

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Istituzioni di Analisi Superiore, primo modulo

Prova Scritta del 27 novembre 2000

Cog	gnoi	ne e	e No	ome	:																	
Matricola:						Documento d'identità (se chiesto):																

Tempo a disposizione: 3 ore.

1. Sia (X, \mathcal{M}, μ) uno spazio di misura completo con $\mu(X) < +\infty$, S l'insieme delle funzioni $X \to \mathbb{R}$ semplici ed \mathcal{M} -misurabili, $f: X \to [0, +\infty[$ una funzione limitata,

$$S_f^- := \left\{ s \in S \ : \ 0 \le s \le f \right\}, \qquad S_f^+ := \left\{ s \in S \ : \ f \le s \right\}.$$

Dimostrare che $f \in \mathcal{M}$ -misurabile se e solo se

$$\sup \Big\{ \int_X s \, d\mu \ : \ s \in S_f^- \Big\} = \inf \Big\{ \int_X s \, d\mu \ : \ s \in S_f^+ \Big\}.$$

2. Dimostrare che \mathbb{Q} non è l'intersezione di alcuna famiglia numerabile di aperti di \mathbb{R} . (Si può seguire la traccia seguente: sia per assurdo V_n una successione di aperti di \mathbb{R} che ha \mathbb{Q} per intersezione, e sia r_n una successione che copre tutti i razionali. Costruire una successione I_n di intervalli aperti non vuoti tali che I_{n+1} ha chiusura contenuta in $I_n \cap V_n \setminus \{r_n\}$. Dimostrare che l'intersezione degli I_n contiene un numero irrazionale.)

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Istituzioni di Analisi Superiore, primo modulo

Prova Scritta del 27 novembre 2000

Svolgimento

1. Se $s_1, s_2 \in S_f^-$ allora $\max\{s_1, s_2\} \in S_f^-$. Infatti: il massimo fra due funzioni che hanno solo un numero finito di valori ≥ 0 ha pure un numero finito di valori ≥ 0 ; il massimo di due funzioni \mathcal{M} -misurabili è \mathcal{M} -misurabile; il massimo fra due funzioni $\leq f$ è pure $\leq f$. Analogamente se $s_1, s_2 \in S_f^+$ allora $\min\{s_1, s_2\} \in S_f^+$. Ricordiamo inoltre che le funzioni semplici sono sempre limitate. Trovandoci in uno spazio X di misura finita, tutte le funzioni di S_f^- e di S_f^+ sono in $L^1(\mu)$. Supponiamo ora che

$$\alpha:=\sup\Big\{\int_X s\,d\mu\ :\ s\in S_f^-\Big\}=\inf\Big\{\int_X s\,d\mu\ :\ s\in S_f^+\Big\}.$$

Questo numero α è finito, perché f è limitata e $\mu(X) < +\infty$. Siano $s_n \in S_f^-, s_n' \in S_f^+$ tale che

$$\lim_{n \to +\infty} \int_X s_n \, d\mu = \lim_{n \to +\infty} \int_X s'_n \, d\mu = \alpha \, .$$

Eventualmente sostituendo s_n con $\max\{s_1, s_2, \ldots, s_n\}$ e s'_n con $\min\{s'_1, s'_2, \ldots, s'_n\}$ possiamo supporre che $0 \le s_n \le s_{n+1} \le f \le s'_{n+1} \le s'_n \le s'_1 \in L^1(\mu)$. Essendo monotone e limitate, le due successioni di funzioni s_n e s'_n convergono puntualmente a due funzioni \mathcal{M} -misurabili positive che chiameremo g e h rispettivamente, e risulta $g \le f \le h$. Per il teorema della convergenza dominata abbiamo che

$$\int_X s_n d\mu \to \int_X g d\mu \qquad e \qquad \int_X s'_n d\mu \to \int_X h d\mu.$$

Per ipotesi però $\int_X s_n d\mu$ e $\int_X s'_n d\mu$ tendevano entrambe ad α . Quindi g ed h hanno lo stesso integrale (finito), per cui

$$\int_X \underbrace{(h-g)}_{>0} d\mu = \int_X h d\mu - \int_X g d\mu = \alpha - \alpha = 0.$$

Deduciamo che h-g=0 μ -quasi ovunque, ossia h=g μ -quasi ovunque. La f risulta quindi \mathcal{M} -misurabile in quanto coincide μ -quasi ovunque con una funzione \mathcal{M} -misurabile, ricordando che per ipotesi lo spazio di misura è completo.

