Note

A factorization of the symmetric Pascal matrix involving the Fibonacci matrix

Zhizheng Zhanga,b, Xin Wangc

aDepartment of Mathematics, Luoyang Normal University, Luoyang 471022, PR China
bCollege of Mathematics and Information Science, Henan University, Kaifeng 475001, PR China
cDalian Naval Academy, Dalian 116018, PR China

Received 18 August 2004; received in revised form 23 November 2005; accepted 30 June 2007
Available online 20 August 2007

Abstract

In this short note, we give a factorization of the Pascal matrix. This result was apparently missed by Lee et al. [Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math. 130 (2003) 527–534].

© 2007 Elsevier B.V. All rights reserved.

MSC: 05A10; 11B39; 15A23

Keywords: Pascal matrix; Fibonacci matrix; Factorization of matrix

1. Introduction

For a fixed n, the $n \times n$ lower triangular Pascal matrix, $P_n = [p_{i,j}]_{i,j=1,2,\ldots,n}$, (see [1,6]), is defined by

$$p_{i,j} = \begin{cases} \binom{i-1}{j-1} & \text{if } i \geq j, \\ 0 & \text{otherwise}. \end{cases} \quad (1)$$

Let F_n be the nth Fibonacci number with the generating series $\sum_{n=0}^{\infty} F_n x^n = \frac{x}{1-x-x^2}$. The $n \times n$ Fibonacci matrix $\mathcal{F}_n = [f_{i,j}]_{i,j=1,2,\ldots,n}$ is the unipotent lower triangular Toeplitz matrix defined by

$$f_{i,j} = \begin{cases} F_{i-j+1} & \text{if } i-j+1 \geq 0, \\ 0 & \text{if } i-j+1 < 0. \end{cases} \quad (2)$$

In [4], Lee et al. discussed the factorizations of Fibonacci matrix \mathcal{F}_n and the eigenvalues of symmetric Fibonacci matrices $\mathcal{F}_n \mathcal{F}_n^T$. The inverse of \mathcal{F}_n was also given as follows:

$$\mathcal{F}_n^{-1} = [f'_{i,j}]_{i,j=1,2,\ldots,n} = \begin{cases} 1 & \text{if } i = j, \\ -1 & \text{if } i-2 \leq j \leq i-1, \\ 0 & \text{otherwise}. \end{cases} \quad (3)$$

E-mail addresses: zhzhzhang-yang@163.com (Z. Zhang), wangxbb2006@yahoo.com.cn (X. Wang).

0166-218X/S - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.06.024
In fact, formula (3) is an immediate consequence of the isomorphism between lower formal power series and lower triangular Toeplitz matrices.

In [5], Lee et al. obtained the following result:

\[P_n = \mathcal{F}_n \mathcal{L}_n, \]

(4)

where \(\mathcal{L}_n = [l_{i,j}]_{i,j=1,2,\ldots,n} \) is defined by

\[l_{i,j} = \binom{i-1}{j-1} - \binom{i-2}{j-1} - \binom{i-3}{j-1}. \]

In this short note, we give a second factorization of the Pascal matrix which was apparently missed by the authors in [5].

2. The main results

First, we define an \(n \times n \) matrix \(\mathcal{R}_n = [r_{i,j}]_{i,j=1,2,\ldots,n} \) as follows:

\[r_{i,j} = \binom{i-1}{j-1} - \binom{i-2}{j} - \binom{i-3}{j+1}. \]

From the definition of \(\mathcal{R}_n \), it is easy to see that \(\mathcal{R}_n \) is unipotent lower triangular. It satisfies \(r_{i,1} = -\frac{1}{2}(i + 1)(i - 2) \) for \(i \geq 2 \) and \(r_{i,j} = r_{i-1,j} + r_{i-1,j-1} \) for \(i, j \geq 2 \).

Next we give the following factorization of the Pascal matrix.

Theorem 2.1. We have

\[P_n = \mathcal{R}_n \mathcal{F}_n. \]

(6)

Proof. It suffices to prove \(P_n \mathcal{F}_n^{-1} = \mathcal{R}_n \). For \(i \geq 1 \) we have \(\sum_{k=1}^{i} p_{i,k} f_{k,1}' = p_{i,1} f_{1,1}' + p_{i,2} f_{2,1}' + p_{i,3} f_{3,1}' = 1 + \binom{i-1}{1}(-1) + \binom{i-1}{2}(-1) = -\frac{1}{2}(i + 1)(i - 2) = r_{i,1} \), and for \(i \geq 1, j \geq 2 \), we have \(\sum_{k=1}^{n} p_{i,k} f_{k,j}' = p_{i,j} f_{j,j}' + p_{i,j+1} f_{j+1,j} + p_{i,j+2} f_{j+2,j}' = \binom{i-1}{j-1} - \binom{i-1}{j} - \binom{i-1}{j+1} = r_{i,j} \), which implies that \(P_n \mathcal{F}_n^{-1} = \mathcal{R}_n \), as desired. \(\square \)

Example.

