

Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica

Esercizi di Analisi Matematica 5

Esercizi del 5 novembre 2003

1. Riportare le seguenti equazioni differenziali a sistemi del primo ordine:

$$y'(x)^2 + 2xy''(x) = 0,$$
 $y''' + xy'' - (\tan x)y' = y^2,$
$$\begin{cases} y''(x) = y(x) + z(x) \\ z''(x) = -y(x) + z(x) \end{cases}$$

2. Riportare le seguenti equazioni non autonome a sistemi autonomi del primo ordine:

$$y'(x) = \operatorname{sen}(x + y(x)), \qquad \begin{cases} x''(t) = |t + x'(t) + z(t)| \\ y''(t) = x(t) - y'(t) \end{cases}$$

3. Trovare delle equazioni differenziali soddisfatte dalle seguenti famiglie di funzioni, al variare dei parametri c, c_1, c_2 :

$$y = cx(1-x),$$
 $y = (x-c)^3,$ $y = x + c(1+x^2),$ $y = (c_1 + c_2 x)e^x,$ $y = \frac{1}{c+e^x}.$

Nel caso di famiglie a un parametro disegnarne anche un grafico qualitativo.

4. Risolvere esplicitamente le seguenti equazioni differenziali, trovando anche gli intervalli di esistenza delle soluzioni e disegnando un grafico qualitativo dell'insieme delle soluzioni:

$$y' = 1 + y^2,$$
 $y' = \frac{1}{3 + 6y + 3y^2},$ $y'(t) = (1 - y(t)^2)t,$ $y' = \cos^2 y,$
$$\begin{cases} y'(x) = \frac{xy^2}{1 + y^2} \\ y(0) = 1 \end{cases}.$$

5. Riportare le seguenti equazioni differenziali a problemi di funzione implicita, e studiare qualitativamente le soluzioni:

$$y' = 1 - \frac{1}{y},$$

$$\begin{cases} y'(t) = \frac{y}{t(1+y)} \\ y(0) = 1 \end{cases}, \quad x'(t) = \frac{t^2}{\log x(t)}.$$

6. Risolvere esplicitamente le seguenti equazioni differenziali lineari:

$$y'(t) = t^2y + t^2$$
, $y'(x) = \frac{y}{1+x} + 1$, $x'(t) = x \tan t + \frac{1}{\cos t}$.

7. Trovare le condizioni sui coefficienti a_n nella serie $y(t) = \sum_{n=0}^{\infty} a_n t^n$ affinché y sia soluzione delle seguenti equazioni differenziali:

$$y'(t) + 2ty - t = 0$$
, $y''(t) + 2ty'(t) - t = 0$, $t^2y''(t) + ty'(t) + t = 0$.

8. Trovare una formula per le soluzioni dell'equazione differenziale (lineare) $x^3y'(x) - 2y(x) + 2x = 0$ per $x \neq 0$. Dimostrare che l'equazione differenziale ha infinite soluzioni di classe $C^1(\mathbb{R})$, ma nessuna soluzione che sia la somma di una serie di potenze con centro nell'origine.

