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1 The problem

We study the stability of the equilibrium (0, 0)
for the family of systemsẍ = −f(x)x

ÿ = −g(x)y

when f, g are smooth functions defined in a
neighbourhood of 0 ∈ R and f(0) > 0, g(0) > 0.

These are the equation of motion of a point in
the force field (−f(x)x,−g(x)y). The origin
(0, 0) is an equilibrium.
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2 A simple example

Take f(x) ≡ 1, g(x) ≡ 2. The force field looks
like this:

The force is not exactly central, but the arrows
point generally not very far from the origin.
The brazilian authors call this class of forces
“força que aponta”.
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Since the force tends to draw the point towards
the origin, we expect that the origin is a stable
equilibrium for our mechanical system.

With f(x) ≡ 1, g(x) ≡ 2 this is verified easily
because we can solve the system explicitly:

x(t, 0, x0, ẋ0) = x0 cos t+ ẋ0 sin t ,

y(t, 0, y0, ẏ0) = y0 cos t
√

2 +
ẏ0√

2
sin t
√

2 ,

With the initial data (x0, ẋ0) = (1, 0),
(y0, ẏ0) = (0, 1) the solutions look like this:

y

x
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3 Instability in the central

force case

When f ≡ g the force field is central and
attractive. Still, Barone, Cesar and Gaetano
Zampieri found already in the 1980s that these
systems are generically unstable.

Among other things, they found that a
sufficient condition for instability is

4f ′(0)2 − 3f(0)f ′′(0) 6= 0 .
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For example, with f(x) := g(x) := 1− 2x2 and
(x0, ẋ0) = (1/10, 0), (y0, ẏ0) = (1/10, 1/10) the
trajectory looks like this initially

y

x

but after 31 cycles they are stretched vertically:

y

x

and the vertical stretching goes on in an
approximately linear way.

We are seeing a parametric resonance.
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4 The strategy

The first equation of our systemẍ = −f(x)x

ÿ = −g(x)y

is similar to the pendulum equation, and it is
well-known: in particular, all solutions are
periodic.

Let x(t) be the solution of x = −f(x)x with
initial data x(0) = x0, ẋ(0) = 0, periodic of
period τ(x0). Plug x(t) into y = −g(x)y: we
get a linear equation in y with periodic
coefficient (Hill’s equation):

ÿ = −g
(
x(t)

)
y .

As a first-order system this becomes

d

dt

(
y

ẏ

)
=

 0 1

−g
(
x(t)

)
0

(y
ẏ

)
.
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Let Φ(t, x0) be the matrix solution of the
problem

Φ̇(t, x0) =

 0 1

−g
(
x(t)

)
0

Φ(t, x0) ,

Φ(0, x0) =

1 0

0 1

 .

Define the Floquet matrix Ψ(x0) as

Ψ(x0) := Φ
(
τ(x0), x0

)
.

The stability of the origin for our system
depends on the asymptotic behaviour of the
operator norm of the iterates of Ψ(x0):

Theorem 4.1 (stability in terms of
Floquet iterate asymptotics). The origin is
a stable equilibrium for the system ẍ = −xf(x),
ÿ = −yg(x) if and only if

lim sup
x0→0

(
sup
n∈N

∥∥Ψ(x0)n
∥∥) < +∞ .
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5 General results on the

Floquet matrix

Proposition 5.1. If f and g are of class Cn

for some n ≥ 1 then also the function
x0 7→ Ψ(x0) is of class Cn, and

Ψ(0) =

 cosα sinα

− sinα cosα


where α = 2π

√
g(0)/f(0). The determinant of

Ψ(x0) is constantly 1, and the two diagonal
entries of Ψ(x0) coincide.

In particular, Ψ(x0) has the form

Ψ(x0) =

a b

c a


with a2 − bc = 1.
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Proposition 5.2 (iterate asymptotics for a
fixed matrix). Consider a real matrix
A := ( a bc a ) with detA = 1. Then four cases are
possible:

i. |a| > 1 and bc 6= 0: then ‖An‖ → +∞ as
n→ +∞ with exponential growth.

ii. |a| = 1 and either b 6= 0 or c 6= 0: then
‖An‖ → +∞ as n→ +∞ with linear
growth.

iii. |a| = 1, b = c = 0: then n 7→ An is
constant.

iv. |a| < 1 and bc < 0 and: then for all n ∈ N

min
{√
−b/c,

√
−c/b

}
≤
∥∥An∥∥ ≤

≤ max
{√
−b/c,

√
−c/b

}
and

lim sup
n→+∞

∥∥An∥∥ ≥ 1
2

max
{√
−b/c,

√
−c/b

}
.
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6 n-decidability

Definition 6.1. We will say that the system is
n-decidable if the stability or instability of the
origin can be decided from the values of the
derivatives of f(x) and g(x) at x = 0 of orders
0 to n.

