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1. Introduction

In general we use the standard terminology and notation of graph theory and combinatorics, see [1,2]. By a graph G we
mean a finite, undirected, connected, simple graph with the vertex set V(G) and the edge set E(G). Let P,,n > 1, and
Cy,n > 3, denote a path and a cycle on n vertices, respectively. Let k > 2 be integer. A subset SC V(G) is a k-independent
set of G if for any two distinct vertices x,y € S, d¢(x,y) > k. Moreover a subset containing only one vertex and the empty
set also are k-independent. If k = 2, then this definition gives the definition of independent set in the classical sense. Let
NI(G) denote the number of k-independent sets in G and for k = 2, NI,(G) = NI(G).

The parameter NI(G) first appears in the mathematical literature in a paper of Prodinger and Tichy, see [9], and this paper
gave impetus for counting independent sets in graphs. They called this number as the Fibonacci number of a graph in view of
the following facts:

Fact 1.1. NI(P,) = F, where F, is the nth Fibonacci number defined by Fp =1, F; =2 and F, =F,_1 + F,_, forn > 2.

Fact 1.2. NI(C,) = L,, where L, is the nth Lucas number defined by Lo =2, [y =1and L, =L, 1 + L, forn > 2.

The interest begun by Prodinger and Tichy was multiplied by fact that independently Merrifield and Simmons introduced
the parameter NI(G) (which they called o-index) to the chemical literature, see [8]. They showed the correlation between
this index and some physicochemical properties of a molecular graph. The literature includes many papers dealing with
the theory of counting of independent sets in graphs, the last survey written by Gutman and Wagner [5] collects and clas-
sifies these results, most of them are obtained quite recently.

Besides the usual Fibonacci and Lucas numbers many kinds of generalizations of these numbers have been presented in
the literature. In [7] Kwasnik and Wtoch introduced more generalized concept, namely the generalized Fibonacci numbers
F(k,n) and the generalized Lucas numbers L(k,n) which give the number of all k-independent sets in graphs P, and C,,
respectively.

In [7] it was proved that for integers k > 2, n > 0 the numbers F(k,n) satisfy the following recurrence
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Fact 1.3 [7]. F(k,n)=n+1forn=0,1,...,k—1and F(k,n) = F(k,n—1) + F(k,n — k) forn > k.

Moreover the recurrence formula for the Lucas numbers L(k,n) was given. For integers k > 2, n > 0 the numbers L(k, n)
satisfy the following recurrence.

Fact14 [7]. L(k,n)=n+1forn=0,1,...,2k—1 and L(k,n) = (k — 1)F(k,n — (2k — 1)) + F(k,n — (k — 1)) for n > 2k.

For n > 0 we have that F(2,n) =F, and forn > 3, [(2,n) = L,.

In the literature other generalizations of the number of Fibonacci type are studied, see [3,6,11,12,15].

In the graph terminology for an arbitrary k > 2 the number F(k, n) is equal to the total number of k-independent sets in
graph P, i.e.

F(k,n) = NI(P,), n > 1.
For k > 2 the number L(k,n) is equal to the total number of k-independent sets in graph C,, i.e.
L(k,n) = NI,(Cy), n >
k

Note that forn = 0,1,2 and
k-independent sets.

The generalized Fibonacci numbers and the generalized Lucas numbers were studied in many papers, mainly with respect to
their connections with the number of k-independent sets in graphs, see for example [14]. In special graph product the number of
k-independent sets is expressed using concept of the generalized Fibonacci polynomial of graph, see [10,13]. The concept of k-
independent sets in graphs is studied in the literature in many papers, also with concept of (k, I)-kernels in graphs, see [4,10].

Table 1 gives the initial words of the generalized Fibonacci numbers and the generalized Lucas numbers for special case of
n and k.

In this paper we present some identities for F(k,n) and L(k,n) for an arbitrary k > 2. These identities can be useful for
counting of k-independent sets in graphs.

3.
> 2 the numbers L(k,n) does not have the graph interpretation with respect to the number of

2. Main results
Firstly we prove the basic recurrence relations for the number L(k, n).

Theorem 2.1. Let n > 0, k > 2 be integers. Then L(k,n) =n+1 forn=0,1,...,2k—1 and for n > 2k, L(k,n) = L(k,n — 1)+
L(k,n — k).

