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1 The problem

We study the stability of the equilibrium (0, 0)
for the family of systems

when f, g are smooth functions defined in a
neighbourhood of 0 € R and f(0) > 0,¢(0) > 0.

These are the equation of motion of a point in
the force field (— f(x)z, —g(x)y). The origin
(0,0) is an equilibrium.



2 A simple example

2. The force field looks

=1, g(x)

Take f(x)
like this:
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The force is not exactly central, but the arrows

point generally not very far from the origin.

The brazilian authors call this class of forces

“forca que aponta”.



Since the force tends to draw the point towards

the origin, we expect that the origin is a stable

equilibrium for our mechanical system.

With f(x) =1, g(z) = 2 this is verified easily
because we can solve the system explicitly:

x(t,0, g, Tg) = xgcost + tgsint,

y(t7 O)?JO?QC) — Yo COS t\/§ -+ y_o Sintﬂa

V2

With the initial data (xq, Z¢) = (1,0),
(Yo, yo) = (0,1) the solutions look like this:




3 Instability in the central

force case

When f = g the force field is central and
attractive. Still, Barone, Cesar and Gaetano
Zampieri found already in the 1980s that these

systems are generically unstable.

Among other things, they found that a

sufficient condition for instability is

4f'(0)* = 3f(0)f"(0) # 0.



For example, with f(z) := g(x) := 1 — 22% and
(x(), CC()) = (1/10, 0), (y(),f(]()) = (1/10, 1/10) the

trajectory looks like this initially
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but after 31 cycles they are stretched vertically:

N

and the vertical stretching goes on in an
approximately linear way.

We are seeing a parametric resonance.



4 'The strategy

The first equation of our system

is similar to the pendulum equation, and it is
well-known: in particular, all solutions are

periodic.

Let x(t) be the solution of x = — f(z)x with
initial data x(0) = zg, £(0) = 0, periodic of
period 7(xg). Plug z(t) into y = —g(x)y: we
get a linear equation in y with periodic

coefficient (Hill’s equation):

j=—g(zt))y.

As a first-order system this becomes

%@: g((:c(t)) (1) @)



Let ®(t, x9) be the matrix solution of the
problem

: 0 1

(I)(tva): —g(a;(t)) 0 @(t,xo),
(I)(O,xo): O (1)

Define the Floquet matriz V(xzg) as

\IJ(ZL‘()) = (I)(T(QZ()),QE()) .

The stability of the origin for our system
depends on the asymptotic behaviour of the
operator norm of the iterates of W(xg):
Theorem 4.1 (stability in terms of
Floquet iterate asymptotics). The origin is

a stable equilibrium for the system & = —x f(x),

i = —yg(x) if and only if

lim sup (SupH\IJ(azo)”H) < +00.
neN

xo—0



5 (General results on the

Floquet matrix

Proposition 5.1. If f and g are of class C"
for some n > 1 then also the function
xo — W(xg) is of class C™, and

cosS(x  Sin o
v(0) =

—sina COS

where a = 2w+/g(0)/f(0). The determinant of
U (xq) is constantly 1, and the two diagonal

entries of W(xq) coincide.

In particular, U(xq) has the form

with a2 — be = 1.



Proposition 5.2 (iterate asymptotics for a

fixed matrix). Consider a real matrix
A:=(2Y) with det A = 1. Then four cases are

c a

possible:

i. |a| > 1 and bc # 0: then ||A™|| — +o0 as

n — 400 with exponential growth.

it. |a| =1 and either b # 0 or ¢ # 0: then
|A™|| — 400 as n — 400 with linear

growth.

ii. |la| =1, b=c=0: then n— A" is

constant.

w. |a| <1 and be < 0 and: then for alln € N

mm{\/—b/c Vv —c/ } |A™|| <
< mase {72, 27D

and
hmsupHA”H > — max{\/—b/c v —c/ }
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6 n-decidability

Definition 6.1. We will say that the system 1s
n-decidable if the stability or instability of the
origin can be decided from the values of the
derivatives of f(x) and g(x) at x = 0 of orders
0 to n.

It is known that not all of our systems are
finitely decidable (n-decidable for some n).
However, finite decidability is generic:
Theorem 6.1 (0-decidability). If
49(0)/f(0) is not the square of a nonzero

integer, then the origin 1s a stable equilibrium
for the system & = —xf(x), j = —yg(y).
The example f(x) =1, g(x) = 2 that we have

seen is then confirmed to be stable, because

4g(0)/f(0) = 8 is not a square integer.

When 4¢(0)/f(0) is the square of an integer, we
may decide stability if we know enough about

the asymptotic expansion of ¥(xg) as zg — O.

11



Theorem 6.2 (stability from asymptotic

expansion of W). Suppose that U(zq) as

xo — 0 has the expansion

1 0 0 bzj
+ + +
0 1 crg® 0
o(1 o(xh
[ e o)

for some n,m € N\ {0}, b,c € R.

e if bc > 0 the origin is exponentially
unstable: any neighbourhood of the origin
of R* has an initial point (xo, %0, Yo, Vo) for
which y(t) is unbounded (exponentially) as
t — +00.

o [fbc <0 and n #= m then the origin s
unstable with bounded trajectories: every
solution starting near the origin 1s bounded,
but there exists a sequence of initial points
converging to zero for which sup;q ||yn(t)|]

diverges to +00 as n — +00.
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e [fbc <0 and n = m the origin 1is stable.

e [fn>m,b#0 and c =0 the origin 1s

unstable, but we can’t say of which kind.

