Research Article

Combinatorial Interpretation of General Eulerian Numbers

Tingyao Xiong, Jonathan I. Hall, and Hung-Ping Tsao

1 Department of Mathematics and Statistics, Radford University, Radford, VA 24141, USA
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
3 Department of Decision Sciences, San Francisco State University, San Francisco, CA 94132, USA

Correspondence should be addressed to Tingyao Xiong; txiong@radford.edu

Received 29 August 2013; Accepted 10 October 2013; Published 2 January 2014

Academic Editor: Pantelimon Stănică

Copyright © 2014 Tingyao Xiong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Since the 1950s, mathematicians have successfully interpreted the traditional Eulerian numbers and q-Eulerian numbers combinatorially. In this paper, the authors give a combinatorial interpretation to the general Eulerian numbers defined on general arithmetic progressions \(\{a, a+d, a+2d, \ldots \} \).

1. Introduction

Definition 1. Given a positive integer \(n \), define \(\Omega_n \) as the set of all permutations of \(\{1, 2, 3, \ldots, n\} \). For a permutation \(\pi = p_1 p_2 p_3 \ldots p_n \in \Omega_n \), \(\pi \) is called an ascent of \(\pi \) if \(p_i < p_{i+1} \); it is called a weak exceedance of \(\pi \) if \(p_i \geq i \).

It is well known that a traditional Eulerian number \(A_{n,k} \) is the number of permutations \(\pi \in \Omega_n \) that have \(k \) weak exceedances [1, page 215]. And \(A_{n,k} \) satisfies the recurrence:
\[
A_{n+1,k} = \binom{n+1}{k} A_{n,k} + (n+1-k) A_{n,k-1} \quad (1 \leq k \leq n) \tag{1}
\]

Besides the recursive formula (1), \(A_{n,k} \) can be calculated directly by the following analytic formula [2, page 8]:
\[
A_{n,k} = \sum_{i=0}^{k-1} (-1)^i (k-i)^n \binom{n+1}{i} \quad (1 \leq k \leq n) \tag{2}
\]

Definition 2. Given a permutation \(\pi = p_1 p_2 p_3 \ldots p_n \in \Omega_n \), define functions
\[
\text{maj} \pi = \sum_{i=0}^{n-1} j, \quad a(n,k,i) = \# \{ \pi \mid \text{maj} \pi = i \land \pi \text{ has } k \text{ ascents} \} \quad (3)
\]

Under Carlitz's definition, the \(q \)-Eulerian numbers \(\Lambda_{n,k}(q) \) are given by
\[
\Lambda_{n,k}(q) = q^{(n-k+1)(n-k)/2} \sum_{i=0}^{k(n-k-1)} a(n,k-i) q^i \tag{4}
\]

where functions \(a(n,k,i) \) are as defined in Definition 2.

In [5], instead of studying \(q \) sequences, the authors have generalized Eulerian numbers to any general arithmetic progression \(\{a, a+d, a+2d, a+3d, \ldots \} \).

Under the new definition, and given an arithmetic progression as defined in (5), the general Eulerian numbers \(\Lambda_{n,k}(a,d) \) can be calculated directly by the following equation [5, Lemma 2.6]:
\[
\Lambda_{n,k}(a,d) = \sum_{i=0}^{k} (-1)^i (k-i+1)^d a^i \binom{n+1}{i} \tag{6}
\]

Interested readers can find more results about the general Eulerian numbers and even general Eulerian polynomials in [5].

2. Combinatorial Interpretation of General Eulerian Numbers

The following concepts and properties will be heavily used in this section.
Definition 3. Let W_{nk} be the set of n-permutations with k weak exceedences. Then $|W_{nk}| = A_{nk}$. Furthermore, given a permutation $\pi = p_1p_2p_3\ldots p_n$, let $Q_n(\pi) = i$, where $p_i = n$.

Given a permutation $\pi \in \Omega_n$, it is known that π can be written as a one-line form like $\pi = p_1p_2p_3\ldots p_n$ or π can be written in a disunion of distinct cycles. For π written in a cycle form, we can use a standard representation by writing (a) each cycle starting with its largest element and (b) the cycles in increasing order of their largest element. Moreover, given a permutation π written in a standard representation cycle form, define a function f as $f(\pi)$ to be the permutation obtained from π by erasing the parentheses. Then f is known as the fundamental bijection from Ω_n to itself [6, page 30]. Indeed, the inverse map f^{-1} of the fundamental bijection function f is also famous in illustrating the relation between the ascents and weak exceedances as follows [2, page 98].