Proof. If n =0,1,...,2k — 1, then the Theorem immediately follows from Fact 1.4. Let n > 2k. Applying the formulas from
Facts 1.3 and 1.4 we obtain that

L(k,n)

P24k — 1)F(k,n — 2k — 1)) + F(k,n — (k — 1)) 22k — 1)(F(k,n — (2k — 1) — 1) + F(k,n — (2k — 1) — k)

(
+Fkn—(k-1)-1)+Fkn—-(k—1)—k)=(k—1)F(k,n— 2k —-1) - 1) + (k- 1)F(k,n — 2k — 1) — k)
+F(k,n—(k—1)—1)+F(k,n— (k—1) — k) = (k— 1)F(k,n — 2k) + (k — 1)F(k,n — 3k + 1)
+F(k,n—k)+F(k,n—2k+1):(k—l)F(k,n—l—(2k—1))+F(k.,n—l —(k—=1))+ (k—1)F(k,n—k

— 2k — 1))+ F(k,n —k — (k — 1)) ™2*L(k,n — 1) + L(k,n — k).

Finally L(k,n) = L(k,n — 1) + L(k,n — k), which ends the proof. O

Ifn > 2 and k = 2, then we obtain known recurrence relation for L,, namely L, =3, L3 =4 andforn > 4, L, =L, 1 + L,_».
Now we present the sequence of identities for the generalized Fibonacci numbers F(k, n).

Theorem 2.2. Let k > 2 be integer. Then forn > k+ 1

ZF (k,i) = F(k,n) — k
Table 1 i=0
The values of F(k,n) and L(k,n) for special case of k and n.

n 0 1 2 3 4 5 6 7 8 9
Fa 1 2 3 5 8 13 21 34 55 89
F(3,n) 1 2 3 4 6 9 13 19 28 41
F(4,n) 1 2 3 4 5 7 10 14 19 26
F(5.n) 1 2 3 4 5 6 8 11 15 20
Ly 2 1 3 4 7 11 18 29 47 76
L(3,n) 1 2 3 4 5 6 10 15 21 31
L(4,n) 1 2 3 4 5 6 7 8 13 19
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Proof (By induction on n). If n=k~+ 1, then using the Fact 1.3 we have that F(k,n) = F(k,k+ 1) =F(k, k) + F(k,1) =
k+1+2 = k+3.Hence X0 *F(k,i) = F(k,0) + F(k,1) = 3 = F(k,k+ 1) — k.

Assume that the Theorem is true for an arbitrary n = p, so >0 kg F(k,i) = F(k,p) — k. We shall prove that the equality holds
forn=p+1,so X *F(k,i) = F(k,p + 1) — k.

Usm%y ) 351mple calculathns we have that Y2 FF(k,i) = SPKF(k,i) + F(k,p — k + 1) = F(k,p) — k + F(k,p —
(k—1)) F(k,p + 1) — k, which ends the proof. O

If k = 2, then we obtain known equality for Fibonacci numbers, namely Z?;OZFi =F,—2forn > 2.

Theorem 2.3. Let k > 2, n > k be integers. Then

n
> F(k,ik = 1) +1 = F(k, nk).

i=1

Proof. Using the Fact 1.3 we have F(k,n — 1) = F(k,n) — F(k,n — k) for n > k.
And for integers k — 1,2k — 1,...,nk — 1 we obtain
F(k,k— 1) =F(k,k) — F(k,0),
F(k,2k — 1) = F(k, 2k) — F(k, k),
F(k,3k — 1) = F(k,3k) — F(k, 2k),

F(k,nk — 1) = F(k,nk) — F(k, (n — 1)k).
Adding these equalities we obtain that
n
ZF(Ic,ik — 1) = F(k,nk) — F(k,0) = F(k,nk) —
which ends the proof. O

If k = 2, then we obtain known equality for the Fibonacci numbers, namely

ZFZi—l +1=Fa.

i=1

Theorem 2.4. Let k > 2, n > 2k — 2 be integers. Then

F(k,n) = kf:F(k,n —(k—1)—1).
i=0

Proof. Let n > 2k — 2. Then using the Fact 1.3 by (k — 1) times we obtain

F(k,n) =F(k,n—1) + F(k,n — k)
=Fkn-2)+Fkn—-k—-1)+Fk,n—k)

=F(k,n—3)+F(k,n—k—2)+Fk,n—k—1)+Fk,n—k):
=Fk,n—(k—1))+F(k,n—2(k—1))+F(k,n—2(k—1)+1)+---+F(k,n—k)
_F(k n—(k-1)+Fkmn—-k)+---+Fkn-2(k-1))

_ZFkn— -1)—i),

which ends the proof. O

If k=2 and n > 2, then we obtain the basic equality for the Fibonacci numbers, F, = F,_1 + F,,_».