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 \\
1 & 4 & 6 & 4 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\-2 & 1 & 1 & 0 & 0 \\
\-5 & -1 & 2 & 1 & 0 \\
\-9 & \-6 & 1 & 3 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 1 & 0 \\
5 & 3 & 2 & 1 & 1
\end{pmatrix}.
\]

From the theorem, we have the following combinatorial identity involving the Fibonacci numbers.

Corollary 2.2.

\[
\binom{n-1}{r-1} = F_{n-r+1} + (n - 2)F_{n-r} + \frac{1}{2}(n^2 - 5n + 2)F_{n-r-1}
\]

\[+ \sum_{k=r}^{n-3} \binom{n-1}{k-1} \left(2 - \frac{n}{k} - \frac{(n-k)(n-k-1)}{k(k+1)} \right) F_{k-r+1}. \]

(7)
In particular,

\[\sum_{k=1}^{n} \left(\binom{n-1}{k-1} - \binom{n-1}{k} - \binom{n-1}{k+1} \right) F_k = 1. \]

(8)

Lemma 2.3.

\[\sum_{k=3}^{i} \left\{ \binom{i-2}{k-2} - \binom{i-2}{k-1} - \binom{i-2}{k} \right\} F_k = \frac{1}{2} (i+1)(i-2). \]

(9)

Proof. We argue by induction on \(i \). If \(i = 3, 4 \), then lemma is true, respectively. Suppose the lemma is true for \(i \geq 4 \). Then

\[
\sum_{k=3}^{i+1} \left\{ \binom{i-1}{k-2} - \binom{i-1}{k-1} - \binom{i-1}{k} \right\} F_k
= \sum_{k=3}^{i} \left\{ \binom{i-2}{k-2} - \binom{i-2}{k-1} - \binom{i-2}{k} \right\} F_k + \sum_{k=3}^{i+1} \left\{ \binom{i-2}{k-3} - \binom{i-2}{k-2} - \binom{i-2}{k-1} \right\} F_k
= \frac{1}{2} (i+1)(i-2) + \sum_{k=2}^{i} \left\{ \binom{i-2}{k-2} - \binom{i-2}{k-1} - \binom{i-2}{k} \right\} F_{k+1}
= \frac{1}{2} (i+1)(i-2) + \sum_{k=2}^{i} \left\{ \binom{i-2}{k-2} - \binom{i-2}{k-1} - \binom{i-2}{k} \right\} \{F_k + F_{k-1}\}
= \frac{1}{2} (i+1)(i-2) + 1 - (i-2) - \binom{i-2}{2} + \frac{1}{2} (i+1)(i-2)
+ \sum_{k=2}^{i} \left\{ \binom{i-2}{k-2} - \binom{i-2}{k-1} - \binom{i-2}{k} \right\} F_{k-1}
= (i+1)(i-2) + 1 - (i-2) - \binom{i-2}{2} + \sum_{k=1}^{i-1} \left\{ \binom{i-2}{k-1} - \binom{i-2}{k} - \binom{i-2}{k+1} \right\} F_k
= (i+1)(i-2) + 1 - (i-2) - \binom{i-2}{2} + 1
= \frac{1}{2} (i+2)(i-1).

Hence the lemma is also true for \(i + 1 \). By induction, we complete the proof. □

Note. Since \(\frac{1}{2} (i+1)(i-2) \) is a linear combination of \(\binom{i}{k} \) for \(k = 0, 1, 2 \) (or \(\binom{i+1}{k} \)), the referee pointed out that Lemma 2.3 follows also from Theorem 2.1.
We define the $n \times n$ matrices U_n, \overline{U}_n and R_n by

$$U_n = \begin{pmatrix} 1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 & 0 \\ -F_3 & 1 & 1 & 0 & \ldots & 0 & 0 \\ -F_4 & 0 & 1 & 1 & \ldots & 0 & 0 \\ -F_5 & 0 & 0 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -F_n & 0 & 0 & 0 & \ldots & 1 & 1 \end{pmatrix},$$

