

Analisi Matematica, tema A

Compitino del 3 luglio 2006

Cog	gnoi	ne e	e No	ome	:																		
Matricola:							Documento d'identità (se chiesto):																

Si prega di consegnare anche il presente testo. Non si possono consultare libri o appunti o calcolatori. Va riportato lo svolgimento degli esercizi.

- 1. Si calcolino i polinomi di Taylor delle seguenti funzioni centrati in $x_0 = 0$:
 - (a) xe^{x^2-2x} di ordine 3, (b) $e^{3x-2 \sin x}$ di ordine 3, (c) $3/(1-2 \sin^6 x)$ di ordine 7.
- 2. Si calcolino gli integrali indefiniti delle seguenti funzioni

(a)
$$\frac{\operatorname{sen} \log x}{2x} - \frac{2x}{x^2 + 2x - 3}$$
 (b) $\frac{(3 + 2x - 2\sqrt{1 - x^2})^2}{\sqrt{1 - x^2}}$.

- **3.** Calcolare, col metodo per parti ripetuto, una primitiva della funzione $(x^2 3x)(\sin x \cos x)$.
- **4.** Si calcoli il seguente integrale indefinito mediante la sostituzione x = 1/(2-y):

$$\int \frac{2x-1}{x^2\sqrt{5x^2-4x+1}} \, dx \,,$$

5. Studiare la convergenza delle seguenti serie numeriche:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{e^{1/n} - 1}{\arctan(1 + 2n)} \right)^2,$$
 (b)
$$\sum_{n=1}^{\infty} \frac{n - \log n}{n^2 + 3n + 2},$$
 (c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(\pi - 1)^{2n}}{n!},$$
 (d)
$$\sum_{n=1}^{\infty} \left(\sqrt{2 + \frac{1}{n}} - \sqrt{2 + \frac{1}{n+1}} \right).$$

6. Data la serie a segni alterni

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{3n^3 + 2n^2 + 1}},$$

- a. studiare la convergenza semplice utilizzando il criterio di Leibniz;
- **b.** provare che la serie dei valori assoluti diverge.
- 7. Determinare e rappresentare sul piano cartesiano il dominio della funzione di due variabili $f(x,y) = (x^2 2x + y^2 2y + 2)/(x + y 2)$. Descrivere geometricamente e rappresentare le linee di livello.
- **8.** Determinare i punti critici della funzione $f(x,y) = x^4 4x^3 + 4yx^2 + 13x^2 8yx 18x + 4y^2$. Indagare se sono max/min relativi o punti di sella.

Analisi Matematica, tema B

Compitino del 3 luglio 2006

Cog	nor	ne e) INC	ome	:																		
Matricola:							Documento d'identità (se chiesto):																

Si prega di consegnare anche il presente testo. Non si possono consultare libri o appunti o calcolatori. Va riportato lo svolgimento degli esercizi.

- 1. Si calcolino i polinomi di Taylor delle seguenti funzioni centrati in $x_0 = 0$:
 - (a) xe^{2x^2-x} di ordine 3, (b) $e^{-3x+2 \sin x}$ di ordine 3, (c) $2/(1-3 \sin^6 x)$ di ordine 7.
- 2. Si calcolino gli integrali indefiniti delle seguenti funzioni

(a)
$$-\frac{\cos\log x}{3x} - \frac{2x}{x^2 + 4x + 3}$$
 (b) $\frac{(2x - 3 - 2\sqrt{1 - x^2})^2}{\sqrt{1 - x^2}}$.

- **3.** Calcolare, col metodo per parti ripetuto, una primitiva della funzione $(x 2x^2)(\sin x + \cos x)$.
- **4.** Si calcoli il seguente integrale indefinito mediante la sostituzione x = 2/(1-y):

$$\int \frac{x-2}{x^2\sqrt{x^2-2x+2}} \, dx \,,$$

5. Studiare la convergenza delle seguenti serie numeriche:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{e^{1/n} - 1}{\arctan(n+2)} \right)^2,$$
 (b)
$$\sum_{n=1}^{\infty} \frac{n - \log n}{n^2 + 4n - 1},$$
 (c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(\pi+3)^{2n}}{n!},$$
 (d)
$$\sum_{n=1}^{\infty} \left(\sqrt{1 + \frac{2}{n}} - \sqrt{1 + \frac{2}{n+1}} \right).$$

6. Data la serie a segni alterni

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{2n^3 + 3n^2 + 2}}$$

- a. studiare la convergenza semplice utilizzando il criterio di Leibniz;
- **b.** provare che la serie dei valori assoluti diverge.
- 7. Determinare e rappresentare sul piano cartesiano il dominio della funzione di due variabili $f(x,y) = (x^2 2x + y^2 + 2y + 2)/(x y 2)$. Descrivere geometricamente e rappresentare le linee di livello.
- **8.** Determinare i punti critici della funzione $f(x,y) = y^4 4y^3 + 4xy^2 + 13y^2 8xy 18y + 4x^2$. Indagare se sono max/min relativi o punti di sella.

