

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Istituzioni di Analisi Superiore, primo modulo

Prova Scritta dell'11 luglio 2000

Cog	gnor	ne e	e No	ome	:																	
Matricola:						Documento di identità (se chiesto):																

Tempo a disposizione: 3 ore.

- **1.** Sia X lo spazio vettoriale delle funzioni $[0,1] \to \mathbb{R}$ limitate, dotato della norma $||f|| := \sup |f|$.
- **a.** Se $\delta > 0$ la funzione φ_{δ} definita come

$$\varphi_{\delta}(f) := \sup_{|x-y| < \delta} |f(x) - f(y)| \quad \text{per } f \in X$$

è continua da X in \mathbb{R} .

- **b.** Dimostrare che l'insieme delle funzioni (uniformemente) continue da [0,1] in \mathbb{R} è un sottinsieme boreliano di X.
- 2. Studiare continuità e derivabilità della funzione

$$F(x) := \int_0^{+\infty} e^{-t} \cos(t^x) dt.$$

Dire per quali valori di $x \geq 0$ ha senso e vale la relazione

$$F(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{\Gamma(2nx+1)}{(2n)!},$$

dove Γ è la funzione Gamma di Eulero-Legendre.

(La derivabilità per x < 0 si può studiare per esempio considerando G(y) := F(-1/y) per y < 0 e cambiando variabile $y = t^{-1/y}$; la serie si trova espandendo il coseno in serie di Taylor).

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Istituzioni di Analisi Superiore, primo modulo

Prova Scritta dell'11 luglio 2000

Svolgimento

1. a. Sia X lo spazio vettoriale delle funzioni $[0,1] \to \mathbb{R}$ limitate, dotato della norma $||f|| := \sup |f|$. Per $\delta > 0$ definiamo la funzione φ_{δ} come

$$\varphi_{\delta}(f) := \sup_{|x-y| < \delta} |f(x) - f(y)| \quad \text{per } f \in X$$

Dobbiamo dimostrare che φ_{δ} è continua da X in \mathbb{R} . Innanzitutto notiamo che φ_{δ} è a valori finiti ≥ 0 per la definizione di X. Siano poi $f, g \in X$ e cerchiamo di valutare $|\varphi_{\delta}(f) - \varphi_{\delta}(g)|$. Dalla disuguaglianza triangolare

$$\left| f(x) - f(y) \right| \leq \underbrace{\left| f(x) - g(x) \right|}_{\leqslant \|f - g\|} + \left| g(x) - g(y) \right| + \underbrace{\left| g(y) - f(y) \right|}_{\leqslant \|f - g\|} \leq \left| g(x) - g(y) \right| + 2\|f - g\|.$$

Quindi

$$\varphi_{\delta}(f) = \sup_{|x-y| < \delta} |f(x) - f(y)| \le \sup_{|x-y| < \delta} |f(x) - f(y)| + 2||f - g|| = \varphi_{\delta}(g) + 2||f - g||,$$

da cui

$$\varphi_{\delta}(f) - \varphi_{\delta}(g) \le 2||f - g||.$$

Scambiando il ruolo fra f e g e mettendo insieme le disuguaglianze si ottiene infine che

$$|\varphi_{\delta}(f) - \varphi_{\delta}(g)| \le 2||f - g|| \quad \forall f, g \in X,$$

che implica la continuità (uniforme) di φ_{δ} su X.

b. L'insieme U delle funzioni (uniformemente) continue da [0,1] in \mathbb{R} è contenuto in X, perché ogni funzione reale continua su un compatto è limitata. Per la definizione di funzione uniformemente continua,

$$f \in U \iff \left(\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in [0, 1] \quad |x - y| < \delta \implies \left| f(x) - f(y) \right| \le \varepsilon \right).$$

Si vede che possiamo limitarci a prendere ε, δ reciproci di naturali (non nulli), per cui

$$f \in U \iff \left(\forall n \in \mathbb{N} \mid \exists m \in \mathbb{N} \mid \forall x, y \in [0, 1] \mid |x - y| < \frac{1}{m} \Rightarrow |f(x) - f(y)| \le \frac{1}{n} \right).$$

In altre parole,

$$f \in U \quad \iff \quad \left(\forall n \in \mathbb{N} \quad \exists m \in \mathbb{N} \quad \sup_{|x-y| < 1/m} \left| f(x) - f(y) \right| \le \frac{1}{n} \right),$$

o ancora,

$$f \in U \quad \iff \quad \left(\forall n \in \mathbb{N} \quad \exists m \in \mathbb{N} \quad \varphi_{1/m}(f) \leq \frac{1}{n} \right),$$

