A computational approach for the stability of a mechanical system

Angelo Barone-Netto Mauro de Oliveira Cesar Universidade de São Paulo, Brazil Gianluca Gorni Università di Udine, Italy October 3, 2001

1 The problem

We study the stability of the equilibrium (0,0)for the family of systems

$$\begin{cases} \ddot{x} = -f(x)x\\ \ddot{y} = -g(x)y \end{cases}$$

when f, g are smooth functions defined in a neighbourhood of $0 \in \mathbb{R}$ and f(0) > 0, g(0) > 0.

These are the equation of motion of a point in the force field (-f(x)x, -g(x)y). The origin (0,0) is an equilibrium.

2 A simple example

Take $f(x) \equiv 1$, $g(x) \equiv 2$. The force field looks like this:

					* * *	+	↓ ↓ ↓	↓ ↓ ↓	↓ ↓ ↓	 		*	-	*
		\mathbf{x}		*	4	*	*	*	*	*	*	*		×
						1	v	7	,	,	, ,	, ,		
-						•	Y		,				-	-
•	*	•	•	•	•	•		-	•	•	•		•	-
-						4		*	*	•	-	-	-	-
*	*	*		4	4	4		k	•	•	*	×	•	•
,	1	1	1	4	4	4	¥	k	N.	×	×	×	×	×
1	1	1	1	1	4	4	ŧ	Ą	N.	k	×	X	×	X
1			1	1	1	ŧ	ŧ	ŧ	ł	ł	Y	X	X	X
	1	1 1			1		Ì ↑	Ť	4	ł	*	N. N	*	

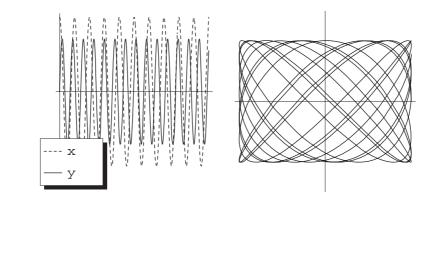
The force is not exactly central, but the arrows point generally not very far from the origin. The brazilian authors call this class of forces *"força que aponta"*. Since the force tends to draw the point towards the origin, we expect that the origin is a *stable equilibrium* for our mechanical system.

With $f(x) \equiv 1$, $g(x) \equiv 2$ this is verified easily because we can solve the system explicitly:

 $x(t, 0, x_0, \dot{x}_0) = x_0 \cos t + \dot{x}_0 \sin t \,,$

$$y(t, 0, y_0, \dot{y}_0) = y_0 \cos t \sqrt{2} + \frac{\dot{y}_0}{\sqrt{2}} \sin t \sqrt{2},$$

With the initial data $(x_0, \dot{x}_0) = (1, 0)$, $(y_0, \dot{y}_0) = (0, 1)$ the solutions look like this:



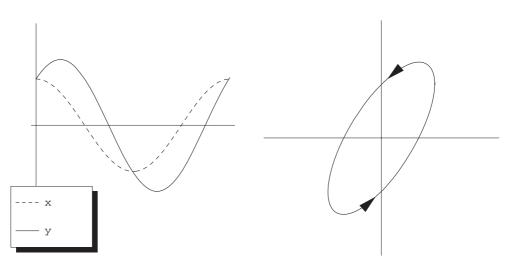
3 Instability in the central force case

When $f \equiv g$ the force field is *central and attractive*. Still, Barone, Cesar and Gaetano Zampieri found already in the 1980s that these systems are *generically unstable*.

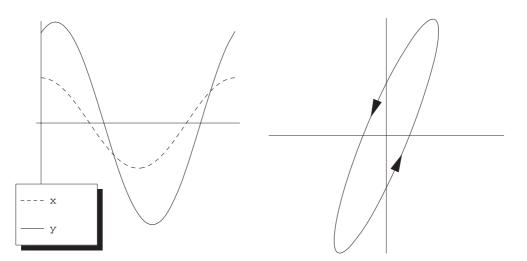
Among other things, they found that a sufficient condition for instability is

 $4f'(0)^2 - 3f(0)f''(0) \neq 0.$

For example, with $f(x) := g(x) := 1 - 2x^2$ and $(x_0, \dot{x}_0) = (1/10, 0), (y_0, \dot{y}_0) = (1/10, 1/10)$ the trajectory looks like this initially



but after 31 cycles they are stretched vertically:



and the vertical stretching goes on in an approximately linear way.