Theorem 2.5. Let k > 2, n > 2k — 1 be integers. Then

k-3
F(k,n) = F(k,n — 1) + F(k,n = 2) = Y "F(k,n — (2k — 1) + i).
i=0
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Proof. Let k > 2, n > 2k —1.If k=2, then F(2,n) = F(2,n— 1) + F(2,n — 2) and the Theorem follows by basic recurrence
for the Fibonacci numbers. Assume now that k > 3. Then using Fact 1.3 and some calculations we have

k-3
F(k,n—1)+F(k,n—2 ZFkn— (2k—1)+1i)=F(k,n—-1)+F(k,n—2) — F(k,n — 2k +1) — F(k,n — 2k +2) — --- — F(k,n — k — 2)
i=0
=F(k,n—1)+F(k,n—-3)+F(k,n—k—2)—F(k,n—2k+1)
—F(k,n—2k+2)—---—F(k,n—k—3)—F(k,n—k—2)
=F(k,n—1)+F(k,n—3) —F(k,n—2k+1) — F(k,n — 2k + 2) —
—F(k,n—k —3).

This operation we repeat (k — 2) times and we obtain the following dependences.

F(k,n—1)+F(k,n—3)—-Fk,n—-2k+1)—---—F(k,n—k—3)
=F(k,n—-1)+Fkn—-4)—-Fkn—-2k+1)—-.-—F(k,n—k—4)
=F(k,n—-1)+Fkn-5) —Fkn—-2k+1)—---—Fk,n—k—-5)=

Finally we obtain F(k,n — 1) + F(k,n — k) = F(k,n), which ends the proof. O
Now we present some identities for the generalized Lucas numbers.

Theorem 2.6. Let k > 2, n > 2k be integers. Then

z":L(k, ki) = L(k,nk + 1) — (k + 2).

i=2

Proof. By the Fact 1.4 we have L(k,n — 1) = L(k,n) — L(k,n — k), for n > 2k. Using this relation for integers 2k, 3k, ..., nk we
obtain

L(k,2k) = L(k, 2k + 1) — L(k,k + 1),
L(k,3k) = L(k, 3k + 1) — L(k, 2k + 1),
L(k, 4k) = L(k, 4k + 1) — L(k, 3k + 1),

L(k,nk) = L(k,nk +1) — L(k,(n — 1)k + 1).

Adding these equalities we obtain, that
ZL (k ki) =L(k,2k +1) — L(k,k+ 1)+ L(k,3k + 1) — L(k,2k + 1) + L(k, 4k + 1) — L(k,3k + 1)+ --- + L(k,nk + 1)

—Lk,(n—1)k+1)=L(k,nk+1) — L(k,k+ 1) = L(k,nk + 1) — (k + 2),
which ends the proof. O

If k = 2, then we obtain known equality for the Lucas numbers, namely Y7 ,Ly; = Ly, 1 — 3.

Theorem 2.7. Let k > 2, n > 2k be integers. Then
L(k,n) = kF(k,n — (2k — 1)) + F(k,n — k).

Proof. To prove this Theorem we apply the graph interpretation of the number L(k, n). Because for an arbitrary k > 2 and
n > 3, L(k,n) = NI(C,), so it suffices to calculate the number of k-independent sets in the graph C,. Suppose that n > 2k
and let S be an arbitrary k-independent set of C,, with the vertex set V(C,) numbered in the natural fashion. Then the def-
inition of k-independent set immediately gives that for each two vertices x;,x; €S, k< |i—jl <n—k.

Let i be a fixed integer, 1 < i < k. Two cases can occur now.

Case1.x; ¢ Sfori=1,... k.

If 71 is the family of all sets S containing the vertex x;,i = 1,. ..k, then its cardinality | 74| is equal to the number of all k-
independent sets of the graph C, — UL {x;} which is isomorphic to P, . In other words |F;| = NI} (P,_x) = F(k,n — k).

Case 2. x; € Sfor1 <i<k.
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Then it is clear that if x; € S, then k < |i — j| < n —k, which is equivalent to k < j — i <n — k. Therefore i + k <j<n—k+1.
This gives that S = S" U {x;}, where S* is an arbitrary k-independent set of the graph C, — N’é;1 [x;] which is isomorphic to
Pn_oksq- If F, denotes the family of all independent sets such that the case 2 holds, then |F;|= NI (Py_zxi1) =
F(k,n — (2k — 1)). Since the vertex x; can be choosen on k ways so, from the above cases we have that
L(k,n) = NI (Cn) = kF(k,n — (2k — 1)) + F(k,n — k). Thus the Theorem is proved. O
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