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ρ(1− (1− 1
ρ )n),

where the sum is taken over all non-trivial zeros of the function F
and the ∗ indicates that the sum is taken in the sense of the limit
as T → ∞ of the sum over ρ with |Imρ| � T . The first expression
of λF (n), for functions in the extended Selberg class, having an
Euler sum is given terms of analogues of Stieltjes constants (up to
some gamma factors). The second expression, for functions in the
Selberg class, non-vanishing on the line Re s = 1, is given in terms
of a certain limit of the sum over primes.
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1. Introduction

In 1997, Xian-Jin Li has discovered a new positivity criterion for the Riemann hypothesis. In [17]
he proved that the Riemann hypothesis is equivalent with the non-negativity of numbers

λn =
∑
ρ

[
1 −

(
1 − 1

ρ

)n]
(1)

for all n ∈ N, where the sum is taken over all non-trivial zeros of the Riemann zeta function.
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Later, E. Bombieri and J. C. Lagarias [6] observed that Li’s criterion can be generalized to a multiset
of complex numbers satisfying certain conditions, and gave an arithmetic formula for numbers λn .
They have also proved that one-sided tempered growth of coefficients (1) is enough for the Riemann
hypothesis (cf. [6, Corollary 1(c)]).

A. Voros has proved that the Riemann hypothesis true is equivalent to the growth of λn as 1
2 n log n,

determined by its archimedean part, while the Riemann hypothesis false is equivalent to the oscil-
lations of λn with exponentially growing amplitude, determined by its finite part (for details, see
[34, Section 3.3]).

J.C. Lagarias [16] has defined the generalized Li coefficient λn(π) attached to an irreducible cusp-
idal unitary automorphic representation π of GLm(Q) and proved that the Generalized Riemann Hy-
pothesis for the corresponding automorphic L-function is equivalent to the non-negativity of Reλn(π),
for all n ∈ N. Lagarias has obtained the arithmetic expression of λn(π) and determined the asymptotic
behavior of both the archimedean and the finite part of λn(π).

The Li coefficients have also been generalized to L-functions defined by Hecke operators for the
congruence subgroup Γ0(N), in [18] and [20]. F.C.S. Brown [7] has determined zero-free regions of
Dirichlet and Artin L-functions (under the Artin hypothesis) in terms of sizes of the corresponding
generalized Li coefficients.

The Selberg class of functions is an axiomatic class of functions, that conjecturally contains all
L-functions having an Euler product representation. The Generalized Riemann Hypothesis conjectures
that all such L-functions have zeros lying on the critical line Re s = 1

2 . Therefore, a problem of for-
mulating a Generalized Riemann Hypothesis criterion arises naturally in the context of the Selberg
class S .

There are a few results even on the location of zeros of functions in the Selberg class inside the
critical strip 0 � Re s � 1. For example, axioms of the Selberg class allow a function in S to have both
a trivial and a non-trivial zero at ρ = 0.

The classical analytic arguments (as in [33, Chapter 9]) enable one to obtain the number of zeros
up to a height T . Namely, if N+

F (T ) (resp. N−
F (T )) denotes the number of non-trivial zeros ρ of a

function F in the Selberg class, such that 0 � Imρ � T (resp. −T � Imρ � 0), then

N−
F (T ) = N+

F (T ) = dF

2π
T log T + c1T + O (log T ), (2)

where dF is the degree of F , and c1 is a constant that depends only on F . The proof of (2) and the
explicit expression for the constant c1 is given in Section 5.

On the other hand, even the non-vanishing of functions belonging to the Selberg class on the line
Re s = 1 is still an open problem, as well as the existence of the zero-free regions. Sufficient conditions
for the non-vanishing of the function F ∈ S on the line Re s = 1 are given by S. Narayanan in [22] and
by J. Kaczorowski and A. Perelli in [15] (the Normality conjecture).