In termini di insiemi:

$$U = \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \left\{ f \in X : \varphi_{1/m}(f) \le \frac{1}{n} \right\} = \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \varphi_{1/m}^{-1}([0, 1/n]).$$

L'insieme $\varphi_{1/m}^{-1}([0,1/n])$ è chiuso (quindi boreliano) in X perché la $\varphi_{1/m}$ è continua e [0,1/n] è chiuso in \mathbb{R} . L'insieme dei boreliani, in quanto σ -algebra, è stabile per unioni e intersezioni numerabili. Quindi U è boreliano in X.

2. Poniamo

$$f(t,x) := e^{-t} \cos t^x$$
 per $t > 0, x \in \mathbb{R}$.

Per ogni $x \in \mathbb{R}$ fissato la funzione $t \mapsto f(t,x)$ è ben definita e continua da $]0, +\infty[$ in \mathbb{R} , ed è in $L^1(]0, +\infty[$) perché si può maggiorare in valore assoluto con $t \mapsto e^{-t}$, che ha evidentemente integrale finito su $]0, +\infty[$. Anzi, poiché la maggiorazione

$$|f(t,x)| \le e^{-t}$$

è uniforme in x, e dato che la funzione $x \mapsto f(t,x)$ è continua da $\mathbb R$ in $\mathbb R$ per ogni t>0 fissato, grazie al teorema della convergenza dominata concludiamo che la funzione

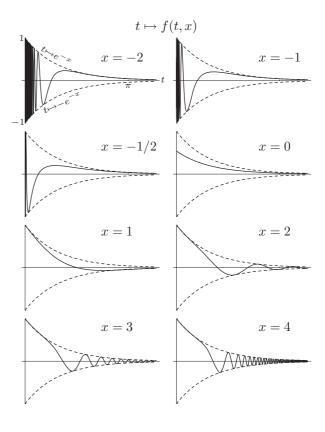
$$F(x) := \int_0^{+\infty} f(t, x) \, dt$$

è continua da $\mathbb R$ in $\mathbb R$. La derivata di f(t,x) rispetto a x è

$$\frac{\partial f}{\partial x}(t,x) = \frac{\partial}{\partial x}e^{-t}\cos e^{x\ln t} =$$

$$= -e^{-t}(\operatorname{sen} e^{x\ln t})e^{x\ln t}\ln t =$$

$$= -e^{-t}t^{x}(\operatorname{sen} t^{x})\ln t,$$



che è pure continua rispetto a x per ogni t>0. Una prima maggiorazione, non ancora uniforme in x, è

$$\left| \frac{\partial f}{\partial x}(t, x) \right| \le e^{-t} t^x |\ln t|.$$

Non ci sono problemi per $t \to +\infty$, mentre ce ne sono per $t \to 0^+$, quando $x \le -1$. Studiamo dapprima il caso $-1 + \varepsilon \le x \le M$, con $\varepsilon > 0$. Allora

$$-1 + \varepsilon \le x \le M \quad \Rightarrow \quad \left| e^{-t} t^x \ln t \right| \le \left\{ \begin{array}{ll} e^{-t} t^M |\ln t| & \text{se } t \ge 1, \\ e^{-t} t^{-1 + \varepsilon} |\ln t| & \text{se } 0 < t < 1. \end{array} \right.$$

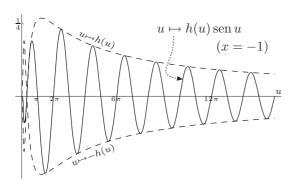
L'ultimo membro è una funzione di $L^1(]0,+\infty[)$ perché l'andamento asintotico per $t\to +\infty$ è $e^{-t}t^M|\ln t|=o(e^{-t/2})$ e per $t\to 0^+$ è $e^{-t}t^{-1+\varepsilon}|\ln t|=o(t^{-1+\varepsilon/2})$. Quindi F è di classe C^1 su $[-1+\varepsilon,M]$. Valendo questo per ogni $M>\varepsilon>0$ deduciamo che F è di classe C^1 su $[-1,+\infty[$ e

$$F'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(t, x) dt = -\int_0^{+\infty} e^{-t} t^x (\operatorname{sen} t^x) \ln t dt \qquad \operatorname{per} x > -1.$$

