1 Addendum su Diagonalizzazione

Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria e sufficiente per la diagonalizzabilità di un operatore $F: V \to V$ è che V abbia una base composta da autovettori.

Lemma 1. Data una trasformazione lineare $F: V \to V$ con dim(V) = n, sia $\{\lambda_1, \ldots, \lambda_k\}$ un sottoinsieme degli autovalori di F e $V_{\lambda_1}, \ldots, V_{\lambda_k}$ i corrispondenti autospazi. Se $W_i \subseteq V_{\lambda_i}$ è un insieme di vettori linearmente indipendenti per ogni $i = 1, \ldots, k$ allora $W_1 \cup \ldots \cup W_k$ è un insieme di vettori linearmente indipendenti di V.

Dimostrazione. Per induzione su k: se k=1 il risultato è ovvio, visto che il sottoinsieme W_1 di V_{λ_1} contiene vettori linearmente indipendenti per ipotesi. Nel passo induttivo, supponiamo k>1. Se per assurdo i vettori in $W_1 \cup \ldots \cup W_k$ fossero linearmente dipendenti, allora, ponendo $W_1 = \{v_{1,1}, \ldots, v_{1,n_1}\}, W_2 = \{v_{2,1}, \ldots, v_{2,n_2}\}, \ldots, W_k = \{v_{k,1}, \ldots, v_{k,n_k}\}$, esisterebbero dei coefficienti $c_{i,j}$ tali che

$$c_{1,1}v_{1,1} + \ldots + c_{1,n_1}v_{1,n_1} + c_{2,1}v_{2,1} + \ldots + c_{2,n_2}v_{2,n_2} + \ldots + c_{k,1}v_{k,1} + \ldots + c_{k,n_k}v_{k,n_k} = \overrightarrow{0}.$$

Applicando F all'equazione precedente e ricordando che i vettori $v_{i,h}$ di W_i sono autovettori con autovalore λ_i , si ottiene:

$$F(c_{1,1}v_{1,1} + \ldots + c_{1,n_1}v_{1,n_1} + c_{2,1}v_{2,1} + \ldots + c_{2,n_2}v_{2,n_2} + \ldots + c_{k,1}v_{k,1} + \ldots + c_{k,n_k}v_{k,n_k}) =$$

$$c_{1,1}\lambda_1v_{1,1}\ldots + c_{1,n_1}\lambda_1v_{1,n_1} + +c_{2,1}\lambda_2v_{2,1} + \ldots + c_{2,n_2}\lambda_2v_{2,n_2} + \ldots + c_{k,1}\lambda_kv_{k,1} + \ldots + c_{k,n_k}\lambda_kv_{k,n_k} = \overrightarrow{0};$$

Moltiplicando per λ_1 la prima equazione esottraendo al risultato ottenuto l'ultima l'equazione, vediamo che gli addendi relativi alla base B_1 scompaiono, lasciando:

$$c_{2,1}(\lambda_1 - \lambda_2)v_{2,1} + \ldots + c_{2,n_2}(\lambda_1 - \lambda_2)v_{2,n_2} + \ldots + c_{k,1}(\lambda_1 - \lambda_k)v_{k,1} + \ldots + c_{k,n_k}(\lambda_1 - \lambda_k)v_{k,n_k} = \overrightarrow{0}$$

Poiché il sottoinsieme di autovalori $\{\lambda_2, \dots, \lambda_k\}$ di F ha k-1 elementi, possiamo utilizzare l'ipotesi induttiva: i vettori in $W_2 \cup \ldots \cup W_k$ sono quindi linearmente indipendenti e dall'equazione precedente ne segue:

$$c_{2,1}(\lambda_1 - \lambda_2) = \dots = c_{2,n_2}(\lambda_1 - \lambda_2) = \dots = c_{k,1}(\lambda_1 - \lambda_k) = \dots = c_{k,n_k}(\lambda_1 - \lambda_k) = 0.$$

