

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Analisi Matematica 5

Prova Scritta del 14 aprile 2008

Cog	gnor	ne e	e No	ome	:																		
Matricola:							Documento d'identità (se chiesto):																

Tempo a disposizione: 3 ore.

- 1. Sia $f: \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ una funzione continua e limitata. Sia $n \mapsto x_n$ una successione in \mathbb{R}^N convergente a \bar{x} . Per ogni $n \in \mathbb{N}$ sia $y_n: \mathbb{R} \to \mathbb{R}$ una soluzione massimale del problema di Cauchy $y'_n(t) = f(t, y_n(t))$, $y_n(0) = x_n$. Dimostrare che esiste una sottosuccessione y_{n_k} che converge puntualmente (e uniformemente su ciascun compatto di \mathbb{R}) a una soluzione massimale del problema $\bar{y}'(t) = f(t, \bar{y}(t))$, $\bar{y}(0) = \bar{x}$. Se per caso il problema con dato iniziale \bar{x} ha soluzione massimale unica, allora la successione y_n tutta quanta converge a \bar{y} . (Su ciascun compatto fissato si usa il teorema di Ascoli-Arzelà, e il passaggio al limite sotto il segno di integrale...)
- **2.** Si consideri il sistema di equazioni differenziali $x'(t) = (1-y(t))x(t)^2$, $y'(t) = (x(t)^2-1)y(t)$.
 - a. Discutere esistenza e unicità locale, ed eventualmente in grande.
- **b.** Trovare eventuali punti di equilibrio (cioè le soluzioni costanti). Risolvere esplicitamente le equazioni nel caso di dati iniziali su uno dei due assi cartesiani.
- **c.** Trovare una costante del moto. (Passare all'equazione "totale" associata, che è a variabili separabili...)
- d. Mostrare che tutte le soluzioni massimali che passano per il primo quadrante sono definite globalmente in t e periodiche.
 (Studiare gli insiemi di livello della costante del moto, in analogia con l'equazione di Lotka-Volterra; qui addirittura gli insiemi di livello si possono esplicitare).
- **3.** Consideriamo la trasformazione lineare nel piano \mathbb{R}^2 definita da $\varphi(x,y) := (x,x+y)$.
- **a.** Sia I un rettangolo limitato in \mathbb{R}^2 ed $\varepsilon > 0$. Mostrare che $\varphi(I)$ è un parallelogramma, e che si può ricoprire con un numero finito di rettangoli $I_1 \dots I_n$ a due a due disgiunti e tali che $\sum_{k=1}^n \operatorname{area} \varphi(I_k) < \operatorname{area} I + \varepsilon$.

(Affettare $I \in \varphi(I)$ in listarelle verticali di spessore sufficientemente piccolo...)

- **b.** Il punto **a** precedente vale anche con φ^{-1} al posto di φ . (L'inversa si calcola facilmente...)
- **c.** Mostrare che per ogni sottinsieme limitato E del piano, l'immagine $\varphi(E)$ ha la stessa misura esterna (secondo Lebesgue) di E. Si può fare a meno dell'ipotesi che E sia limitato?

Punti: 20, 4+6+8+12, 10+5+8.