In Section 5 we will discuss further on the distribution of non-trivial zeros of the function in the
Selberg class and the class S #� defined below.

The extended Selberg class S #, though larger than S and believed to contain all functions of
number-theoretical interest is not a suitable class for the formulation of the criterion for the Gener-
alized Riemann Hypothesis, since some functions in S # may have infinitely many non-trivial zeros
in the half-plane Re s > 1. A nice example of such function is the Davenport–Helibronn zeta function,
see [13, p. 136]. Actually, the Euler product axiom is of the crucial importance in order to have a no-
tion of the critical strip (once we exploit the functional equation). The Ramanujan hypothesis axiom
(axiom (iv) below) as well is of a crucial importance for the Riemann hypothesis, as proved by the
example of a function (constructed by J. Kaczorowski) satisfying all axioms of the Selberg class, except
the Ramanujan hypothesis and violating the Generalized Riemann Hypothesis, see [28, pp. 27–28].

Since the Ramanujan hypothesis is the most difficult to prove in important special classes of L-
functions, in order to make our results widely applicable, in this paper, we consider two classes of
functions to be defined below: a class S #� ⊇ S of functions from the extended Selberg class S #,
having an Euler sum and the class S � ⊆ S of functions from S , non-vanishing on the line Re s = 1,
whose zeros satisfy a certain growth condition, defined in Section 5.
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The first problem we consider is the convergence of the analogue of the series (1) for a function
F ∈ S #� . This is not a trivial problem, since, for example, in the case of automorphic L-functions, the
series defining the Li coefficient is only conditionally convergent. This is proved by J.C. Lagarias in [16],
using the information on the distribution of zeros of the automorphic L-function in the upper and
the lower half-plane. In Section 4 and Section 5, we shall give two different proofs of the conditional
convergence of the series defining the Li coefficient of the function F ∈ S #� . The first proof exploits
the explicit formula with a certain test function (as in [4]) that yields to a product formula for the
function ξF (s) (the Selberg class analogue of the completed zeta function). The second proof is based
on the asymptotic formula for a number of non-trivial zeros up to a height T .

Li’s original definition of the coefficient λn for positive integers n was given by

λn = 1

(n − 1)!
dn

dsn

(
sn−1 log ξ(s)

)∣∣
s=1, (3)

where

ξ(s) = 1

2
s(s − 1)π−s/2Γ

(
s

2

)
ζ(s)

is the completed zeta function. As pointed out in [6], this definition is equivalent with the definition
of numbers λn as coefficients in the expansion

d

ds
log ξ

(
1

s − 1

)
=

∞∑
n=0

λ−n−1sn. (4)

In this paper we shall define the Selberg class analogue of the nth Li coefficient for a function in
the extended Selberg class, having an Euler product as the (conditionally convergent) sum analogous
to (1). In Appendix A, we introduce the (extended) Selberg class analogues of the definitions (3) and
(4) of the nth Li coefficient and prove that they coincide.

The Selberg class analogue of (4) was considered in [26]. However, the Hadamard product factor-
ization of the complete function ξF (s) in [26, Formula (2)] is not completely correct (the product does
not converge absolutely).

In Section 4 we prove an analogue of Li’s criterion for the Generalized Riemann Hypothesis in S #� .
In Section 6 we give a formula for the evaluation of the nth Li coefficient in this class. The key
difficulty to be overcome is the possibility that F ∈ S #� be zero on the line Re s = 1, that excludes
any zero-free region and the use of the prime number theorem. This is overcome by the application
of the explicit formula with a test function different from the one used in [6] and [25].

Actually, the explicit formula for functions in S #� , proved in Section 3 is the main tool used in the
proof of our theorems. For its proof, we rely on results of J. Jorgenson and S. Lang on explicit formulas
in the fundamental class of functions [12] and results on expanding the Jorgenson–Lang class of test
functions to which the explicit formula applies, obtained in [2] and [3]. For the sake of completeness,
in Appendix B we recall necessary background material from [12] and prove that the class S #� is the
subclass of (much larger) fundamental class.