Proposition 4. The function f^{-1} gives a bijection between the set of permutations on $\{n\}$ with k ascents and the set W_{nk+1}.

Example 5. The standard representation of permutation $\pi = 52437616k(2)43(7615) \in \Omega_n$ and $f(\pi) = 2437615k\pi(\pi) = 5; \pi = 5243761$ has 3 ascents, while $f^{-1}(\pi) = (5243)(7615) = 6453271 \in W_{nk}$ has $3 + 1 = 4$ weak exceedances because $p_1 = 6 > 1,p_2 = 4 > 2,p_3 = 5 > 3$, and $p_k = 7 > 6$.

Now suppose we want to construct a sequence consisting of k vertical bars and the first n positive integers. Then the k vertical bars divide these numbers into $k + 1$ compartments. In each compartment, there is either an odd number or all the numbers are listed in a decreasing order. The following definition is analogous to the definition of [2, page 8].

Definition 6. A bar in the above construction is called extraneous if either

(a) it is immediately followed by another bar; or

(b) each of the rest compartment is either empty or consists of integers in a decreasing order if this bar is removed.

Example 7. Suppose $n = 7$, $k = 4$; then in the following arrangement

\[
\begin{array}{c}
32117654
\end{array}
\]

(7)

the 1st, 2nd, and 4th bars are extraneous.

Now we are ready to give combinatorial interpretations to the general Eulerian numbers $A_{nk}(a,d)$. First note that (6) implies that $A_{nk}(a,d)$ is a homogeneous polynomial of degree with respect to a and d. Indeed,

\[
A_{nk}(a,d) = \sum_{i=0}^{k} (-1)^i [(k + 1 - i)d - a]^i \binom{n + 1}{i}
\]

(8)

where

\[
c_{nk}(j) = \sum_{i=0}^{k} (-1)^i (k + 1 - i)^{n+1 - j} \binom{n+1}{i},
\]

(9)

0 \leq j \leq n.

The following theorem gives combinatorial interpretations to the coefficients $c_{nk}(j), 0 \leq j \leq n$.

Theorem 8. Let the general Eulerian numbers $A_{nk}(a,d)$ be written as in (8). Then

\[
c_{nk}(j) = \# \{ \pi \in W_{nk+1} : j < Q_n(\pi) \leq n \}
\]

(10)

+ \# \{ \pi \in W_{nk+1} : 1 \leq Q_n(\pi) \leq j \}.

Proof. We can check the result in (10) for two special values $j = 0$ and $j = n$ quickly. By (2),

when $j = 0$, $c_{nk}(0) = \sum_{i=0}^{k} (-1)^i (k + 1 - i)^{n+1} = A_{nk+1}$;

when $j = n$, $c_{nk}(n) = \sum_{i=0}^{k} (-1)^i (k + 1 - i)^{n+1} = A_{nk}$. Therefore, (10) is true for $j = 0$ and $j = n$.

Generally, for $1 \leq j \leq n-1$, we write down k bars with $k + 1$ compartments in between. Place each element of $\{n\}$ in a compartment. If none of the k bars is extraneous, then the arrangement corresponds to a permutation with k ascents. Let B_{j} be the set of arrangements with at most one extraneous bar at the end and none of integers $\{1,2,\ldots,j\}$ locating in the last compartment. We will show that $c_{nk}(j) = |B_{j}|$.

To achieve that goal, we use the Principle of Inclusion and Exclusion. There are $(k + 1)^{n+1}/k^j$ ways to put n numbers into $k + 1$ compartments with elements $\{1,2,\ldots,j\}$ avoiding the last compartments.

Let B_{j} be the number of arrangements with the following features:

(1) none of $\{1,2,\ldots,j\}$ sits in the last compartment;

(2) each arrangement in B_{j} has at least i extraneous bars.

(3) in each arrangement in B_{j}, any two extraneous bars are not located right next to each other.
Then the Principle of Inclusion and Exclusion shows that

$$|\mathcal{B}| = (k + 1)^{n} - |B| + B_{1} - B_{2} + \cdots - (-1)^{k}B_{k}. \quad (11)$$

Now we consider the value of B_{i} where $1 \leq i \leq k$. Suppose that we have $(k + 1 - i)$ compartments with $k - i$ bars in between. There are $(k + 1 - i)^{n - i}(k - i)^{i}$ ways to insert n numbers into these $k + 1 - i$ compartments with first j integers avoiding the last compartment and list integers in each component in a decreasing order. Then insert i separating extraneous bars into $n + 1$ positions. So we get

$$B_{i} = (k + 1 - i)^{n - i}(k - i)^{i} \binom{n + 1}{i}. \quad (12)$$

Plug formula (12) into (11); we have $G_{n,k}(j) = |\mathcal{B}|$.