We are seeing a *parametric resonance*.

4 The strategy

The first equation of our system

$$\begin{cases} \ddot{x} = -f(x)x\\ \ddot{y} = -g(x)y \end{cases}$$

is similar to the pendulum equation, and it is well-known: in particular, all solutions are periodic.

Let x(t) be the solution of x = -f(x)x with initial data $x(0) = x_0$, $\dot{x}(0) = 0$, periodic of period $\tau(x_0)$. Plug x(t) into y = -g(x)y: we get a linear equation in y with periodic coefficient (Hill's equation):

$$\ddot{y} = -g\big(x(t)\big)y\,.$$

As a first-order system this becomes

$$\frac{d}{dt} \begin{pmatrix} y \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -g(x(t)) & 0 \end{pmatrix} \begin{pmatrix} y \\ \dot{y} \end{pmatrix}$$

Let $\Phi(t, x_0)$ be the matrix solution of the problem

$$\dot{\Phi}(t,x_0) = \begin{pmatrix} 0 & 1\\ -g(x(t)) & 0 \end{pmatrix} \Phi(t,x_0),$$
$$\Phi(0,x_0) = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}.$$

Define the Floquet matrix $\Psi(x_0)$ as

$$\Psi(x_0) := \Phi\bigl(\tau(x_0), x_0\bigr) \,.$$

The stability of the origin for our system depends on the asymptotic behaviour of the operator norm of the iterates of $\Psi(x_0)$:

Theorem 4.1 (stability in terms of Floquet iterate asymptotics). The origin is a stable equilibrium for the system $\ddot{x} = -xf(x)$, $\ddot{y} = -yg(x)$ if and only if

$$\limsup_{x_0 \to 0} \left(\sup_{n \in \mathbb{N}} \left\| \Psi(x_0)^n \right\| \right) < +\infty \,.$$

5 General results on the Floquet matrix

Proposition 5.1. If f and g are of class C^n for some $n \ge 1$ then also the function $x_0 \mapsto \Psi(x_0)$ is of class C^n , and

$$\Psi(0) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

where $\alpha = 2\pi \sqrt{g(0)/f(0)}$. The determinant of $\Psi(x_0)$ is constantly 1, and the two diagonal entries of $\Psi(x_0)$ coincide.

In particular, $\Psi(x_0)$ has the form

$$\Psi(x_0) = \begin{pmatrix} a & b \\ c & a \end{pmatrix}$$

with $a^2 - bc = 1$.

Proposition 5.2 (iterate asymptotics for a fixed matrix). Consider a real matrix $A := \begin{pmatrix} a & b \\ c & a \end{pmatrix}$ with det A = 1. Then four cases are possible:

- i. |a| > 1 and $bc \neq 0$: then $||A^n|| \to +\infty$ as $n \to +\infty$ with exponential growth.
- ii. |a| = 1 and either $b \neq 0$ or $c \neq 0$: then $||A^n|| \rightarrow +\infty$ as $n \rightarrow +\infty$ with linear growth.
- *iii.* |a| = 1, b = c = 0: then $n \mapsto A^n$ is constant.
- iv. |a| < 1 and bc < 0 and: then for all $n \in \mathbb{N}$

$$\min\left\{\sqrt{-b/c}, \sqrt{-c/b}\right\} \le \left\|A^n\right\| \le \\ \le \max\left\{\sqrt{-b/c}, \sqrt{-c/b}\right\}$$

and

$$\limsup_{n \to +\infty} \left\| A^n \right\| \ge \frac{1}{2} \max\left\{ \sqrt{-b/c}, \sqrt{-c/b} \right\}$$

6 *n*-decidability

Definition 6.1. We will say that the system is n-decidable if the stability or instability of the origin can be decided from the values of the derivatives of f(x) and g(x) at x = 0 of orders 0 to n.

It is known that not all of our systems are finitely decidable (n-decidable for some n). However, finite decidability is generic:

Theorem 6.1 (0-decidability). If 4g(0)/f(0) is not the square of a nonzero integer, then the origin is a stable equilibrium for the system $\ddot{x} = -xf(x), \ \ddot{y} = -yg(y).$

The example $f(x) \equiv 1$, $g(x) \equiv 2$ that we have seen is then confirmed to be stable, because 4g(0)/f(0) = 8 is not a square integer.