It is known that not all of our systems are
finitely decidable (n-decidable for some n).
However, finite decidability is generic:

Theorem 6.1 (0-decidability). If
4g(0)/f(0) is not the square of a nonzero
integer, then the origin is a stable equilibrium
for the system ẍ = −xf(x), ÿ = −yg(y).

The example f(x) ≡ 1, g(x) ≡ 2 that we have
seen is then confirmed to be stable, because
4g(0)/f(0) = 8 is not a square integer.

When 4g(0)/f(0) is the square of an integer, we
may decide stability if we know enough about
the asymptotic expansion of Ψ(x0) as x0 → 0.
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Theorem 6.2 (stability from asymptotic
expansion of Ψ). Suppose that Ψ(x0) as
x0 → 0 has the expansion

±

1 0

0 1

+

 0 bxn0

cxm0 0

+

+

 o(1) o(xn0 )

o(xm0 ) o(1)


for some n,m ∈ N \ {0}, b, c ∈ R.

• if bc > 0 the origin is exponentially
unstable: any neighbourhood of the origin
of R4 has an initial point (x0, ẋ0, y0, ẏ0) for
which y(t) is unbounded (exponentially) as
t→ +∞.

• If bc < 0 and n 6= m then the origin is
unstable with bounded trajectories: every
solution starting near the origin is bounded,
but there exists a sequence of initial points
converging to zero for which supt≥0 ‖yn(t)‖
diverges to +∞ as n→ +∞.
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• If bc < 0 and n = m the origin is stable.

• If n ≥ m, b 6= 0 and c = 0 the origin is
unstable, but we can’t say of which kind.

We want to compute the asymptotic expansion
of the Floquet matrix Ψ(x0) as x0 → 0.
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7 Variations equations for x

Let t 7→ x(t;x0) be the solution of

ẍ = −xf(x) , x(0) = x0 , ẋ(0) = 0 .

Setting

µn(t) :=
∂nx

∂xn0
(t; 0) .

we get the equations

µ̈0 + f(µ0)µ0 = 0 , µ0(0) = 0 , µ̇0(0) = 0 ,

µ̈1 + f(0)µ1 = 0 , µ1(0) = 1 , µ̇1(0) = 0 ,

µ̈2 + f(0)µ2 = − 2f ′(0)µ2
1 , µ2(0) = 0 ,

µ̇2(0) = 0 ,

This is an elementary triangular system. For
example, with ω0 :=

√
f(0) the solution is

µ0(t) = 0 , µ1(t) = cosω0t ,

µ2(t) =
f ′(0)
3ω2

0

(
2 cosω0t+ cos 2ω0t− 3

)
.
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8 The derivatives of the

period τ(x0)

We know that τ(0) = 2π and that τ is smooth
near the origin if f, g are smooth. The
computation of τ ′(0), τ ′′(0) . . . starts from the
periodicity equations

x
(
τ(x0), x0

)
= x0 ẋ

(
τ(x0), x0

)
= 0

Differentiating twice the second equation and
setting x0 = 0, we get that

2µ̈1(2π/ω)τ ′(0) + µ̈2(2π/ω) = 0 .

Using the explicit formulas for µ1, µ2 we
deduce that

τ ′(0) = 0 .

Taking more derivatives of the equation we get

τ ′′(0) =
π

12f(0)5/2

(
20f ′(0)2 − 9f(0)f ′′(0)

)
and so on.
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9 1-decidability

For n = 1 the derivative Ψ(n)(0) can be found
by hand (for n = 2 with quite some effort). For
higher orders we have written a computer
algebra program.
Proposition 9.1 (order 1, n = 1). If
g(0) = f(0)/4 then

Ψ(0) = (−1)1

1 0

0 1

 ,

Ψ′(0) =
2πg′(0)
f(0)3/2

 0 1

g(0) 0

 .

If g′(0) 6= 0 the origin is unstable of the
exponential kind.
Proposition 9.2 (Order 1, n ≥ 2). If
g(0) = n2f(0)/4 with n ≥ 2 then

Ψ(0) = (−1)n

1 0

0 1

 , Ψ′(0) =

0 0

0 0

 .