We want to compute the asymptotic expansion

of the Floquet matrix ¥(zy) as 9 — 0.
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7 Variations equations for z

Let t — x(t;xg) be the solution of
= —af(@), 2(0) =0, #(0)=0.

Setting

we get the equations

fio + f(ro)po =0, po(0) =0, f10(0) =0,
fir + f(O)pr =0, i ( L, 0

This is an elementary triangular system. For
example, with wg := 4/ f(0) the solution is

to(t) u1(t) = coswot,

— O’
/
0
ps(t) = ];(2) (2 coswot + cos 2wgt — 3) .
Wo
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8 The derivatives of the

period 7(x)

We know that 7(0) = 27 and that 7 is smooth
near the origin if f, g are smooth. The
computation of 7/(0), 7”(0) ... starts from the

periodicity equations

z(7(z0),0) = o &(1(z0),20) =0

Differentiating twice the second equation and

setting xg = 0, we get that
2/i1 (27 /w)7(0) + fi2(27/w) = 0.

Using the explicit formulas for pq, o we
deduce that

7(0) =0.

Taking more derivatives of the equation we get

7" (0) =5 (20f7(0)* = 9£(0)"(0))

~12£(0)

and so on.
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9 1-decidability

For n = 1 the derivative U(")(0) can be found
by hand (for n = 2 with quite some effort). For
higher orders we have written a computer
algebra program.

Proposition 9.1 (order 1, n =1). If

9(0) = f(0)/4 then

1 0
0 1

omg'(0) [ 0 1
f(0)32 \ g(0) 0

If ¢'(0) #£ 0 the origin is unstable of the
exponential kind.

Proposition 9.2 (Order 1, n > 2). If
g(0) = n?f£(0)/4 with n > 2 then

T (0) =

This case 1s not 1-decidable.
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10 Application to central

force

Barone-Cesar-Zampieri’s old sufficient

condition for instability in the central force case
(f = g) is that 4f'(0)*> — 3£(0)f”(0) # 0. Using
the formulas for (™ (0) for n =1,...,4 we can
say something when 4f/(0)? — 3£(0)f"(0) = 0:
Proposition 10.1 (4-decidable instability
with central force). If f = g (central force)
and

(417(0)% = 3£(0)f"(0) = 0
40£'(0)* — 24£(0)2"(0) £ (0)+
L F3F(0)2FM(0) #£0

then the origin is an unstable equilibrium, with

_/\

linear growth.
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An example of 4-decidable instability with

central forces:
f(z) = g(x) := 1+ 48z* .

The asymptotic expansion of the Floquet

matrix U(z) as x — 0 is

1 —247nx* + o(z?)
0 1

f
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11 Notable special cases

The following classes of equations are special

cases of our main problem:

= —vy - (a+ bxrgcost) (Mathieu’s equation)

ij = —y - (a + bxgcost + cx cos® t)
(Whitakker’s equation).

For example, for Whittaker’s equation we have

the following 2-decidable cases:

e if a >0 and 2/a ¢ N the origin is stable;
e if a =1/4 and b # 0 it is unstable;
e ifa=1/4,b=0 and c # 0 it is stable;

o ifa=1,0+#0and —1/3 <¢/b* <5/9 it is
unstable;

e if a = 1 and either —b%/3 > ¢ or ¢ > 5b%/9
it is stable;

e for a = n?/4 with n > 3 and b* # ¢(n* — 1)

it 1s stable.
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12 A 1-decidable instability

example with

exponential growth

flx)=4 glx) =1+x

The Floquet matrix ¥(z) expands as

B
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13 A 2-decidable stable

example

— a4 20 . B76 ,
fa) =4+ Sga?, g(e) =94 200

The Floquet matrix ¥(z) expands as

—1 2> ;
U(x) = ( 5 ) + o(x”).
_187'(':13 —1

Here are the first two cycles with initial data
(20, Zo) = (Yo, Yo) = (1/100,0):

415 cycles later:

after 833 cycles:
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14 A 2-decidable stable

example with beatings

f(x) :=1+x+2*, g(x) =14 2%,
The Floquet matrix ¥(z) expands as

1 T 2 5
U(x) = s + o(x?).
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15 A 4-decidable unstable

example with beatings

f(x) :=1+2°, g(x) =142 — 2.
The Floquet matrix W(x) expands as

U(z) = AT (et
607 .4 1
4!.4

-
Y
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In these graphs the horizontal scale is measured

in 7(xg)-cycles, while on the vertical axis there
is the y-amplitude over the cycle for the initial
values o = 1/5,1/10,1/20,1/30 respectively,
and (yo,%0) = (0,1).

25 25
20 20
15 15

10 10

220 450 1790 3590
25 25
20 20
15 15
10 10
5 5
14300 28600 48000 96000
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16 A 6-decidable unstable

example with beatings

f(x) :=1—2+262°, g(x):=4—8z*+1402°
The Floquet matrix W(x) expands as
Lhol) 4%’ 4 ofe!

Here is a cycle:

\ |/
\V/

and at its widest, 2000 cycles later:

i
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In these graphs the horizontal scale is measured

in 7(xg)-cycles, while on the vertical axis there
is the y-amplitude over the cycle for the initial
values o = 1/5,1/10,1/20,1/30 and

(Yo, %0) = (1,0).

12 12
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