

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Istituzioni di Analisi Superiore, primo modulo

Prova Scritta del 3 febbraio 1997

Cog	gnor	ne e	e No	ome	:															
Matricola:								cum	ente	o di	ide	ntit	à (s	e ch	iest	:(o				

Chi porta quest'unico modulo ha 90 minuti di tempo e deve ritenersi a punteggio pieno con 15 punti. Chi porta due moduli ha tempo tre ore complessive e ha punteggio pieno con 30 punti, anche se presi tutti da uno solo dei due compiti. Il terzo esercizio è riservato agli studenti che hanno seguito il corso nel 1995/96.

1. Dimostrare che per $\omega \in \mathbb{R} \setminus \{0\}$, $a \in \mathbb{R}$ si ha

$$\int_0^{+\infty} \left| \frac{x \sin \omega x}{a^2 + x^2} \right| dx = +\infty \qquad \text{e} \qquad \lim_{r \to +\infty} \int_0^r \frac{x \sin \omega x}{a^2 + x^2} dx = \frac{\pi}{2} e^{-\omega |a|}.$$

(Per il secondo integrale usare il fatto, se è vero, che $x/(a^2+x^2)=\int_0^\infty e^{-xt}\cos at\,dt$, oppure, usando i complessi, decomporre $x/(a^2+x^2)$ in somma e notare che $1/(x\pm ia)=\int_0^\infty \exp(-(x\pm ia)t)\,dt$. Scambiare poi se si può l'ordine di integrazione, calcolare quegli integrali che sono elementari e passare al limite per $r\to +\infty$).

2. Sia (X, \mathcal{M}, μ) uno spazio di misura positiva tale che $\mu(X) < +\infty$. Sia $T: X \to X$ una funzione biiettiva, che trasforma misurabili in misurabili, e che conserva la misura, cioè tale che $\mu(T(E)) = \mu(E)$ per ogni E misurabile. Dato un qualsiasi $E \in \mathcal{M}$ dimostrare che, rispetto a μ , quasi tutti i punti $x \in E$ hanno la proprietà che almeno una delle iterate $T(x), T^2(x), T^3(x) \dots$ cade in E.

(Sia F l'insieme degli $x \in E$ le cui iterate non cadono mai in E. F è misurabile? Mostrare che le immagini $T(F), T^2(F), T^3(F) \dots$ sono sottinsiemi misurabili di X a due a due disgiunti, con la stessa misura...).

3. Consideriamo il problema di Cauchy

$$\dot{x} = |x| - |t^3 + t|, \qquad x(t_0) = x_0.$$

- **a.** Dimostrare che il problema ha una e una sola soluzione massimale $t \mapsto x(t, t_0, x_0)$, che è definita per ogni $t \in \mathbb{R}$. Cosa succede scambiando t_0, x_0 con $-t_0, -x_0$?
- **b.** Dimostrare che se $x_0 > 0$ allora $x(t, 0, x_0) > 0$ per ogni t < 0. (Che segno ha \dot{x} quando x = 0?).
- **c.** Calcolare in termini di funzioni elementari la soluzione $x(t, 0, x_0)$ per valori di t vicini a 0. Verificare che non ha derivata seconda per t = 0.
- **d.** Trovare i limiti per $t \to \pm \infty$ di $x(t, 0, x_0)$, in dipendenza da x_0 . (Per certi x_0 basta la formula esplicita. Per gli altri notare che nel secondo e quarto quadrante si può usare per esempio la disuguaglianza $\dot{x} \leq |x|$ e il teorema del confronto).

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Istituzioni di Analisi Superiore, secondo modulo

Prova Scritta del 3 febbraio 1997

Cog	gnor	ne e	e No	ome	:															
Matricola:								um	ento	o di	ide	ntit	à (s	e ch	niest	to):				

Chi porta quest'unico modulo ha 90 minuti di tempo e deve ritenersi a punteggio pieno con 15 punti. Chi porta due moduli ha tempo tre ore complessive e ha punteggio pieno con 30 punti, anche se presi tutti da uno solo dei due compiti.

- 1. Consideriamo su \mathbb{R} la σ -algebra dei misurabili secondo Lebesgue, la misura μ definita da $\mu(E) := \int_E \exp(-x^2) dx$, e lo spazio di Banach reale $L^p(\mu)$ per $1 \le p < +\infty$.
 - **a.** Data $f: \mathbb{R} \to \mathbb{R}$ definiamo la traslata Tf come (Tf)(x) := f(x+1). Mostrare che T non manda $L^p(\mu)$ in sé, cioè non è vero che $f \in L^p(\mu) \Rightarrow Tf \in L^p(\mu)$
 - **b.** Dimostrare che la funzione $x \mapsto x^n$ appartiene a $L^p(\mu)$ con norma $\Gamma(\frac{np+1}{2})^{1/p}$. Dare condizioni sufficienti sui coefficienti della serie di potenze reale $\sum a_n x^n$ affinché converga nella norma di $L^p(\mu)$.
 - **c.** Dimostrare che la serie di MacLaurin della funzione $x \mapsto \exp(-x^2)$ converge in $L^1(\mu)$. (Scrivere il resto di Lagrange della serie di MacLaurin di $t \mapsto e^t$, sostituire $t = -x^2$ e maggiorare).
 - **d.** Per $n \in \mathbb{N}$ poniamo $p_n(x) := e^{x^2} D^n(e^{-x^2})$, dove D è l'operatore di derivazione. Per ogni $n \in \mathbb{N}$ dimostrare che p_n è un polinomio, che vale la relazione ricorsiva $p_{n+1}(x) = p'_n(x) 2xp_n(x)$, che p_n verifica l'equazione differenziale $p''_n 2xp'_n + 2np_n = 0$, e che $p'_{n+1} = -2(n+1)p_n$.
 - **e.** Dimostrare che per il prodotto scalare in $L^2(\mu)$ dei polinomi p_n del punto precedente vale la relazione $(p_n \mid p_m) = -2n(p_{n-1} \mid p_{m-1})$. Dedurre che i p_n formano un sistema ortogonale in $L^2(\mu)$.

(Integrare per parti).