The class S � provides more arithmetic information. In Section 8 we prove an arithmetic formula
for the evaluation of the Li coefficients (in terms of a limit of certain sums over primes) of functions
in S � and deduce a result concerning generalized Stieltjes constant.

S. Omar and K. Mazhouda have stated a similar results in [25] and [26]. The statement and the
proof of the main theorem of [25] are corrected in [27]. The corrected statement of [25, Theorem 2]
now agrees with our Theorem 6.2 and holds for all functions F ∈ S having a Landau type zero free
region. Our Theorem 6.2 is proved independently for a larger class S � , as proved in Lemma 5.8 below.
A result similar to Theorem 6.1 appears in [26, Formula (9)] (the formula is not completely correct,
as explained in Section 6 below), for functions F ∈ S , non-vanishing on the line Re s = 1. The proof
of [26, Theorem 2.3] is incorrect since it is based on the result of A. Ivić [8] that assumes the error
term in the prime number theorem for the Selberg class of the form O (x1−δ) for some δ > 0. At
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the present state of knowledge, even much weaker error term o(x/ log x) is very difficult to obtain
for functions F ∈ S , non-vanishing on the line Re s = 1 (see example in Remark 5.6 below). In Theo-
rem 6.1 we obtain an arithmetic expression of the Li coefficients for functions F belonging to a very
broad class S #� ⊇ S and give two different new proofs in Section 7 and Section 9. Furthermore, we
give two different proofs of the existence of the Li coefficients and prove that three definitions of the
Li coefficients attached to the function F ∈ S #� analogous to (1), (3) and (4) coincide.

Finally, let us note here that the results by Omar and Mazhouda presented in their papers [25–27]
hold true only for functions F ∈ S having a Landau type zero free region, while our main results are
valid for much larger class S #� .

2. The Selberg class of functions

The Selberg class of functions S , introduced by A. Selberg in [31] is a general class of Dirichlet
series F satisfying the following conditions:

(i) F possesses a Dirichlet series representation

F (s) =
∞∑

n=1

aF (n)

ns
,

that converges absolutely for Re s > 1.
(ii) There exists an integer m � 0 such that (s − 1)m F (s) is an entire function of finite order. The

smallest such number is denoted by mF and called a polar order of F .
(iii) The function F satisfies the functional equation

F (s)w Q 2s−1
F

r∏
j=1

Γ (λ j s + μ j)

Γ (λ j(1 − s) + μ j)
= F (1 − s) = F (1 − s),

or, equivalently

ξF (s) = ξF (1 − s)

where Q F > 0, r � 0, λ j > 0, |w| = 1, Reμ j � 0, j = 1, . . . , r and

ξF (s) = smF (1 − s)mF F (s)Q s
F

r∏
j=1

Γ (λ j s + μ j). (5)

Though numbers λ1, . . . , λr are not unique, it can be shown (see, e.g. [28]) that the number dF =
2
∑r

j=1 λ j is an invariant of the functional equation, called a degree of F .
(iv) (Ramanujan conjecture) For every ε > 0 aF (n) � nε .
(v) (Euler product)

log F (s) =
∞∑

n=1

bF (n)

ns
, (6)

where bF (n) = 0, for all n 	= pm with m � 1 (p is a prime) and bF (n) � nθ , for some θ < 1/2.
The extended Selberg class S # is a class of functions satisfying conditions (i), (ii) and (iii).
The condition (v) is called Euler product since it implies that coefficients aF (n) are multiplica-

tive, i.e. that the function F can be represented as a product F (s) = ∏
p F p(s), where F p(s) =∑∞

m=1 aF (pm)p−ms . This also implies that bF (p) = aF (p), for all (but finitely many) primes p.
A very nice introduction into the theory of the Selberg class and extended Selberg class can be