- 9. Supponiamo che la funzione f(t,y) sia di classe C^{∞} in tutte le variabili. Consideriamo l'operatore integrale $(Ty)(t) := y_0 + \int_{t_0}^t f(s,y(s))ds$ e iteriamolo a partire dalla funzione costante $y(t) := y_0$. Mostrare che l'iterata di ordine n e la soluzione del problema di Cauchy y' = f(t,y), $y(t_0) = y_0$ hanno le stesse derivate successive in $t = t_0$ fino all'ordine n. Se poi f(t,y) è della forma lineare (affine) Ay + b, con A,b indipendenti da t, allora le iterate di T coincidono coi polinomi di Taylor della soluzione.
- 10. (Contrazioni dipendenti da parametro). Sia X uno spazio metrico completo e limitato $(d(x,y) \leq M < +\infty$ per ogni $x,y \in X)$. Sia Λ uno spazio topologico. Supponiamo di avere una funzione continua $(\lambda,x) \mapsto T_{\lambda}(x)$ da $\Lambda \times X \to X$, per la quale esista un $\alpha \in [0,1[$ tale che $d(T_{\lambda}(x),T_{\lambda}(y)) \leq \alpha d(x,y)$ per ogni $\lambda \in \Lambda$, $x,y \in X$ (contrazione uniforme in λ). Sia \bar{x}_{λ} il punto fisso di T_{λ} , $x_{0} \in X$ qualsiasi, e T_{λ}^{n} l'n-esima iterata di T_{λ} . Dimostrare che $d(T_{\lambda}^{n}(x_{0}),\bar{x}_{\lambda}) \leq M\alpha^{n}$. Dedurre che l'applicazione $\lambda \to \bar{x}_{\lambda}$ è continua da Λ a X.
- 11. (Dipendenza della soluzione dal punto iniziale). Siano $\delta, r > 0$, $t_0 \in \mathbb{R}$, $\bar{y} \in \mathbb{R}^N$, $I = [t_0 \delta, t_0 + \delta]$, $Y = B(\bar{y}, r]$, $f: I \times Y \to \mathbb{R}^N$ continua e tale che $|f(t, y)| \le r/(2\delta)$, $|f(t, x) f(t, y)| \le 1/(2\delta)$ per ogni $(t, x), (t, y) \in I \times Y$. Poniamo $\Lambda = B(\bar{y}, r/2]$ e $X = \mathcal{C}(I, Y)$ (dotato della norma del sup). Per ogni $y \in X$ e $y_0 \in \Lambda$ definiamo la funzione $(T_{y_0}y)(t) := y_0 + \int_{t_0}^t f(s, y(s)) ds$. Dimostrare che per ogni $y_0 \in \Lambda$ la T_{y_0} manda X in se stesso, è una contrazione di parametro 1/2 uniforme in y_0 , e il punto fisso di T_{y_0} dipende in modo continuo da y_0 . Più precisamente: l'applicazione $(y_0, t) \mapsto y_{y_0}(t)$ è lipschitziana da $I \times \Lambda$ a Y. Verificare infine che nelle ipotesi del teorema di esistenza e unicità locale per ogni (t_0, y_0) si possono sempre trovare δ, r con le proprietà di cui sopra.
- 12. Verificare che la funzione $\bar{y}(t) = 1/(1+t^2)$ è la soluzione massimale del problema di Cauchy $y'(t) = -2ty^2, y(0) = 1$. Considerare l'operatore integrale $Ty(t) = 1 + \int_0^t f(s, y(s)) ds$, dove $f(t,y) = -2ty^2$. Sia $y_0 \equiv 1, \ y_{n+1} = Ty_n$. Definiamo l'insieme $X = \{y \in \mathcal{C}([0,\sqrt{2}]) : 1 t^2 = y_1(t) \le y(t) \le 1 \ \forall t \in [0,\sqrt{2}]\}$. Dimostrare che l'insieme X è un sottospazio completo di $\mathcal{C}([0,\sqrt{2}])$, che T manda X in se stesso e che le iterate di T a partire da una qualsiasi funzione di X convergono uniformemente alla soluzione \bar{y} su $[0,\sqrt{2}]$. Confrontare questo con la convergenza delle ridotte della serie di MacLaurin di $\bar{y}(t)$.
- 13. Sia $f: \mathbb{R} \to \mathbb{R}$ localmente lipschitziana, e siano y_0, y_1 due zeri successivi di f. Dimostrare che se \bar{y} è compreso fra y_0 e y_1 , allora la soluzione massimale del problema di Cauchy autonomo $y' = f(y), y(t_0) = \bar{y}$ è definita su tutto \mathbb{R} e che per $t \to \pm \infty$ tende ai due zeri y_0, y_1 .
- **14.** Posto

$$f(y) := 2^n \sqrt{1 - (y - 2n)^2}$$
 per $2n - 1 < y \le 2n + 1, n \in \mathbb{Z}$,

verificare che f è continua su \mathbb{R} . Dell'equazione differenziale y'(t) = f(y) trovare le soluzioni costanti, quelle comprese fra due soluzioni costanti, dire se c'è unicità locale del problema di Cauchy lungo le soluzioni costanti, e mostrare che esistono soluzioni massimali che divergono in un tempo finito.