I conti precedenti non portano a niente per $x \leq -1$, perché in tal caso $e^{-t}t^x|\ln t|$ non ha andamento integrabile per $t \to 0^+$. Non è nemmeno chiaro se $\int_0^{+\infty} \partial f/\partial x\,dt$ abbia senso quando $x \leq -1$. Per stabilirlo, proviamo il cambio di variabile $t^x=u,\,t=u^{1/x},\,dt=(1/x)u^{-1+1/x}du,\,$ con x<0:

$$\int_0^{+\infty} \left| e^{-t} t^x (\operatorname{sen} t^x) \ln t \right| dt = \int_{+\infty}^0 \left| e^{-u^{1/x}} u (\operatorname{sen} u) (\ln u^{1/x}) \right| \cdot \frac{u^{-1+1/x}}{x} du =$$

$$= -\frac{1}{x|x|} \int_0^{+\infty} \underbrace{e^{-u^{1/x}} u^{1/x} |\ln u|}_{=|h(u)|} \cdot |\operatorname{sen} u| \ du .$$



Quando x < 0 la funzione

$$h(u) := e^{-u^{1/x}} u^{1/x} \ln u$$

è $\geq 0,$ è asintotica a $u^{1/x} \ln x$ per $x \to +\infty,$ e la sua derivata rispetto a uè

$$\frac{\partial h(u)}{\partial u} = \frac{1}{x} e^{-u^{1/x}} u^{1/x-1} \left(x + (1 - u^{1/x}) \ln u \right),$$

che è negativa per ogni u abbastanza grande. Per risultati generali sugli integrali del tipo $\int_0^{+\infty} h(u) \sin u \, du$ con h positiva decrescente, è assodato che

$$\int_0^{+\infty} \left| e^{-u^{1/x}} u^{1/x} (\operatorname{sen} u) (\ln u) \right| du = +\infty \quad \text{per } x \le -1 \,,$$

per cui l'integrale

$$\int_0^{+\infty} \frac{\partial f}{\partial x}(t, x) \, dt$$

perde di senso per $x \le -1$. Non è escluso comunque che la F possa essere derivabile anche per $x \le -1$. Proviamo a definire

$$G(y) := F(-1/y)$$
 per $y > 0$.

La G(y) è derivabile per y > 0 se e solo se la F(x) = G(-1/x) è derivabile per x < 0. Allora

$$G(y) = \int_0^{+\infty} f(t, -1/y) dt = \int_0^{+\infty} e^{-t} \cos t^{-1/y} dt.$$

Facciamo il cambio di variabile $t^{-1/y} = \tau$, cioè $t = \tau^{-y}$, $dt = -y\tau^{-y-1}d\tau$:

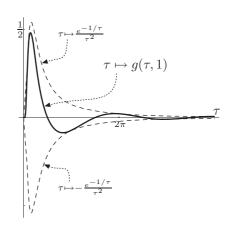
$$G(y) = \int_{-\infty}^{0} e^{-\tau^{-y}} (\cos \tau)(-y) \tau^{-y-1} d\tau = y \int_{0}^{+\infty} \frac{e^{-1/\tau^{y}}}{\tau^{y+1}} \cos \tau \, d\tau.$$

L'ultimo integrando

$$g(\tau, y) := \frac{e^{-1/\tau^y}}{\tau^{y+1}} \cos \tau$$

è mostrato nella figura qui accanto per y=1 (che corrisponde a x=-1). L'esponente y+1 (che è >1) al denominatore è quello che ci aggiusta i conti. La $g(\tau,y)$ è una funzione continua e derivabile di y, e per $0<\varepsilon\leq y\leq M<+\infty$ si maggiora con

$$\left|g(\tau,y)\right| \leq \frac{e^{-1/\tau^y}}{\tau^{y+1}} \leq \begin{cases} \frac{e^{-1/\tau^\varepsilon}}{\tau^{M+1}} & \text{per } 0 < \tau \leq 1, \\ \frac{1}{\tau^{\varepsilon+1}} & \text{per } \tau > 1. \end{cases}$$