Given an arrangement $\pi \in \mathcal{B}$ if we remove the bars, then we obtain a permutation $\pi \in \Omega_{n}$. So without confusion, we just use the same notation π to represent an arrangement in set \mathcal{B} and a permutation on $[n]$. Now for each $\pi \in B$, π either

- (case 1) has no extraneous bar and none of $\{1, 2, \ldots, j\}$ locates in the last compartment or
- (case 2) has only one extraneous bar at the end.

If π is in case 1, then π has k ascents since each bar is non-extraneous. And the last compartment of π is nonempty. Therefore the last cycle of $f^{-1}(\pi)$ has to be $(n \ldots p_{k})$. In other words, $Q_{n}(f^{-1}(\pi)) = p_{k}$ since none of $\{1, 2, \ldots, j\}$ locates in the last compartment. And by Proposition 4, $f^{-1}(\pi) \in W_{n,k}$. If π is in case 2, then π has $k - 1$ ascents since only the last bar is extraneous. Note that in this case, the arrangement with no elements of $\{1, 2, \ldots, j\}$ in the compartment second to the last or the last nonempty compartment has been removed by the Principle of Inclusion and Exclusion. Equivalently, at least one number of $\{1, 2, \ldots, j\}$ has to be in the compartment second to the last. So the last cycle of $f^{-1}(\pi)$ has to be $(n \ldots p_{k})$, and $Q_{n}(f^{-1}(\pi)) = p_{k} \leq j$. Also by Proposition 4, $f^{-1}(\pi) \in W_{n,k}$.

Combining all the results above, statement (10) is correct.

The next Theorem describes some interesting properties of the coefficients $G_{n,k}$.

Theorem 9. Let the coefficients $G_{n,k}$ be as described in Theorem 8. Then,

1. $\sum_{k=0}^{n} G_{n,k}(j) = n!$ for any $0 \leq j \leq n$;
2. $G_{n,k}(j) = c_{n,n-k}(n-j)$, for all $0 \leq j, k \leq n$.

Before we can prove Theorem 9, we need the following lemma which is also interesting by itself.

Lemma 10. Given a positive integer n, then

$$\# \{\pi \in W_{n,k} \& Q_{n}(\pi) = j\} = \# \{\pi \in W_{n,n-k} \& Q_{n}(\pi) = n - 1 - j\} \quad (13)$$

for any $1 \leq k, j \leq n$.

Proof. First of all, given a positive integer n, we define a function $g: \Omega_{n} \rightarrow \Omega_{n}$ as follows:

$$g(\pi) = (n + 1 - p_{1})(n + 1 - p_{2})\ldots(n + 1 - p_{k}). \quad (14)$$

For instance, for $\pi = 53214 \in \Omega_{5}$, $g(\pi) = 13452$. g is obviously a bijection of Ω_{n} to itself.

Now for some fixed $1 \leq k, j \leq n$, suppose $S_{k,j} = \{\pi \in W_{n,k} \& Q_{n}(\pi) = j\}$, and $T_{k,j} = \{\pi \in W_{n,n-k} \& Q_{n}(\pi) = n - 1 - j\}$. For any $\pi \in S_{k,j}$, we write π in the standard representation cycle form. So $\pi = (p_{1}, \ldots, (n \ldots j)$ and $f(\pi) = (n \ldots p_{k} \ldots j)$ has $k - 1$ ascents by Proposition 4. Now we compose $f(\pi)$ with the bijection function g as just defined. Then $g(f(\pi)) = n + 1 - p_{1} \ldots n + 1 - j$ has $n - k$ ascents, which implies that $f^{-1}(g(f(\pi)))$ has $n + 1 - k$ weak exceedances. So $f^{-1}(g(f(\pi))) \in W_{n,n-k}$. Note that the last cycle of $f^{-1}(g(f(\pi)))$ has to be $(n \ldots n + 1 - j)$. Therefore, $f^{-1}(g(f(\pi))) \in T_{k,j}$. Since both f and g are bijection functions, $f^{-1}g$ gives a bijection between $S_{k,j}$ and $T_{k,j}$.

