

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Istituzioni di Analisi Superiore II, Analisi 6

Prova Scritta del 17 marzo 2003

Cog	gnor	ne e	e No	me	:																			
Matricola:								Documento d'identità (se chiesto):																

Tempo a disposizione: 3 ore.

1. Dire se la funzione f seguente è integrabile su $[0,1] \times [0,1]$, e se sì calcolarne l'integrale:

$$f(x,y) := \begin{cases} \frac{1}{x^2} & \text{se } 0 \le y \le x \le 1, \ x > 0, \\ \frac{1}{y^2} & \text{se } 0 \le x < y \le 1, \\ 0 & \text{se } x = y = 0 \end{cases}$$

2. Calcolare il volume del solido seguente:

$$E := \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le 1 - x^2 - y^2 \right\}.$$

- **3.** Siano date due funzioni $f, g: \mathbb{R} \to \mathbb{R}$. Dato un rettangolo $R = [x_1, x_2] \times [y_1, y_2]$ $(x_1 < x_2, y_1 < y_2)$, poniamo $\lambda(R) := (f(x_2) f(x_1))(g(y_2) g(y_1))$.
- **a.** Verificare che se R_1, R_2 sono rettangoli non sovrapposti con un lato in comune, allora $R_1 \cup R_2$ è ancora un rettangolo e $\lambda(R_1 \cup R_2) = \lambda(R_1) + \lambda(R_2)$.
- **b.** Siano $x_0 < x_1 < \ldots < x_n, y_0 < y_1 < \ldots < y_m$ e $R_{i,j} := [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ per $1 \le i \le n$, $1 \le j \le m$. Mostrare che

$$\lambda([x_0, x_n] \times [y_0, y_m]) = \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} \lambda(R_{i,j}).$$

c. Sia $\mathcal{A} = \{R_k : k \in A\}$ una famiglia finita di rettangoli a due a due non sovrapposti, e la cui unione sia uguale a un rettangolo R. Dimostrare che $\lambda(R) = \sum_{k \in A} \lambda(R_k)$. (Posto $R_k = [x'_k, x''_k] \times [y'_k, y''_k]$, sia $n(\mathcal{A}) + 1$ la cardinalità dell'insieme degli x'_k e degli x''_k al variare di $k \in A$, e sia $m(\mathcal{A}) + 1$ la cardinalità dell'insieme degli y'_k, y''_k ; quando $\#(A) = n(\mathcal{A})m(\mathcal{A})$ siamo nel punto \mathbf{b} ; ragionare per induzione sul valore della differenza $n(\mathcal{A})m(\mathcal{A}) - \#(A)$ usando il punto \mathbf{a}).

Punti: 10, 10, 5+10+15.