When 4g(0)/f(0) is the square of an integer, we may decide stability if we know enough about the asymptotic expansion of $\Psi(x_0)$ as $x_0 \to 0$. Theorem 6.2 (stability from asymptotic expansion of Ψ). Suppose that $\Psi(x_0)$ as $x_0 \to 0$ has the expansion

$$\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & bx_0^n \\ cx_0^m & 0 \end{pmatrix} + \\ + \begin{pmatrix} o(1) & o(x_0^n) \\ o(x_0^m) & o(1) \end{pmatrix}$$

for some $n, m \in \mathbb{N} \setminus \{0\}, b, c \in \mathbb{R}$.

- if bc > 0 the origin is exponentially unstable: any neighbourhood of the origin of ℝ⁴ has an initial point (x₀, ẋ₀, y₀, ẏ₀) for which y(t) is unbounded (exponentially) as t→+∞.
- If bc < 0 and n ≠ m then the origin is unstable with bounded trajectories: every solution starting near the origin is bounded, but there exists a sequence of initial points converging to zero for which sup_{t≥0} ||y_n(t)|| diverges to +∞ as n → +∞.

- If bc < 0 and n = m the origin is stable.
- If $n \ge m$, $b \ne 0$ and c = 0 the origin is unstable, but we can't say of which kind.

We want to compute the asymptotic expansion of the Floquet matrix $\Psi(x_0)$ as $x_0 \to 0$.

7 Variations equations for x

Let $t \mapsto x(t; x_0)$ be the solution of

 $\ddot{x} = -xf(x)$, $x(0) = x_0$, $\dot{x}(0) = 0$.

Setting

$$\mu_n(t) := \frac{\partial^n x}{\partial x_0^n}(t;0) \,.$$

we get the equations

$$\begin{aligned} \ddot{\mu}_0 + f(\mu_0)\mu_0 &= 0, & \mu_0(0) = 0, & \dot{\mu}_0(0) = 0, \\ \ddot{\mu}_1 + f(0)\mu_1 &= 0, & \mu_1(0) = 1, & \dot{\mu}_1(0) = 0, \\ \ddot{\mu}_2 + f(0)\mu_2 &= -2f'(0)\mu_1^2, & \mu_2(0) = 0, \\ \dot{\mu}_2(0) &= 0, \end{aligned}$$

This is an elementary triangular system. For example, with $\omega_0 := \sqrt{f(0)}$ the solution is

$$\mu_0(t) = 0, \qquad \mu_1(t) = \cos \omega_0 t,$$

$$\mu_2(t) = \frac{f'(0)}{3\omega_0^2} \left(2\cos \omega_0 t + \cos 2\omega_0 t - 3\right).$$

8 The derivatives of the period $\tau(x_0)$

We know that $\tau(0) = 2\pi$ and that τ is smooth near the origin if f, g are smooth. The computation of $\tau'(0), \tau''(0) \dots$ starts from the periodicity equations

$$x(\tau(x_0), x_0) = x_0$$
 $\dot{x}(\tau(x_0), x_0) = 0$

Differentiating *twice* the *second* equation and setting $x_0 = 0$, we get that

$$2\ddot{\mu}_1(2\pi/\omega)\tau'(0) + \ddot{\mu}_2(2\pi/\omega) = 0.$$

Using the explicit formulas for μ_1, μ_2 we deduce that

$$\tau'(0) = 0.$$

Taking more derivatives of the equation we get

$$\tau''(0) = \frac{\pi}{12f(0)^{5/2}} \left(20f'(0)^2 - 9f(0)f''(0) \right)$$

and so on.

9 1-decidability

For n = 1 the derivative $\Psi^{(n)}(0)$ can be found by hand (for n = 2 with quite some effort). For higher orders we have written a computer algebra program.

Proposition 9.1 (order 1, n = 1). If g(0) = f(0)/4 then

$$\Psi(0) = (-1)^1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
$$\Psi'(0) = \frac{2\pi g'(0)}{f(0)^{3/2}} \begin{pmatrix} 0 & 1 \\ g(0) & 0 \end{pmatrix}$$

If $g'(0) \neq 0$ the origin is unstable of the exponential kind.

Proposition 9.2 (Order 1, $n \ge 2$). If $g(0) = n^2 f(0)/4$ with $n \ge 2$ then

$$\Psi(0) = (-1)^n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \Psi'(0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This case is not 1-decidable.