Now we are ready to prove Theorem 9.

Proof of Theorem 9. For part 1, by Theorem 8,

$$\sum_{k=0}^{n} G_{n,k}(j) = \sum_{k=0}^{n} \# \{\pi \in W_{n,k+1} \& j < Q_{n}(\pi) \leq n\}$$

$$+ \sum_{k=0}^{n} \# \{\pi \in W_{n,k} \& 1 \leq Q_{n}(\pi) \leq j\} \quad (15)$$

$$= \sum_{k=0}^{n} \# \{\pi \in W_{n,k} \& |\Omega_{n}| = n!.$$ For part 2, also by Theorem 8,

$$G_{n,k}(j) = \sum_{i=j+1}^{n} \# \{\pi \in W_{n,k+1} \& Q_{n}(\pi) = i\}$$

$$+ \sum_{i=1}^{j} \# \{\pi \in W_{n,k} \& Q_{n}(\pi) = i\} \quad (16)$$

$$= \sum_{i=j+1}^{n} \# \{\pi \in W_{n,n-k} \& Q_{n}(\pi) = n + 1 - i\}$$

$$+ \sum_{i=1}^{j} \# \{\pi \in W_{n,n-k} \& Q_{n}(\pi) = n + 1 - i\}$$

$$= c_{n,n-k}(n-j). \quad (16)$$
Remark 12. Using the analytic formula of \(c_{n,k}(j) \) as in (9), part 2 of Theorem 9 implies the following identity:

\[
\sum_{j=0}^{k} (-1)^{j}(k + 1 - \delta)^{j} \binom{n+1}{i} = \sum_{j=0}^{k} (-1)^{j}(n + 1 - k - \delta)^{j} \binom{n+1}{i},
\]

(17)

where \(\delta \) is a positive integer, and \(0 \leq j, k \leq n \).

3. Another Combinatorial Interpretation of \(c_{n,k}(1) \) and \(c_{n,k}(n-1) \)

In pursuing the combinatorial meanings of the coefficients \(c_{n,k} \), the authors have found some other interesting properties about permutations. The results in this section will reveal close connections between the traditional Eulerian numbers \(A_{n,k} \) and \(c_{n,k}(j) \), where \(j = 1 \) or \(j = n-1 \).

One fundamental concept of permutation combinatorics is inversion. A pair \((p_{i}, p_{j})\) is called an inversion of the permutation \(\pi = p_{1}p_{2}\ldots p_{n} \) if \(i < j \) and \(p_{i} > p_{j} \) [6, page 36]. The following definition gives the main concepts of this section.

Definition 12. For a fixed positive integer \(k \), let \(AW_{n,k} = \{ \pi = p_{1}p_{2}\ldots p_{n} \mid \pi \in W_{n,k} \text{ and } p_{i} < p_{j} \text{ for } i < j \} \) and \(BW_{n,k} = \{ p_{1}p_{2}\ldots p_{n} \mid \pi \in W_{n,k} \text{ and } p_{i} > p_{j} \text{ for } i < j \} \). Given a permutation \(\pi = p_{1}p_{2}\ldots p_{n} \in W_{n,k} \), if \(p_{i} > p_{j} \) for \(i < j \), then \(\pi \in AW_{n,k} \), and if \(p_{i} < p_{j} \) for \(i < j \), then \(\pi \in BW_{n,k} \).

Our last result of this paper is the following theorem which reveals that both \(|AW_{n,k}| \) and \(|BW_{n,k}| \) take exactly the same recursive formula as the traditional Eulerian numbers \(A_{n,k} \) as shown in (9).

Theorem 15. For a fixed positive integer \(n \), let \(AW_{n,k} \) and \(BW_{n,k} \) be as defined in Definition 12, then

\[
k|AW_{n-1,k}| + (n + 1 - k)|AW_{n-1,k-1}| = |AW_{n,k}|,
\]

(18)

\[
k|BW_{n-1,k}| + (n + 1 - k)|BW_{n-1,k-1}| = |BW_{n,k}|.
\]

(19)

Proof. A computational proof can be obtained straightforward by using (9) and Theorem 13. But here we provide a proof in a flavor of combinatorics.