Da $\lambda_1 - \lambda_2 \neq 0, \dots, \lambda_1 - \lambda_k \neq 0$ segue $c_{2,1} = 0, c_{2,2} = 0, \dots, c_{2,n_2} = 0, \dots, c_{k,1} = 0, \dots c_{k,n_k} = 0$. Tornando alla prima equazione e cancellando i termini che ora sappiamo essere nulli si ottiene anche

$$c_{1,1}v_{1,1} + c_{1,2}v_{1,2} + \ldots + c_{1,n_1}v_{1,n_1} = \overrightarrow{0};$$

dall'indipendenza lineare di vettori in B_1 otteniamo che anche gli ultimi coefficienti sono nulli: $c_{1,1} = \ldots = c_{1,n_1} = 0$.

Abbiamo quindi dimostrato che l'unica combinazione lineare nulla di vettori in $W_1 \cup \ldots \cup W_k$ è quella che ha tutti i coefficienti nulli, quindi i vettori in $W_1 \cup \ldots \cup W_k$ sono linearmente indipendenti.

Corollario 2. Una trasformazione lineare $F: V \to V$ con dim(V) = n è diagonalizzabile se e solo se la somma delle dimensioni di tutti i suoi autospazi è n.

Dimostrazione. Supponiamo per prima cosa che F sia diagonalizzabile e che abbia come insieme di autovalori l'insieme $\{\lambda_1,\ldots,\lambda_k\}$. Poiché F è diagonalizzabile, esiste una base B di V composta da n autovettori. Sia W_1 il sottoinsieme composto dagli autovettori di B che hanno autovalore λ_1 , W_2 il sottoinsieme composto dagli autovettori di B che hanno autovalore λ_2,\ldots,W_k il sottoinsieme composto dagli autovettori di B che hanno autovalore λ_k . Se n_i è la cardinalità di W_i , per $i=1,\ldots,k$ abbiamo che $n_1+\ldots+n_k=n$. Ci basta allora dimostrare che W_i è una base per V_{λ_i} . I vettori di W_i sono linearmente indipendenti perché appartengono alla base B, quindi ci basta dimostrare che l'insieme W_i genera l'autospazio V_{λ_i} : se così non fosse, potrei trovare una base D di V_{λ_i} di cardinalità $d>n_i$. Dal teorema precedente seguirebbe che $W_1\cup\ldots W_{i-1}\cup D\cup W_{i+1}\cup\ldots W_k$ è un insieme di vettori linearmente indipendenti. Ma la cardinalità di questo insieme è $n_1+\ldots+n_{i-1}+d+n_{i+1}+\ldots+n_k>n$, una contraddizione.

Viceversa, supponiamo che la somma delle dimensioni degli autospazi sia n; se B_i è una base per l'autospazio V_{λ_i} sappiamo dal precedente teorema che $B=B_1\cup\ldots\cup B_k$ è un sottoinsieme di vettori linearmente indipendenti; poiché la cardinalità n di B è uguale alla dimensione di V, ne segue che B è una base di autovettori di F ed F è quindi diagonalizzabile.

Data una trasformazone lineare F, definiamo il polinomio caratteristico $p(\lambda)$ di F (nella variabile λ) come il determinante della matrice $A - \lambda I$ dove A è una matrice che rappresenta F rispetto ad una qualsiasi base. Questa definizione è ben posta perché non dipende dalla scelta della base. Infatti, se A, B rappresentano F rispetto a due basi differenti, sappiamo che esiste P invertibile tale che $A = P^{-1}BP$: ma allora $det(A - \lambda I) = det(P^{-1}BP - \lambda I) = det(P^{-1}(B - \lambda I)P) = det(P^{-1})det(B - \lambda I)det(P) = det(P)^{-1}det(B - \lambda I)det(P) = det(B - \lambda I)$. Si dimostra (vedi dispense) che le radici reali del polinomio caratteristico sono esattamente gli autovalori di F.

Definizione 3. La molteplicità algebrica di un autovalore λ_i è la sua molteplicità come radice del polinomio caratteristico: è pari a k se vale $p(\lambda) = (\lambda - \lambda_i)^k q(\lambda)$ dove $q(\lambda)$ è un polinomio tale che $q(\lambda_i) \neq 0$.