10 Application to central force

Barone-Cesar-Zampieri's old sufficient condition for instability in the central force case $(f \equiv g)$ is that $4f'(0)^2 - 3f(0)f''(0) \neq 0$. Using the formulas for $\Psi^{(n)}(0)$ for $n = 1, \ldots, 4$ we can say something when $4f'(0)^2 - 3f(0)f''(0) = 0$:

Proposition 10.1 (4-decidable instability with central force). If $f \equiv g$ (central force) and

$$\begin{cases} 4f'(0)^2 - 3f(0)f''(0) = 0\\ 40f'(0)^4 - 24f(0)^2f'(0)f^{(3)}(0) + \\ + 3f(0)^3f^{(4)}(0) \neq 0 \end{cases}$$

then the origin is an unstable equilibrium, with linear growth.

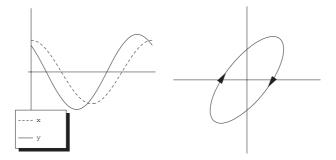
An *example* of 4-decidable instability with central forces:

$$f(x) := g(x) := 1 + 48x^4$$

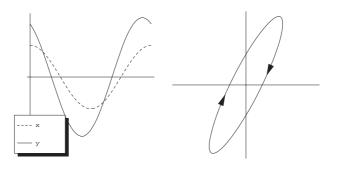
The asymptotic expansion of the Floquet matrix $\Psi(x)$ as $x \to 0$ is

$$\Psi(x) = \begin{pmatrix} 1 & -24\pi x^4 + o(x^4) \\ 0 & 1 \end{pmatrix}$$

Here is a graph of a $\tau(x_0)$ -cycle:



and here is the next 133th cycle:



11 Notable special cases

The following classes of equations are special cases of our main problem:

$$\ddot{y} = -y \cdot (a + bx_0 \cos t)$$
 (Mathieu's equation)

$$\ddot{y} = -y \cdot (a + bx_0 \cos t + cx_0^2 \cos^2 t)$$

(Whitakker's equation).

For example, for Whittaker's equation we have the following 2-decidable cases:

- if a > 0 and $2\sqrt{a} \notin \mathbb{N}$ the origin is stable;
- if a = 1/4 and $b \neq 0$ it is unstable;
- if a = 1/4, b = 0 and $c \neq 0$ it is stable;
- if a = 1, $b \neq 0$ and $-1/3 \le c/b^2 \le 5/9$ it is unstable;
- if a = 1 and either $-b^2/3 > c$ or $c > 5b^2/9$ it is stable;
- for $a = n^2/4$ with $n \ge 3$ and $b^2 \ne c(n^2 1)$ it is stable.

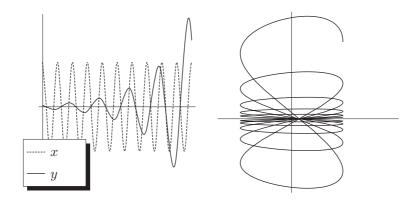
12 A 1-decidable instability example with exponential growth

 $f(x) \equiv 4 \qquad g(x) := 1 + x$

The Floquet matrix $\Psi(x)$ expands as

$$\Psi(x) = \begin{pmatrix} -1 & -\frac{\pi}{4}x \\ -\frac{\pi}{4}x & -1 \end{pmatrix} + o(x).$$

Here are some cycles:



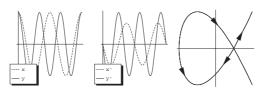
13 A 2-decidable stable example

$$f(x) := 4 + \frac{576}{19}x^2$$
, $g(x) := 9 + \frac{576}{19}x^2$.

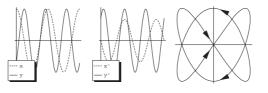
The Floquet matrix $\Psi(x)$ expands as

$$\Psi(x) = \begin{pmatrix} -1 & 2\pi x^2 \\ -18\pi x^2 & -1 \end{pmatrix} + o(x^2).$$

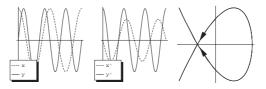
Here are the first two cycles with initial data $(x_0, \dot{x}_0) = (y_0, \dot{y}_0) = (1/100, 0)$:



415 cycles later:



after 833 cycles:



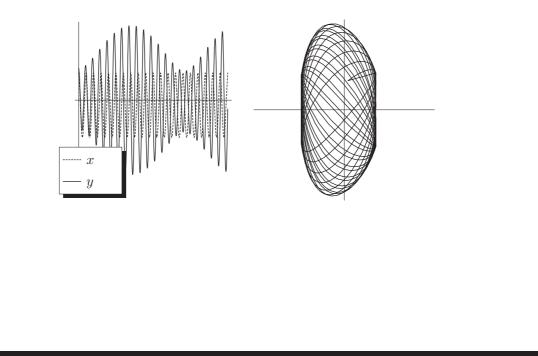
14 A 2-decidable stable example with beatings

 $f(x) := 1 + x + x^2$, $g(x) := 1 + x^2$.