Idea of the Proof. For (18), given a permutation \(A_{1} = p_{1}p_{2}\ldots p_{n-1} \in AW_{n,k} \), for each position \(i \) with \(p_{i} \geq i \), we insert \(i \) into a certain place of \(A_{1} \), such that the new permutation \(A_{i} \) is in \(AW_{n,k} \). There are \(k \) such positions, so we can get \(k \) new permutations in \(AW_{n,k} \). Similarly, if \(A_{2} = p_{1}p_{2}\ldots p_{n-1} \in BW_{n,k} \), for each position \(i \) with \(p_{i} < i \), and the position at the end of \(A_{2} \), we insert \(i \) into a specific position of \(A_{2} \) and the resulting new permutation \(A_{i} \) is in \(BW_{n,k} \). There are \(n + 1 - k \) such positions, so we can get \(n + 1 - k \) new permutations in \(BW_{n,k} \). We will show that all the permutations obtained from the above constructions are distinct, and they have exhausted all the permutations in \(AW_{n,k} \) and \(BW_{n,k} \).

For any fixed \(A' = \pi_{1}\pi_{2}\ldots\pi_{n} \in AW_{n,k} \), then \(\pi_{1} < \pi_{n} \).

We classify \(A' \) into the following disjoint cases:

Case a. Consider that \(\pi_{i} = n \) with \(i < n \). So \(A' = n\pi_{1}\pi_{2}\ldots\pi_{i-1}\pi_{n}q_{1}\ldots q_{r} \).

\[
(\text{a1) } \pi_{1} < \pi_{n-1}, \text{ and } \pi_{n} \geq i;
\]

\[
(\text{a2) } \pi_{1} < \pi_{n-1}, \text{ and } \pi_{n} < i;
\]

\[
(\text{a3) } \pi_{1} > \pi_{n-1}, \pi_{n} < n - 1, \text{ and } \pi_{n} \geq i;
\]

\[
(\text{a4) } \pi_{1} > \pi_{n-1}, \pi_{n} < n - 1, \text{ and } \pi_{n} < i;
\]

\[
(\text{a5) } \pi_{1} > \pi_{n-1}, \text{ and } \pi_{n} = n - 1.
\]

Case b. Consider that \(\pi_{n} = n \). So \(\pi_{i} = n - 1 \) for some \(i < n \) and \(A' = n\pi_{1}\pi_{2}\ldots\pi_{i-1}\pi_{n}p_{1}\ldots p_{r} \).

\[
(\text{b1) } \pi_{1} < \pi_{n-1};
\]

\[
(\text{b2) } \pi_{n-1} < \pi_{n} < n - 1, \text{ and } \pi_{n-1} \geq \pi_{i};
\]

\[
(\text{b3) } \pi_{n-1} < \pi_{n} < n - 1, \text{ and } \pi_{n-1} < \pi_{i};
\]

\[
(\text{b4) } \pi_{1} = n - 1.
\]

Based on the classifications listed above, we can construct a map \(f : [AW_{n-1,k}, BW_{n-1,k-1}] \rightarrow AW_{n,k} \) by applying the idea of the proof we have illustrated at the beginning of the proof. To save space, the map \(f \) is demonstrated in Table 1. From Table 1 we can see that in each case, the positions of inserting \(n \) are all different. So all the images obtained in a certain case are different. Since all the cases are disjoint, all the images \(A' \in AW_{n,k} \) are distinct.
Table 1: The map $f : \{AW_{n-1,k}, AW_{n-1,k-1}\} \rightarrow AW_{n,k}$.

<table>
<thead>
<tr>
<th>$A = p_1p_2 \cdots p_{n+1}$</th>
<th>Position i</th>
<th>Condition</th>
<th>$A' \in AW_{n,k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1 < i \leq n-1$ and $p_i \geq i$</td>
<td>$p_i > p_i$</td>
<td>$A' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}$</td>
</tr>
<tr>
<td></td>
<td>$p_i < p_i$ and $p_n \leq n-1$</td>
<td>$A' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}$</td>
<td></td>
</tr>
<tr>
<td>$A \in AW_{n-1,k}$</td>
<td>$i = 1$</td>
<td>$p_1 = n-1$ and $j < n-1$</td>
<td>$A' = p_1p_2 \cdots p_{n-1}p_{n}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p_n = n-1$</td>
<td>$A' = p_1p_2 \cdots p_{n-2}p_{n-1}$</td>
</tr>
<tr>
<td>$A \in AW_{n-1,k-1}$</td>
<td>$1 < i \leq n-1$ and $p_i < i$</td>
<td>$p_i > p_i$</td>
<td>$A' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p_i < p_i$ and $p_n \leq n-1$</td>
<td>$A' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A' = p_1p_2 \cdots p_i \cdot p_i p_{i+1} \cdots p_{n+1}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: The map $g : \{BW_{n-1,k}, BW_{n-1,k-1}\} \rightarrow BW_{n,k}$.

