 3. \mathbf{V} (15) Una matrice quadrata a determinante < 0 è sempre invertibile. (16) Una matrice quadrata a determinante < 0 è sempre diagonalizzabile. (17) L'applicazione lineare identica $id_{\mathbb{R}^2} \colon \mathbb{R}^2 \to \mathbb{R}^2$, $id_{\mathbb{R}^2}(x) = x$, $\forall x \in \mathbb{R}^2$, è rappresentata, rispetto alla base $\mathcal{B} := ((1,2),(1,0))$ di \mathbb{R}^2 , dalla matrice $\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$
- (18) Lo spazio vettoriale nullo e lo spazio vettoriale \mathbb{R}^2 sono sottospazî supplementari di \mathbb{R}^2 .
- (19) Il sottoinsieme di \mathbb{R}^2 , $\{(x,y) \in \mathbb{R}^2 \mid x=0, y=0\}$, è con le operazioni indotte da \mathbb{R}^2 un sottospazio vettoriale di \mathbb{R}^2 .

Esercizî

(1) Si consideri uno spazio vettoriale reale V di dimensione due e sia $\mathcal{B} = (v_1, v_2)$ una sua base. Sia $f: V \to V$ la trasformazione lineare di V che – rispetto alla base \mathcal{B} – è espresso tramite la seguente matrice 2×2 :

$$A := \begin{pmatrix} 6 & 8 \\ 1 & 4 \end{pmatrix};$$

- (a) determinare autovalori e autospazî di f e mostrare che f è diagonalizzabile;
- (b) scelta una base \mathcal{B}' di autovettori di V, si trovi la matrice di cambio base dalla base \mathcal{B} alla base \mathcal{B}' , e si determini inoltre l'inversa di questa matrice;
- (c) trovare la matrice di f rispetto alla base \mathcal{B}' , e mostrare esplicitamente che tale matrice è simile alla matrice A.

(2) Si considerino i seguenti vettori dello spazio euclideo \mathbb{R}^4 :

$$v_1 := (-1, 0, -1, -1),$$
 $v_2 := (-1, 0, 2, 0),$ $v_3 := (-1, 1, 0, -2),$

e sia $V \subset \mathbb{R}^4$ il sottospazio vettoriale generato da questi vettori;

- (a) trovare una base ortonormale per V;
- (b) trovare una base del complemento ortogonale di V;
- (c) calcolare il valore dell'angolo tra v_1 e v_3 .
- (3) Nello spazio euclideo \mathbb{R}^4 si considerino i seguenti sottospazî vettoriali

$$V_1 := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_1 + 3x_2 + x_3 + x_4 = 0, -x_1 - x_2 + x_3 = 0\},\$$

$$V_2 := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid -x_1 + x_2 + x_3 - x_4 = 0\}$$

e sia $V_1 \cap V_2 =: V \subset \mathbb{R}^4$ il sottospazio vettoriale intersezione di questi

- (a) Determinare la dimensione di V e dello spazio vettoriale $V_1 + V_2$;
- (b) trovare una base ortogonale di V;
- (c) trovare la proiezione ortogonale del vettore (1, 1, 0, 0) su V.
- (4) Nello spazio euclideo \mathbb{R}^3 si consideri il seguente sottoinsieme

$$L = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y = 2, x + y - z = 1\}.$$

(a) Si dimostri che L è una retta affine, e se ne trovino le equazioni parametriche.