Definizione 4. La molteplicità geometrica di un autovalore λ_i è la dimensione del suo autospazio V_{λ_i} .

Teorema 5. (senza dimostrazione) La molteplicità geometrica di un autovalore è sempre minore o uguale della sua molteplicità algebrica.

Il prossimo teorema (che enunciamo senza dimostrazione) dà un'ulteriore caratterizzazione delle trasformazioni lineari diagonalizzabili

Teorema 6. Una trasformazione lineare $F: V \to V$ con dim(V) = n è diagonalizzabile se e solo se

- 1. la somma delle molteplicità algebriche dei suoi autovalori è n;
- 2. la molteplicità algebrica di ogni autovalore è uquale alla sua molteplicità geometrica.

Esempio 7.

Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ la trasformazione lineare definita da

$$F(x, y, z) = (x + 3y + 3z, -3x - 5y - 3z, 3x + 3y + z).$$

Determinare:

- 1. il polinomio caratteristico di F ed i suoi autovalori;
- 2. la dimensione degli autospazi relativi agli autovalori e una base di ogni autospazio;
- 3. se F è diagonalizzabile; in tal caso trovare una matrice diagonale D e una matrice invertibile P tale che $D = P^{-1}AP$;

Dimostrazione. La trasformazione F è rappresentata, rispetto alla base canonica per dominio e codomino, dalla seguente matrice 3×3 :

$$A = \left(\begin{array}{rrr} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{array}\right)$$

Il polinomio caratteristico $p(\lambda)$ è $p(\lambda) = det(A - \lambda I)$. Si ha (operando sia per righe che per colonne):

$$p(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{pmatrix} = \det\begin{pmatrix} 1 - \lambda & 3 & 3 \\ 0 & -2 - \lambda & -2 - \lambda \\ 3 & 3 & 1 - \lambda \end{pmatrix} = \det\begin{pmatrix} 1 - \lambda & 3 & 0 \\ 0 & -2 - \lambda & 0 \\ 3 & 3 & -2 - \lambda \end{pmatrix} = -(\lambda + 2)^2(\lambda - 1).$$

Gli autovalori di F sono le radici del polinomio caratteristico; abbiamo quindi due autovalori $\lambda_1 = 1$, di molteplicità algebrica uguale ad 1, e $\lambda_2 = -2$, di molteplicità algebrica uguale a 2.

L'autospazio V_1 è dato da tutti i vettori che sono soluzioni dell'equazione Av = v ovvero (A - I)v = 0. Poiché la moltep[licità algebrica dell'autovalore 1 è 1, sappiamo già che anche la sua moltep[licità geometrica, cioè la dimensione dell'autospazio V_1 , sarà 1: infatti, non può essere 0 e deve essere minore della molteplicità algebrica. Inoltre, un vettore v = (x, y, z) è un autovettore relativo all'autovalore 1 se e solo se è soluzione del sistema omogeneo:

$$\begin{cases} 3y + & 3z = 0 \\ -3x & -6y & -3z = 0 \\ 3x & +3y & = 0 \end{cases}$$

Con operazioni elementari sulle righe raggiungiungiamo facilmente il sistema a scala seguente:

$$\left\{ \begin{array}{cccc} x & +2y & +z & =0 \\ & y & +z & =0 \end{array} \right.$$

Dal sistema precedente, utilizzando il parametro k per la variabile z che non corrisponde ad alcun pivots e risolvendo otteniamo che $V_1 = \{(k, -k, k) : k \in \mathbb{R}\}$. Quindi una base dell'autospazio V_1 è data da $B_1 = ((1, -1, 1))$.