found in surveys [28] and [29].
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The first three axioms of the Selberg class describe the analytic nature of a general zeta or L-
function, while the Ramanujan conjecture and the Euler product give us more arithmetic information
about the function F . As pointed out in Section 1, both axioms (iv) and (v) are crucial for the Gen-
eralized Riemann Hypothesis. The Ramanujan hypothesis and the boundedness of coefficients bF (n)

in the representation (6) are very difficult to prove for some very important classes of L-functions.
For example, an automorphic L-function L(s,π) attached to irreducible, cuspidal unitary automorphic
representation π of GLn(Q) satisfy axioms (i) and (ii). The axiom (iii) is satisfied with a small adjust-
ment allowing Reμ j > −1/4 and Re(λ j + 2μ j) > 0 instead of Reμ j � 0. Namely, it is believed that
archimedean Langlands parameters κ j(π) are such that Reκ j(π) � 0. This hypothesis is called the Ra-
manujan hypothesis for the archimedean Langlands parameters. (Note that the parameters μ j in the
axiom (iii) are equal to κ j(π)/2 once the functional equation for L(s,π) is written in the form (iii).)
However, all that is unconditionally known at present is the bound Reκ j(π) > −1/2, proved by
Z. Rudnick and P. Sarnak in [30, Appendix], and the bound |Reκ j(π)| � 1/2 − 1/(n2 + 1) proved
in [19, Theorem 2], for the representation π unramified at the archimedean place. Under the Gener-
alized Riemann Hypothesis, exploiting properties of the Li coefficients attached to the Rankin–Selberg
L-functions, the last bound is improved to the bound |Reκ j(π)| � 1/4 (for π that is unramified at
the archimedean place) in [23, Corollary 3].

The axioms (iv) and (v) are not fully proved for the class of automorphic L-functions (they are
widely believed to hold true). However, as a consequence of the more general result (on the Rankin–
Selberg L-functions) obtained by H. Jacquet and J.A. Shalika [10, Theorem 5.3], the function L(s,π)

has an Euler product representation that converges absolutely in the half-plane Re s > 1.
Furthermore, in order to prove the existence of the Li coefficients and find the formula for their

evaluation, we shall use “explicit formulas”. A very general class of functions for which the explicit
formulas are proved to hold is a Jorgenson–Lang fundamental class of functions (see Appendix B).
Functions in this class need not satisfy the Ramanujan conjecture and bounds on coefficients in their
Euler product.

For these reasons, throughout this paper we shall consider the class S #� that consists of functions
F ∈ S #, satisfying the following condition

(v′) (Euler sum) The logarithmic derivative of the function F possesses a Dirichlet series represen-
tation

F ′

F
(s) = −

∞∑
n=2

cF (n)

ns
,

converging absolutely for Re s > 1.
The axiom (v′) is narrowing the Jorgenson–Lang’s Euler sum condition (defined in Appendix B

below) since the sum in (v′) is taken over natural numbers and the absolute convergence is required
in the half-plane Re s > 1. This is done because of two major reasons:

The first reason is related to the conditions posed on the test function in the explicit formula.
Namely, if the condition (v′) were assumed to hold for Re s > σ0 > 1, then one of the conditions
posed the test function would be that it decays as e−(σ0/2+ε)|x| , for some ε > 0, as x → ∞. In order
to insert the test function (20) defined in Section 7 (actually, its perturbed version (21)) one needs to
have σ0 = 1.

The second reason is that (v′) implies non-vanishing of F in the half-plane Re s > 1. This, together
with (iii) implies that the non-trivial zeros of F , i.e. the zeros of the complete function ξF (s), lie in
the strip 0 � Re s � 1. This is a natural notion of a critical strip in order to obtain a criterion for
Generalized Riemann Hypothesis. We shall denote by Z(F ) the set of all non-trivial zeros of F ∈ S #� .
Other zeros of F (i.e. those arising from the poles of the gamma factors) will be called trivial ze-
ros.