The Floquet matrix $\Psi(x)$ expands as

$$\Psi(x) = \begin{pmatrix} 1 & \frac{\pi}{3}x^2 \\ -\frac{5\pi}{6}x^2 & 1 \end{pmatrix} + o(x^2).$$

Here are some cycles:



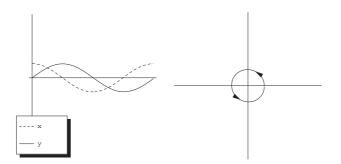
15 A 4-decidable unstable example with beatings

 $f(x) := 1 + x^2$, $g(x) := 1 + x^2 - x^4$.

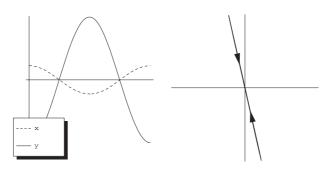
The Floquet matrix $\Psi(x)$ expands as

$$\Psi(x) = \begin{pmatrix} 1 & -\frac{\pi}{2!}x^2 + \frac{33\pi}{4! \cdot 4}x^4 \\ \frac{60\pi}{4! \cdot 4}x^4 & 1 \end{pmatrix} + o(x^4).$$

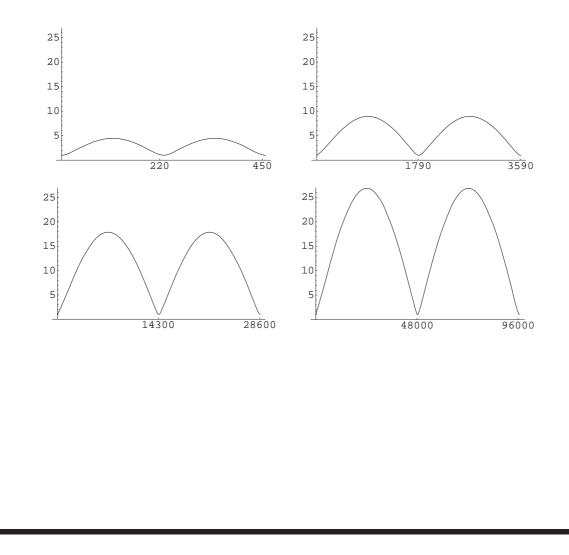
Here is a cycle:



and at its widest, 110 cycles later:



In these graphs the horizontal scale is measured in $\tau(x_0)$ -cycles, while on the vertical axis there is the *y*-amplitude over the cycle for the initial values $x_0 = 1/5, 1/10, 1/20, 1/30$ respectively, and $(y_0, \dot{y}_0) = (0, 1)$.



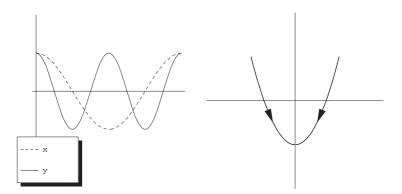
16 A 6-decidable unstable example with beatings

 $f(x) := 1 - x^4 + 26x^6, \quad g(x) := 4 - 8x^4 + 140x^6$

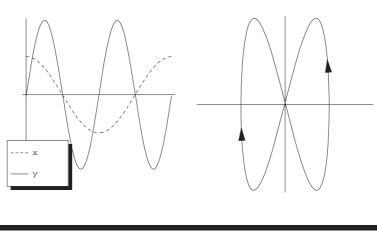
The Floquet matrix $\Psi(x)$ expands as

$$\Psi(x) = \begin{pmatrix} 1 + o(1) & -\frac{4725\pi}{6!}x^6 + o(x^6) \\ \frac{24\pi}{4!}x^4 + o(x^4) & 1 + o(1) \end{pmatrix}$$

Here is a cycle:



and at its widest, 2000 cycles later:



In these graphs the horizontal scale is measured in $\tau(x_0)$ -cycles, while on the vertical axis there is the y-amplitude over the cycle for the initial values $x_0 = 1/5, 1/10, 1/20, 1/30$ and $(y_0, \dot{y}_0) = (1, 0).$