Viceversa, supponiamo che f sia \mathcal{M} -misurabile. Per definizione di integrale

$$\int_X f \, d\mu = \sup \left\{ \int_X s \, d\mu \ : \ s \in S_f^- \right\}.$$

Dalla definizione di S_f^+ segue subito che

$$\int_X f \, d\mu \le \inf \Bigl\{ \int_X s \, d\mu \ : \ s \in S_f^+ \Bigr\}.$$

Per dimostrare che quest'ultima disuguaglianza è in realtà un'uguaglianza, sia m una costante finita tale che $f \leq m$ su tutto X (ricordiamo che per ipotesi f è limitata). Allora m-f è una funzione ≥ 0 e \mathcal{M} -misurabile. Sappiamo allora che esiste una successione t_n di funzioni semplici \mathcal{M} -misurabili tali che $0 \leq t_n \nearrow m-f$. Ma allora $m-t_n$ è una successione di funzioni semplici \mathcal{M} -misurabili tali che $m \geq m-t_n \searrow f \geq 0$. In

particolare $m - t_n \in S_f^+$ e per il teorema della convergenza monotona e la finitezza di tutti gli integrali in gioco

$$\lim_{n \to +\infty} \int_X \underbrace{(m - t_n)}_{\in S_f^+} d\mu = \int_X m \, d\mu - \lim_{n \to +\infty} \int_X t_n \, d\mu = m\mu(X) - \int_X (m - f) d\mu =$$
$$= m\mu(X) - m\mu(X) + \int_X f \, d\mu = \int_X f \, d\mu.$$

Concludiamo che come desiderato

$$\int_X f \, d\mu = \inf \left\{ \int_X s \, d\mu \ : \ s \in S_f^+ \right\}.$$

2. Sia per assurdo V_n una successione di aperti di $\mathbb R$ tal che $\bigcap_n V_n = \mathbb Q$. In particolare tutti i V_n sono aperti densi di $\mathbb R$. Se togliamo un punto da un aperto denso di $\mathbb R$, quello che rimane è ancora aperto denso. Sia r_n una successione che al variare di $n \in \mathbb N$ copre tutti i numeri razionali. $V_1 \setminus \{r_1\}$ è un aperto denso di $\mathbb R$, perché tale è V_1 . Sia I_1 un intervallo aperto limitato e non vuoto con chiusura contenuta in $V_1 \setminus \{r_1\}$. Ora $V_2 \setminus \{r_2\}$ è un aperto denso in $\mathbb R$, e quindi $V_2 \setminus \{r_2\}$ ha intersezione aperta e non vuota con I_1 . Esiste pertanto un intervallo aperto non vuoto I_2 con chiusura contenuta in $I_1 \cap V_2 \setminus \{r_2\}$. Procedendo di questo passo, supponiamo di avere definito l'intervallo aperto non vuoto I_n . Dato che $V_n \setminus \{r_n\}$ è un aperto denso in $\mathbb R$, possiamo trovare un intervallo aperto non vuoto I_{n+1} con chiusura contenuta in $I_n \cap V_n \setminus \{r_n\}$. Siano a_n, b_n gli estremi di I_n . Poiché la chiusura di I_{n+1} è contenuta in I_n ed entrambi sono aperti non vuoti, abbiamo che $a_n < a_{n+1} < b_{n+1} < b_n$. Sia \bar{x} un qualsiasi numero reale compreso fra il limite di a_n e quello di b_n . Essendo $a_n < \bar{x} < b_n$, abbiamo che $\bar{x} \in I_n \subset V_n$ per ogni n, e dunque $\bar{x} \in \bigcap_n I_n \subset \bigcap_n V_n$. D'altra parte \bar{x} non è razionale. Infatti per ogni numero razionale r_{n_0} abbiamo per costruzione che $\bar{x} \in I_{n_0} \cap V_n \setminus \{r_{n_0}\}$, e quindi $\bar{x} \neq r_{n_0}$.

Con la stessa dimostrazione si vede che in generale l'intersezione di una famiglia numerabile di aperti densi di \mathbb{R} è sempre più che numerabile.