- **15.** Risolvere esplicitamente l'equazione $y'(t) = (\sec^2 y)/(1+t^2)$. Individuare in particolare le soluzioni costanti. Verificare che le soluzioni massimali non costanti sono definite su tutto \mathbb{R} e hanno limite finito per $t \to \pm \infty$, ma non sono asintotiche a una soluzione costante.
- 16. Dimostrare che le soluzioni massimali dei seguenti problemi di Cauchy sono definite su tutto \mathbb{R} :

$$\begin{cases} y'(t) = \sqrt{t^2 + y^2} \\ y(t_0) = y_0 \end{cases} \begin{cases} y'(t) = \arctan(t+y) \\ y(t_0) = y_0 \end{cases}$$
$$\begin{cases} x'(t) = (x^2 + y^2 - 4)(\cos(x+y) - x^2 + 1) \\ y'(t) = (x^2 + y^2 - 4)\log(x^2 + y^2 + xy) \\ x(0) = y(0) = 1 \end{cases}$$

Esercizi del 3 dicembre 2003

- 17. Dell'equazione differenziale (di Bernoulli) $xy'(x) = 2y(x) 3xy(x)^2$ per $x \neq 0$. Ci sono soluzioni definite su tutto \mathbb{R} ? Disegnare un grafico qualitativo dell'andamento delle soluzioni.
- 18. Studiare l'equazione differenziale

$$y'(x) = -\frac{x+y+1}{2x+2y+1}.$$

- 19. Per l'equazione differenziale y''(t) = (1-y)y' trovare l'equazione del primo ordine soddisfatta da $y' \circ y^{-1}$. Risolta quest'ultima, mostrare che la funzione $y' - y + y^2/2$ è un integrale primo. Trovare la soluzione dell'equazione originale tale che y(0) = 0, y'(0) = -1/2. Dimostrare che le soluzioni massimali con y'(0) > 0 sono definite per t su tutto \mathbb{R} (si può fare con la soluzione esplicita, oppure usando l'integrale primo e il teorema dell'uscita dai compatti).
- 20. Trovare la soluzione generale dell'equazione differenziale

$$y'(x) = \left(\frac{y(x)}{x} - 1\right)^2, \quad x > 0.$$

Per quali valori di y_0 il problema di Cauchy con $y(1) = y_0$ ha soluzione massimale definita per tutti gli x > 0?

21. Risolvere in forma implicita il problema di Cauchy

$$y'(x) = \frac{(y-1)^2}{y}x\sinh x, \quad y(0) = 2.$$

Scrivere il polinomio di MacLaurin del secondo ordine della soluzione.

22. Dimostrare che la funzione $x^2 + y^2 + z^2$ è un integrale primo per il sistema

$$\begin{cases} \dot{x} = -zx - y\\ \dot{y} = x - zy\\ \dot{z} = x^2 + y^2 \end{cases}$$

e dedurre che le soluzioni massimali del sistema sono definite per tempi su tutto \mathbb{R} . Trovare le soluzioni costanti.

23. Studiare il sistema

$$\begin{cases} \dot{x} = (1 - y^2)x\\ \dot{y} = 1 - y^2. \end{cases}$$

Trovarne in particolare le soluzioni costanti, e un integrale primo (separando le variabili nell'equazione differenziale totale associata). Usando l'integrale primo mostrare che le soluzioni con -1 < y(0) < 1 sono definite per tutti i tempi in $\mathbb R$ (si possono anche trovare esplicitamente).

24. Trovare un fattore integrante per l'equazione differenziale totale

$$(x - (x^2 + y^2))dx + y dy = 0$$

della forma $\varphi(x+y)$.