PROVA SCRITTA MATEMATICA DISCRETA – SECONDA PARTE

CORSO DI LAUREA IN INFORMATICA & CORSO DI LAUREA IN TECNOLOGIE WEB E MULTIMEDIALI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI UNIVERSITÀ DEGLI STUDÎ DI UDINE

ANNO ACCADEMICO 2009/10 E PRECEDENTI 19 LUGLIO 2011

Nome:
Cognome:
Corso di Laurea: Informatica: Tecnologie Web e Multimediali:
Numero di matricola:
Anno di prima immatricolazione:
Data del superamento della prima parte del compito:
Avvertenze. Si prega di compilare subito la parte anagrafica del compito. La durata della prova è di tre ore a decorrere dalla consegna di questo foglio. Le

Avvertenze. Si prega di compilare subito la parte anagrafica del compito. La durata della prova è di tre ore a decorrere dalla consegna di questo foglio. Le risposte date vanno sempre giustificate.

Esercizî

(1) Si considerino le seguenti matrici

$$A_{\lambda} := \begin{pmatrix} \lambda & 0 \\ 0 & 1 \\ \lambda & 0 \end{pmatrix} \qquad \qquad B_{\lambda} := \begin{pmatrix} 0 & \lambda & 1 \\ -1 & 0 & \lambda \end{pmatrix}$$

dove λ è un parametro reale.

- (a) Si moltiplichino le due matrici in modo tale da ottenere una matrice 3×3 che denotiamo con C_{λ} e si determini qual è il rango di C_{λ} in funzione del parametro λ ;
- (b) si determinino i valori del parametro λ per cui C_{λ} è diagonalizzabile;
- (c) posto $\lambda = 1$, si determinino gli autovalori e gli autospazî di C_1 , e si determini l'eventuale matrice diagonale simile a C_1 .
- (2) Si consideri il seguente sistema lineare a parametro $\lambda \in \mathbb{R}$ di quattro equazioni nelle tre incognite $x,\,y$ e z

$$\begin{cases} x - \lambda z = -1 \\ 2y - \lambda z = -1 \\ 2x - \lambda z = \lambda - 1 \\ \lambda x - 2y - 2\lambda z = -2\lambda - 2. \end{cases}$$

(a) Determinare per quali valori del parametro $\lambda \in \mathbb{R}$ il sistema ha soluzioni;

- (b) se A_{λ} è la matrice completa del sistema e λ_0 è un valore del parametro per cui il sistema ha soluzioni, trovare l'inversa di un minore non nullo di rango massimo di A_{λ_0} (qui per minore non nullo di A_{λ_0} intendiamo una matrice quadrata a determinante non nullo ottenuta da A_{λ_0} eliminando da essa alcune righe e alcune colonne);
- (c) trovare lo spazio vettoriale V_{λ_0} parallelo allo spazio affine delle soluzioni del sistema per ciascun λ_0 e lo spazio vettoriale supplementare a V_{λ_0} in \mathbb{R}^3 .
- (3) Nello spazio vettoriale \mathbb{R}^4 , si considerino i seguenti sottospazî vettoriali

$$V_1 := \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z + w = 0, \ x + 2y + 3z + 4w = 0\}$$
 $V_2 := \{(x, y, z, w) \in \mathbb{R}^4 \mid 4x + 3y + 2z + w = 0, \ 4x + 2y + 3w = 0\}$
e sia $V := V_1 \cap V_2$ il sottospazio vettoriale intersezione di V_1 e V_2 . Si determini

- (a) la dimensione di V e si trovi una sua base;
- (b) la dimensione dello spazio $V_1 + V_2$ generato da V_1 e V_2 , la sua dimensione e una sua base;
- (c) un sistema lineare che abbia come soluzione lo spazio affine V+(1,0,1,0).