This case is not 1-decidable.
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10 Application to central

force

Barone-Cesar-Zampieri’s old sufficient
condition for instability in the central force case
(f ≡ g) is that 4f ′(0)2 − 3f(0)f ′′(0) 6= 0. Using
the formulas for Ψ(n)(0) for n = 1, . . . , 4 we can
say something when 4f ′(0)2 − 3f(0)f ′′(0) = 0:

Proposition 10.1 (4-decidable instability
with central force). If f ≡ g (central force)
and 

4f ′(0)2 − 3f(0)f ′′(0) = 0

40f ′(0)4 − 24f(0)2f ′(0)f (3)(0)+

+ 3f(0)3f (4)(0) 6= 0

then the origin is an unstable equilibrium, with
linear growth.
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An example of 4-decidable instability with
central forces:

f(x) := g(x) := 1 + 48x4 .

The asymptotic expansion of the Floquet
matrix Ψ(x) as x→ 0 is

Ψ(x) =

1 −24πx4 + o(x4)

0 1

 .

Here is a graph of a τ(x0)-cycle:

y

x

and here is the next 133th cycle:

y

x
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11 Notable special cases

The following classes of equations are special
cases of our main problem:

ÿ = −y · (a+ bx0 cos t) (Mathieu’s equation)

ÿ = −y · (a+ bx0 cos t+ cx2
0 cos2 t)

(Whitakker’s equation).

For example, for Whittaker’s equation we have
the following 2-decidable cases:

• if a > 0 and 2
√
a /∈ N the origin is stable;

• if a = 1/4 and b 6= 0 it is unstable;

• if a = 1/4, b = 0 and c 6= 0 it is stable;

• if a = 1, b 6= 0 and −1/3 ≤ c/b2 ≤ 5/9 it is
unstable;

• if a = 1 and either −b2/3 > c or c > 5b2/9
it is stable;

• for a = n2/4 with n ≥ 3 and b2 6= c(n2 − 1)
it is stable.
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12 A 1-decidable instability

example with

exponential growth

f(x) ≡ 4 g(x) := 1 + x

The Floquet matrix Ψ(x) expands as

Ψ(x) =

 −1 −π4x
−π4x −1

+ o(x).

Here are some cycles:

y

x

20



13 A 2-decidable stable

example

f(x) := 4 +
576
19

x2 , g(x) := 9 +
576
19

x2 .

The Floquet matrix Ψ(x) expands as

Ψ(x) =

 −1 2πx2

−18πx2 −1

+ o(x2).

Here are the first two cycles with initial data
(x0, ẋ0) = (y0, ẏ0) = (1/100, 0):

y

x

y'

x'

415 cycles later:

y

x

y'

x'

after 833 cycles:

y

x

y'

x'
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14 A 2-decidable stable

example with beatings

f(x) := 1 + x+ x2 , g(x) := 1 + x2 .

The Floquet matrix Ψ(x) expands as

Ψ(x) =

 1 π
3x

2

− 5π
6 x

2 1

+ o(x2).

Here are some cycles:

y

x
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15 A 4-decidable unstable

example with beatings

f(x) := 1 + x2 , g(x) := 1 + x2 − x4 .

The Floquet matrix Ψ(x) expands as

Ψ(x) =

 1 − π
2!x

2 + 33π
4!·4x

4

60π
4!·4x

4 1

+ o(x4).

Here is a cycle:

y

x

and at its widest, 110 cycles later:

y

x
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In these graphs the horizontal scale is measured
in τ(x0)-cycles, while on the vertical axis there
is the y-amplitude over the cycle for the initial
values x0 = 1/5, 1/10, 1/20, 1/30 respectively,
and (y0, ẏ0) = (0, 1).
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16 A 6-decidable unstable

example with beatings

f(x) := 1−x4 +26x6 , g(x) := 4−8x4 +140x6

The Floquet matrix Ψ(x) expands as

Ψ(x) =

 1 + o(1) − 4725π
6! x6 + o(x6)

24π
4! x

4 + o(x4) 1 + o(1)

 .

Here is a cycle:

y

x

and at its widest, 2000 cycles later:

y

x
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In these graphs the horizontal scale is measured
in τ(x0)-cycles, while on the vertical axis there
is the y-amplitude over the cycle for the initial
values x0 = 1/5, 1/10, 1/20, 1/30 and
(y0, ẏ0) = (1, 0).
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