(10)

$$\overline{U}_k = I_{n-k} \oplus U_k$$ and $$R_n = [1] \oplus \overline{A}_n - 1,$$ i.e., A is the matrix A shifted one row down and one column to the right with first column given by $(1, 0, 0, \ldots)$. From the definition of U_k, we have $U_1 = U_2 = I_n$ and $U_n = U_n$. Hence

Lemma 2.4.

$$R_n = \overline{U}_n U_n.$$ \hfill (11)

Proof. The (i, j) element of R_n is $r_{i-1,j-1}$, $(i, j = 2, 3, \ldots, n)$, or $1 (i = 1, j = 1)$, or $0 (i \neq 1, j = 1$ or $i = 1, j \neq 1$).

Let $\overline{U}_n U_n = (D_{i,j})$ and $U_n = (u_{i,j})$. Obviously, $D_{1,1} = 1 = r_{1,1}, D_{2,1} = 0 = r_{2,1}$ and $D_{i,j} = 0 (i < j)$. For $i \geq 3$, by Lemma 2.3, we have

$$D_{i,1} = \sum_{k=1}^{i} r_{i-1,k-1} u_{k,1}$$

$$= - \sum_{k=3}^{i} \left\{ \binom{i-2}{k-2} - \binom{i-2}{k-1} - \binom{i-2}{k} \right\} F_k$$

$$= - \frac{1}{2} (i+1)(i-2)$$

$$= r_{i,1}.$$ (12)

When $i \geq j \geq 2$, we have

$$D_{i,j} = \sum_{k=1}^{i} r_{i-1,k-1} u_{k,j} = r_{i-1,j-1} + r_{i-1,j} = r_{i,j}.$$ (13)

Thus, $R_n = \overline{U}_n U_n$. \hfill \Box

Example.

$$\overline{U}_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 1 & 1 & 0 & 0 \\ -5 & -1 & 2 & 1 & 0 \\ -9 & -6 & 1 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 1 & 1 & 0 \\ -5 & 0 & 0 & 1 & 1 \end{pmatrix} = \overline{U}_5 U_5.$$

An immediate consequence of Lemma 2.4 and the definition of the \overline{U}_k is
Theorem 2.5.

\[R_n = U_1 U_2 \ldots U_{n-1} U_n. \]

Example.

\[R_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 1 & 1 & 0 & 0 \\ -5 & -1 & 2 & 1 & 0 \\ -9 & -6 & 1 & 3 & 1 \end{pmatrix} \]

\[= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 1 & 0 \\ -3 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -3 & 0 & 1 & 1 \\ -5 & 0 & 0 & 1 & 1 \end{pmatrix}. \]

Let

\[S_0 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad S_{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \]

\[S_k = S_0 \oplus I_k, \text{ for } k \in \mathbb{N}, \quad F_n = [1] \oplus F_{n-1}, \quad G_1 = I_n, \quad G_2 = I_{n-3} \oplus S_{-1}, \text{ and } G_k = I_{n-k} \oplus S_{-k} \text{ for } k \geq 3. \]

In [4], the authors gave the following result:

\[F_n = G_1 G_2 \ldots G_n. \]

Hence we have:

Theorem 2.6.

\[P_n = \overline{U}_1 \overline{U}_2 \ldots \overline{U}_{n-1} U_n G_1 G_2 \ldots G_n. \]

Example.

\[\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 \\ 1 & 4 & 6 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \]
3. A remark

In this note, all matrix-identities are expressed using finite matrices. Since all matrix-identities involve lower-triangular matrices, they have an analogue for infinite matrices. We state them briefly as follows.

Let P, F, L, U and R are the infinite cases of the matrices P_n, F_n, L_n, U_n and R_n, respectively. Furthermore, define

$$U^{(k)} = I_k \oplus U$$

and

$$R^{(k)} = I_k \oplus R.$$

Then $P = FL = R$ (cf. (4) and Theorem 2.1), $R = U^{(1)}$ (cf. Lemma 2.4) and $R = R^{(t+1)} U^{(t)} \ldots U^{(2)} U^{(1)} U$, where t is an arbitrary nonnegative integer (cf. Theorem 2.5).

Acknowledgements

We would like to thank the two anonymous referees for their many valuable suggestions. This research is supported by the National Natural Science Foundation of China (Grant No. 10471016), the Natural Science Foundation of Henan Province (Grant No. 0511010300) and the Natural Science Foundation of the Education Department of Henan Province (Grant No. 2003110009).

References