Per quanto riguarda l'autovalore $\lambda=-2$ dobbiamo risolvere il sistema $(A+2I)v=\overrightarrow{0}$, ovvero

$$\begin{cases} 3x +3y +3z = 0 \\ -3x -3y -3z = 0 \\ 3x +3y +3z = 0 \end{cases}$$

Con operazioni elementari sulle righe raggiungiungiamo facilmente il sistema a scala seguente:

$$\left\{ \begin{array}{ccc} x & +y & +z & =0 \end{array} \right.$$

Dal sistema precedente, utilizzando i parametri h,k per le variabili y,z che non corrispondono ad alcun pivots e risolvendo otteniamo che $V_{-2} = \{(-h-k,h,k) : k \in \mathbb{R}\}$. Quindi l'autospazio V_{-2} ha dimensione 2 e una base è data da $B_2 = ((-1,1,0),(-1,0,1))$ (notiamo che la dimensione geometrica dell'autovalore è uguale alla dimensione algebrica che è 2). L'insieme $B = B_1 \cup B_2$ ha cardinalità 3 ed è quindi una base di autovettori della trasformazione F che risulta diagonalizzabile.

La matrice D che diagonalizza A è la matrice di F rispetto alla base di autovettori B:

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array}\right)$$

Per passare dalla matrice A alla matrice D dobbiamo trovare la matrice del cambiamento di base:

$$P = M_{\mathcal{E}}^B(id),$$

dove \mathcal{E} è la base canonica; infatti sappiamo che $D = P^{-1}AP$ (e $P^{-1} = M_B^{\mathcal{E}}(id)$).

Poiché a \mathcal{E} è la base canonica, la prima colonna di $M_{\mathcal{E}}^{B}(id)$ è data dal primo autovettore della base B, la seconda dal secondo vettore, la terza dal terzo. Quindi

$$P = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

Per quanto riguarda P^{-1} oltre a calcolarla come inversa della matrice P, possiamo anche calcolarla usando l'uguaglianza $P^{-1} = M_B^{\mathcal{E}}(id)$: in questo caso la prima colonna è data dalle coordinate del primo vettore della base canonica rispetto alla base B. Cerchiamo quindi i tre coefficienti x, y, z tali che (1, 0, 0) = x(1, -1, 1) + y(-1, 1, 0) + z(-1, 0, 1); equivalentemente, dobbiamo risolvere il sistema:

$$\begin{cases} x - y - z = 1 \\ -x + y = 0 \\ x + z = 0 \end{cases}$$

che si risolve facilmente con x=1,y=1,z=-1. Quindi la prima colonna di $M_B^{\mathcal{E}}(id)$ è

$$\left(\begin{array}{c}1\\1\\-1\end{array}\right)$$

Si procede analogamente con le altre colonne trovando infine:

$$P^{-1} = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{array}\right)$$

Esempio 8.

Sia F una trasformazione lineare che, rispetto alla base canonica per dominio e codomino è rappresentata dalla seguente matrice 3×3 :

$$B = \left(\begin{array}{rrr} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{array}\right)$$

Determinare:

- 1. il polinomio caratteristico di F e i suoi autovalori;
- 2. la dimensione degli autospazi relativi agli autovalori e una base di ogni autospazio;
- 3. se F è diagonalizzabile.

Dimostrazione. Facendo i calcoli si scopre che il polinomio caratteristico è lo stesso dell'esempio precedente, quindi la matrice ha come autovalori i numeri 1, -2. Per determinare l'autospazio V_{-2} , dobbiamo risolvere il sistema $(B+2I)v=\overrightarrow{0}$, ovvero

$$\begin{cases} 4x & +4y & +3z & = 0 \\ -4x & -4y & -3z & = 0 \\ 3x & +3y & +3z & = 0 \end{cases}$$

che, tramite riduzioni a scala, è equivalente al sistema

$$\begin{cases} x + y + z = 0 \\ z = 0 \end{cases}$$

Dal sistema precedente, utilizzando il parametro k per la variabiley che non corrisponde ad alcun pivots e risolvendo otteniamo che $V_{-2} = \{(-k, k, 0) : k \in \mathbb{R}\}$. Quindi l'autospazio V_{-2} ha dimensione 1 e una base è data da $B_2 = ((-1, 1, 0),)$. Notiamo però che la dimensione geometrica dell'autovalore è minore della dimensione algebrica dell'autovalore (che è 2), quindi la matrice non è diagonalizzabile

2 Esercizi

1. Nei casi seguenti, stabilisci quando il vettore v è un autovettore della matrice A. Se la risposta è affermativa, trova il corrispondente autovalore.

