Orthogonal polynomials and the moment problem

Henry Roland Steere

School of Mathematics
University of the Witwatersrand
Johannesburg
South Africa

Under the supervision of
Dr S. J. Johnston.

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science.

Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

_____________________________ ________________________________
Name Student Number

______ day of ____________________ 2012
Abstract

The classical moment problem concerns distribution functions on the real line. The central feature is the connection between distribution functions and the moment sequences which they generate via a Stieltjes integral. The solution of the classical moment problem leads to the well known theorem of Favard which connects orthogonal polynomial sequences with distribution functions on the real line. Orthogonal polynomials in their turn arise in the computation of measures via continued fractions and the Nevanlinna parametrisation. In this dissertation classical orthogonal polynomials are investigated first and their connection with hypergeometric series is exhibited. Results from the moment problem allow the study of a more general class of orthogonal polynomials. \(q\)-Hypergeometric series are presented in analogy with the ordinary hypergeometric series and some results on \(q\)-Laguerre polynomials are given. Finally recent research will be discussed.
Acknowledgements

I acknowledge the support of the National Research Foundation of South Africa in funding my MSc.
I am grateful for the help and support of Dr Sarah Jane Johnston while researching the topic and compiling my dissertation.
Lastly I thank my family for their companionship.
Contents

Declaration ... i

Abstract ... ii

Acknowledgements iii

1 Classical orthogonal polynomials 1
 1.1 Basic theory of orthogonal polynomials 1
 1.2 Hypergeometric series 11
 1.3 Chebyshev polynomials 16
 1.4 Other classical polynomials 21

2 The moment problem 30
 2.1 Distribution functions 31
 2.2 Uniqueness of distributions 39
 2.3 Measure and decomposition 43
 2.4 Stieltjes’ and Hausdorff’s problems 51
 2.5 Hamburger’s moment problem 53
 2.6 Existence of solutions 59
 2.7 The true interval of orthogonality 67
 2.8 The trigonometric moment problem 68

3 Continued fractions 70
 3.1 Basic theory 70
3.2 Jacobi continued fractions .. 75
3.3 Asymptotic expansions ... 78
3.4 Limit circle and limit point .. 84
3.5 The Nevanlinna parametrisation 89

4 Symmetric moment problems ... 95
 4.1 Symmetric distributions ... 95
 4.2 Chain sequences .. 101

5 Moment problems of classical polynomials 109
 5.1 Chebyshev polynomials moment problem 109
 5.2 Legendre moment problem 114
 5.3 Ultraspherical polynomials 115
 5.4 Hermite and Laguerre moment problems 116

6 \(q\)-Extensions .. 120
 6.1 Basic hypergeometric series 120
 6.2 \(q\)-Laguerre polynomials 126
 6.3 The \(q\)-Laguerre moment problem 129

Bibliography .. 137
Bibliography