Analisi Matematica, tema C

Compitino del 3 luglio 2006

Cognome e Nome:															
Matricola:	Documento d'identità (se chiesto):														

Si prega di consegnare anche il presente testo. Non si possono consultare libri o appunti o calcolatori. Va riportato lo svolgimento degli esercizi.

1. Si calcolino i polinomi di Taylor delle seguenti funzioni centrati in $x_0 = 0$:

(a)
$$xe^{2x-x^2}$$
 di ordine 3, (b) $e^{2x-3 \sin x}$ di ordine 3, (c) $2/(1-2 \sin^6 x)$ di ordine 7.

2. Si calcolino gli integrali indefiniti delle seguenti funzioni

(a)
$$\frac{\operatorname{sen} \log x}{3x} + \frac{x}{x^2 - 2x - 3}$$
 (b) $\frac{(3x - 1 - 3\sqrt{1 - x^2})^2}{\sqrt{1 - x^2}}$.

3. Calcolare, col metodo per parti ripetuto, una primitiva della funzione $(x^2 + 3x)(\cos x - \sin x)$.

4. Si calcoli il seguente integrale indefinito mediante la sostituzione x = 1/(2-2y):

$$\int \frac{2x-1}{x^2\sqrt{8x^2-4x+1}} \, dx \,,$$

5. Studiare la convergenza delle seguenti serie numeriche:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{e^{1/n} - 1}{\arctan(1+3n)} \right)^2,$$
 (b)
$$\sum_{n=1}^{\infty} \frac{2n - \log n}{n^2 + 2n + 2},$$
 (c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(\pi - 2)^{2n}}{n!},$$
 (d)
$$\sum_{n=1}^{\infty} \left(\sqrt{2 - \frac{1}{n}} - \sqrt{2 - \frac{1}{n+1}} \right).$$

6. Data la serie a segni alterni

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{4n^3 + n^2 + 2}}$$

a. studiare la convergenza semplice utilizzando il criterio di Leibniz;

b. provare che la serie dei valori assoluti diverge.

7. Determinare e rappresentare sul piano cartesiano il dominio della funzione di due variabili $f(x,y) = (x^2 + 2x + y^2 - 2y + 2)/(x - y + 2)$. Descrivere geometricamente e rappresentare le linee di livello.

8. Determinare i punti critici della funzione $f(x,y) = x^4 + 4x^3 + 4yx^2 + 13x^2 + 8yx + 18x + 4y^2$. Indagare se sono max/min relativi o punti di sella.

Analisi Matematica, tema D

Compitino del 3 luglio 2006

Cog	Jognome e Nome:																						
Mat	trice	ola:					Documento d'identità (se chiesto):																

Si prega di consegnare anche il presente testo. Non si possono consultare libri o appunti o calcolatori. Va riportato lo svolgimento degli esercizi.

- 1. Si calcolino i polinomi di Taylor delle seguenti funzioni centrati in $x_0 = 0$:
 - (a) xe^{x-2x^2} di ordine 3, (b) $e^{-2x+3 \sin x}$ di ordine 3, (c) $3/(1-3 \sin^6 x)$ di ordine 7.
- 2. Si calcolino gli integrali indefiniti delle seguenti funzioni

(a)
$$\frac{\cos \log x}{2x} - \frac{x}{x^2 - 4x + 3}$$
 (b) $\frac{(1 + 3x - 3\sqrt{1 - x^2})^2}{\sqrt{1 - x^2}}$.

- **3.** Calcolare, col metodo per parti ripetuto, una primitiva della funzione $(2x^2 x)(\cos x + \sin x)$.
- **4.** Si calcoli il seguente integrale indefinito mediante la sostituzione x = 2/(1-2y):

$$\int \frac{x-2}{x^2 \sqrt{5x^2 - 4x + 4}} \, dx \,,$$

5. Studiare la convergenza delle seguenti serie numeriche:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{e^{1/n} - 1}{\arctan(2+n)} \right)^2$$
, (b) $\sum_{n=1}^{\infty} \frac{n - 2\log n}{n^2 + 2n + 3}$,

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(2\pi+1)^{2n}}{n!}$$
, (d) $\sum_{n=1}^{\infty} \left(\sqrt{1-\frac{1}{2n}} - \sqrt{1-\frac{1}{2(n+1)}}\right)$.

6. Data la serie a segni alterni

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{3n^3 + 4n^2 + 1}},$$

- a. studiare la convergenza semplice utilizzando il criterio di Leibniz;
- **b.** provare che la serie dei valori assoluti diverge.
- 7. Determinare e rappresentare sul piano cartesiano il dominio della funzione di due variabili $f(x,y) = (x^2 + 2x + y^2 + 2y + 2)/(x + y + 2)$. Descrivere geometricamente e rappresentare le linee di livello.
- **8.** Determinare i punti critici della funzione $f(x,y) = x^4 4x^3 4yx^2 + 13x^2 + 8yx 18x + 4y^2$. Indagare se sono max/min relativi o punti di sella.