<table>
<thead>
<tr>
<th>$B = p_1p_2 \cdots p_{n+1}$</th>
<th>Position i</th>
<th>Condition</th>
<th>$B' \in BW_{n,k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1 < i \leq n-1$ and $p_i \geq i$</td>
<td>$p_i > p_i$</td>
<td>$B' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}p_i$</td>
</tr>
<tr>
<td></td>
<td>$p_i < p_i$ and $p_n < n-1$</td>
<td>$B' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}$</td>
<td></td>
</tr>
<tr>
<td>$B \in WB_{n-1,k}$</td>
<td>$i = 1$</td>
<td>$p_1 > 1$</td>
<td>$B' = np_2 \cdots p_{n+1}p_i$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$B' = np_2 \cdots p_{n-1}p_{n}$</td>
<td></td>
</tr>
<tr>
<td>$B \in WB_{n-1,k-1}$</td>
<td>$1 < i \leq n-1$ and $p_i < i$</td>
<td>$p_i > p_i$</td>
<td>$B' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}p_i$</td>
</tr>
<tr>
<td></td>
<td>$p_i < p_i$ and $p_n < n-1$</td>
<td>$B' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A' = p_1p_2 \cdots p_{i-1}p_{i+1} \cdots p_{n+1}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarly, for each \(B' = \pi_1 \pi_2 \pi_3 \ldots \pi_n \in BW_{n,k}, \) then \(\pi_1 > \pi_{n-1} \). We classify \(B' \) into the following disjoint cases.

Case c. Consider that \(\pi_1 = n \) with \(1 < i \leq n - 1 \). So \(B' = \pi_1 \pi_2 \ldots \pi_{n-1} \pi_{n-1} \cdot \pi_{n-1} \).

(1) \(\pi_1 > \pi_{n-1} \) and \(\pi_{n-1} \geq i \);
(2) \(\pi_1 > \pi_{n-1} \) and \(\pi_{n-1} < i \);
(3) \(\pi_1 < \pi_{n-1} < n-1, \pi_{n-1} \geq i \);
(4) \(\pi_1 < \pi_{n-1} < n-1, \pi_{n-1} < i \);
(5) \(\pi_{n-1} = n-1 \);
(6) \(\pi_{n-1} = n \).

Case d. Consider that \(\pi_1 = n \). So \(B' = n\pi_2 \ldots \pi_{n-2} \pi_{n-1} \).

(d1) \(\pi_{n-2} < \pi_{n-1} \);
(d2) \(\pi_{n-2} > \pi_{n-1} \).

To prove (9), we use a similar idea of proof as shown above. If \(B_1 = \pi_1 \pi_2 \pi_3 \ldots \pi_{n-1} \in BW_{n-1,k} \), for each position \(i \) with \(p_i \geq i \), we insert \(n \) into a certain place of \(B_1 \) to get \(B'_1 \in AW_{n,k} \). If \(B_2 = \pi_1 \pi_2 \pi_3 \ldots \pi_{n-1} \in BW_{n-1,k} \), for each position \(i \) with \(p_i < i \), and the position \(i \) where \(p_i = n-1 \), we insert \(n \) into a specific position of \(B_2 \) to obtain \(B'_2 \in AW_{n,k} \). Such a map \(g : BW_{n-1,k} \rightarrow BW_{n,k} \) is illustrated in Table 2. And the distinct images under \(g \) exhaust all the permutations in \(BW_{n,k} \).

Here is a concrete example for the constructions illustrated in Table 2.

Example 16. Suppose \(n = 4, k = 2 \). We want to obtain \(BW_{4,2} = \{3412, 3412, 3421, 4132, 4213, 4312, 4321 \} \) from \(BW_{3,2} = \{321, 231 \} \) and \(BW_{3,1} = \{312 \} \). For \(321 \in BW_{3,2}, \pi_1 = 3 \geq 1 \), then it corresponds to \(B' = 4213 \) which is case (d1) in Table 2; \(p_2 = 2 \geq 2 \), then it corresponds to \(B' = 3412 \) which is case (c1) in Table 2. Similarly, we can construct \(\{3412, 4321 \} \) from \(231 \in BW_{3,2} \) and \(\{3421, 3142, 4132 \} \) from \(312 \in BW_{3,1} \) using Table 2.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