(a)
$$A = \left(\begin{array}{ccc} 3 & 6 & 7 \\ 3 & 2 & 7 \\ 5 & 6 & 4 \end{array} \right), \quad v = (1, -2, 2).$$

(b)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 5 & 1 \\ 2 & 7 & 0 \end{pmatrix}, \quad v = (1, 0, 1).$$

Sol. (a) No, (b) Si,
$$\lambda = 2$$

- 2. Costruisci una matrice A che abbia il vettore v=(1,1,1) come autovettore con autovalore $\lambda=3$. Rispondi alla stessa domanda con v=(-1,0,1) e $\lambda=5$.
- 3. Nei casi seguenti, stabilisci quando il numero λ è un autovalore della matrice A. Se la risposta è affermativa, trova una base dell'autospazio corrispondente:

(a)
$$A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{pmatrix}, \quad \lambda = 4$$

(b)
$$A = \left(\begin{array}{ccc} 3 & 0 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 5 \end{array} \right), \quad \lambda = 2$$

Sol. (a) si : per trovare una base di V_4 bisogna risolvere il sistema

$$\begin{cases}
-x & -z = 0 \\
2x & -y + z = 0 \\
-3x & +4y & +z = 0
\end{cases}$$

Riducendo ad un sistema a scala troviamo che $V_4 = \{(-k, -k, k) : k \in \mathbb{R}\}$ ha dimensione 1 e una sua base è, ad esempio B = ((-1, -1, 1))

- (b) no, gli autovalori sono 3 e 5.
- 4. Stabilire se la seguente matrice A è diagonalizzabile:

$$A = \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{array}\right)$$

In caso affermativo, trova una base B di \mathbb{R}^4 formata da autovettori di A, la matrice D che diagonalizza A e la matrice P tale che $D = P^{-1}AP$.

Sol A è diagonalizzabile. Una base di autovettori è, ad esempio, $B = (v_1, v_2, v_3, v_4)$ dove $v_1 = (-8, 4, 1, 0), v_2 = (-16, 4, 0, 1), v_3 = (0, 0, 1, 0), v_4 = (0, 0, 0, 1)$. Nota bene: i due autovettori v_3, v_4 relativi all'autovalore $\lambda = -3$ si trovano senza fare conti, semplicemente guardando le colonne della matrice...)

- 5. Dimostra che per una matrice triangolare superiore gli autovalori sono i numeri che compaiono sulla diagonale principale.
- 6. Dimostra che una trasformazione lineare (una matrice A) ha come autovalore 0 se e solo se non è invertibile.
- 7. Si consideri le traformazioni lineari $F_t : \mathbb{R}^3 \to \mathbb{R}^3$ (una per ogni parametro $t \in \mathbb{R}$) definite dalle seguenti equazioni:

$$F_t(e_1) = (1, 0, -t), F_t(e_2) = (0, -1, 0), F_t(e_3) = (0, 0, 1).$$

- (a) Considera la trasformazione F_1 . Quanto vale sul generico vettore (x, y, z) di \mathbb{R}^3 ?
- (b) Scrivi la matrice di F_1 rispetto alla base canonica per dominio e codominio e la matrice della trasformazione F_0 sempre rispetto alla base canonica.
- (c) Fissato un paramentro t, scrivi la matrice di F_t rispetto alla base canonica per dominio e codominio.
- (d) Determinare gli autovalori di F_1 e se F_1 è diagonalizzabile.
- (e) Determinare gli autovalori di F_0 e se F_0 è diagonalizzabile.
- (f) Determinare, per un generico valore del parametro t, gli autovalori della trasformazione lineare F_t .
- (g) Determinare per quali valori del parametro t la trasformazione lineare F_t è diagonalizzabile.