L'ultimo membro è infinitesimo per $\tau \to 0^+$, come si vede col cambio di variabile $1/\tau^{\varepsilon} = z, \, \tau = z^{-1/\varepsilon}$:

$$\lim_{\tau \to 0^+} \frac{e^{-1/\tau^\varepsilon}}{\tau^{M+1}} = \lim_{z \to +\infty} \frac{e^{-z}}{z^{-(M+1)/\varepsilon}} = \lim_{z \to +\infty} \frac{z^{(M+1)/\varepsilon}}{e^z} = 0\,,$$

dato che l'esponenziale crescente è infinito di ordine superiore a ogni polinomio. Per $\tau \to +\infty$ l'andamento è $1/\tau^{1+\varepsilon}$, che è integrabile. Dunque G è continua su $[\varepsilon, M]$ per ogni $M > \varepsilon > 0$, e quindi su tutto $]0, +\infty[$, ma questo lo sapevamo già, perché G(y) = F(-1/x), e F è continua. La derivata di $g(\tau, y)$ rispetto a y

$$\frac{\partial g}{\partial y}(\tau, y) = \frac{\partial}{\partial y} \exp\left(-e^{-y \ln \tau} - (y+1) \ln y\right) \cos \tau =
= \left(-e^{-y \ln \tau}(-\ln \tau) - \ln \tau\right) \exp\left(-e^{-y \ln \tau} - (y+1) \ln \tau\right) \cos \tau =
= (\ln \tau) \left(\frac{1}{\tau^y} - 1\right) \frac{e^{-1/\tau^y}}{\tau^{y+1}} \cos \tau.$$

si può maggiorare così, quando $0 < \varepsilon \le y \le M < +\infty$:

$$\left| (\ln \tau) \left(\frac{1}{\tau^y} - 1 \right) \frac{e^{-1/\tau^y}}{\tau^{y+1}} \cos \tau \right| \leq \left| \ln \tau \right| \left(\frac{1}{\tau^y} + 1 \right) \frac{e^{-1/\tau^y}}{\tau^{y+1}} \leq \begin{cases} \left| \ln \tau \right| \left(\frac{1}{\tau^M} + 1 \right) \frac{e^{-1/\tau^\varepsilon}}{\tau^{M+1}} & \text{per } 0 < \tau \leq 1, \\ \left| \ln \tau \right| \left(\frac{1}{1^\varepsilon} + 1 \right) \frac{1}{\tau^{\varepsilon+1}} = \frac{2|\ln \tau|}{\tau^{\varepsilon+1}} & \text{per } \tau > 1. \end{cases}$$

Grazie al termine esponenziale, la funzione all'ultimo membro è infinitesima per $\tau \to 0^+$, come si vede di nuovo col cambio di variabile $1/\tau^{\varepsilon} = z$, $\tau = z^{-1/\varepsilon}$:

$$\begin{split} \lim_{\tau \to 0^+} \left| \ln \tau \right| \left(\frac{1}{\tau^M} + 1 \right) \frac{e^{-1/\tau^\varepsilon}}{\tau^{M+1}} &= \lim_{z \to +\infty} \left| \ln z^{-1/\varepsilon} \right| \left(\frac{1}{z^{-M/\varepsilon}} + 1 \right) \frac{e^{-z}}{z^{-(M+1)/\varepsilon}} &= \\ &= \lim_{z \to +\infty} \frac{\left| \ln z \right| \cdot z^{(M+1)/\varepsilon} (z^{M/\varepsilon} + 1)}{\varepsilon e^z} &= 0 \,. \end{split}$$

Per $\tau \to +\infty$ l'andamento asintotico di $2|\ln \tau|/\tau^{\varepsilon+1}$ è $o(1/\tau^{1+\varepsilon/2})$, e quindi è integrabile. Dunque G è di classe C^1 su $[\varepsilon, M]$ per ogni $0 < \varepsilon < M < +\infty$, e quindi su tutto $]0, +\infty[$, e

$$G'(y) = \int_0^{+\infty} g(\tau, y) d\tau + y \int_0^{+\infty} \frac{\partial g}{\partial y}(\tau, y) d\tau.$$

 $\frac{1}{2}$ F

$$F'(x) = \frac{G'(-1/x)}{x^2} = 1 \int_{-1/\tau}^{+\infty} e^{-1/\tau^{-1/x}}$$

Di conseguenza F è di classe C^1 su $]-\infty,0[$ e

$$= \frac{1}{x^2} \left(\int_0^{+\infty} \frac{e^{-1/\tau^{-1/x}}}{\tau^{1-1/x}} \cos \tau \, d\tau - \frac{1}{x} \int_0^{+\infty} (\ln \tau) \left(\frac{1}{\tau^{-1/x}} - 1 \right) \frac{e^{-1/\tau^{-1/x}}}{\tau^{1-1/x}} \cos \tau \, d\tau \right)$$

Due valori di F che si calcolano elementarmente sono $F(0) = \cos 1$ e F(1) = 1/2. Il grafico di F qui accanto è stato costruito al calcolatore per via simbolica e confermato con integrazioni numeriche: nessuno dei due metodi è garantito completamente da errori, ma il fatto che i risultati concordino con molte cifre decimali lascia abbastanza tranquilli che la F ha proprio questo andamento. Contrariamente a quanto potrebbe sembrare ad occhio, x=1 non è un punto di mi-

è chiaro il comportamento di F(x) per $x \to \pm \infty$, perché l'integrando f(t,x) non ha limite per $x \to +\infty$ quando t > 1, e non ha limite per $x \to -\infty$ quando

nimo per $0 \le x \le 3$, perché $F(9/8) \le F(1)$. Non

0 < t < 1.

Espandiamo il coseno in serie di Taylor:

$$F(x) = \int_0^{+\infty} e^{-t} \cos t^x \, dt = \int_0^{+\infty} e^{-t} \left(\sum_{n=0}^{+\infty} (-1)^n \frac{(t^x)^{2n}}{(2n)!} \right) dt = \int_0^{+\infty} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} t^{2nx} e^{-t} \, dt \, .$$

La serie non è a termini positivi. Per vedere se si può scambiare l'ordine fra integrale e somma, calcoliamo la somma delle norme in L^1 degli addendi:

$$\sum_{n=0}^{+\infty} \int_{0}^{+\infty} \left| \frac{(-1)^{n}}{(2n)!} t^{2nx} e^{-t} \right| dt = \int_{0}^{+\infty} \sum_{n=0}^{+\infty} \frac{1}{(2n)!} t^{2nx} e^{-t} dt = \int_{0}^{+\infty} e^{-t} \left(\sum_{n=0}^{+\infty} \frac{(t^{x})^{2n}}{(2n)!} \right) dt =$$

$$= \int_{0}^{+\infty} e^{-t} \cosh t^{x} dt = \int_{0}^{+\infty} e^{-t} \frac{e^{t^{x}} + e^{-t^{x}}}{2} dt = \frac{1}{2} \int_{0}^{+\infty} \left(e^{t^{x} - t} + e^{-t^{x} - t} \right) dt$$

Quando $x \ge 0$ L'ultimo integrando $e^{t^x-t}+e^{-t^x-t}$ ha limite finito per $t \to 0^+$, e l'andamento asintotico per $t \to +\infty$ è integrabile quando $0 \le x < 1$, e non integrabile quando $x \ge 1$. Pertanto quando $0 \le x < 1$ si può scambiare l'ordine fra somma e integrale e ottenere, usando la funzione Gamma:

$$F(x) = \sum_{n=0}^{+\infty} \int_0^{+\infty} \frac{(-1)^n}{(2n)!} t^{2nx} e^{-t} \, dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \int_0^{+\infty} t^{2nx} e^{-t} \, dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \Gamma(2nx+1) \quad \forall x \in [0,1[\,.]]$$

Se $x \ge 1$ non si può applicare il teorema di integrazione per serie. Questo da solo non permette di dedurre che l'uguaglianza

$$F(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{\Gamma(2nx+1)}{(2n)!}$$

non possa valere lo stesso. Però quando $x \geq 1$ si ha che $2nx+1 \geq 2n+1$ e quindi, usando il fatto che Γ è crescente su $[2,+\infty[$ e che $\Gamma(k+1)=k!$ per $k\in\mathbb{N},$

$$\frac{\Gamma(2nx+1)}{(2n)!} \ge \frac{\Gamma(2n+1)}{(2n)!} = \frac{(2n)!}{(2n)!} = 1 \qquad \forall x \ge 1, \ n \ge 1.$$

Dunque quando $x \ge 1$ la serie

$$\sum_{n=0}^{+\infty} (-1)^n \frac{\Gamma(2nx+1)}{(2n)!}$$

non converge, perché il termine generale non è infinitesimo. Concludiamo che quando $x \geq 1$ non ha senso l'uguaglianza

$$F(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{\Gamma(2nx+1)}{(2n)!}.$$

La figura qui accanto mostra i grafici delle prime somme parziali della serie:

$$s_n(x) := \sum_{k=0}^n (-1)^k \frac{\Gamma(2kx+1)}{(2k)!}.$$