The axiom (v′) seems stronger than (v), since the bound on coefficients bF (n) in (6) implies the
convergence of log F (s) only in the half-plane Re s > 3/2. However, the following theorem holds
true.
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Theorem 2.1. S #� ⊇ S .

Proof. It is sufficient to prove that for F ∈ S the series (6) converges absolutely in the half-plane
Re s > 1.

The Ramanujan conjecture implies that for an arbitrary ε > 0 one has bF (p) = aF (p) � pε , hence
the series

∑
p

bF (p)
ps converges absolutely in the half-plane Re s > 1 (see, e.g. [28, p. 27], for a discus-

sion in the more general case). The bound bF (n) � nθ , for some θ < 1/2 and the fact that bF (n) = 0,
unless n = pm with m � 1, p being a prime yields the absolute convergence of the series

∞∑
m=2

∑
p

bF (pm)

pms

in the half-plane Re s > 1. Since

log F (s) =
∑

p

bF (p)

ps
+

∞∑
m=2

∑
p

bF (pm)

pms
,

the proof is complete. �
3. An explicit formula for the class S#�

In this section we shall prove an explicit formula for functions in the class S #� , with a class
of regularized, rapidly decaying test functions of bounded generalized variation (φ-variation) that
need not necessarily be continuous at zero. Broadening of the class of smooth, rapidly decaying and
compactly supported test functions to which the classical explicit formulas apply to is necessary in
order to use Li’s cut-off test functions (23), introduced by Bombieri and Lagarias (defined below), as
well as test functions (9) and (21). (Actually, our test functions are in the class BV(R) ⊆ φB V (R), for
all functions φ defined below.)

As K. Barner noted in [4] broadening the class of test functions to which the explicit formula
applies is significant for many applications in number theory. Therefore, we shall prove an explicit for-
mula for the class S #� (Theorem 3.1 below) for a broad class of test functions of generalized bounded
variation (that contains all test functions considered by Barner in [4]).

Let us recall that a real function f is called regularized if it possesses one-sided limits f (x− 0) and
f (x + 0) at each point x ∈ R and if

f (x) = 1

2

(
f (x − 0) + f (x + 0)

)
.

Let φ be a continuous, increasing function defined on [0,∞) such that φ(0) = 0 and φ(∞) = ∞.
A function f is said to be of φ bounded variation on some interval I if

Vφ( f , I) = sup
∑

n

φ
(∣∣ f (bn) − f (an)

∣∣) < ∞,

where the supremum is taken over all systems {(an,bn)}n of nonoverlapping subintervals of I
(cf. [36]).

Example. φ(u) = u gives us Jordan variation, and φ(u) = up , p > 1, corresponds to Wiener p-
variation.

In the sequel, we shall assume that the function φ is a continuous, strictly increasing convex
function on [0,∞) satisfying three asymptotic conditions

(01) limx→0+ φ(x)
x = 0,



834 L. Smajlović / Journal of Number Theory 130 (2010) 828–851
(∞1) limx→∞ φ(x)
x = ∞, and

(p)
∑

φ−1( 1
n )( 1

n )
1
p < ∞, for some p > 1.

The first two conditions ensure that the Young’s complementary function of φ is well defined and
that the Young’s inequality is satisfied (cf. [36] for more details). The last condition is concerned with
the convergence of some Stieltjes integrals necessary for the evaluation of the Weil functional defined
below using the generalized Parseval formula (see [1, Section 4 and Section 6]).

Let us note that the function φ(u) = uq (q > 1) satisfies all the conditions stated above, hence,
obviously BV(R) ⊆ φBV(R). Actually, it is easy to see that BV(R) ⊂ φBV(R). Therefore, the class of test
functions in Theorem 3.1 below is broader than the class of test functions considered by K. Barner and
A. Weil in [4] and [35]. Namely, the class B V is replaced by the broader class φB V and the condition
at zero (the third condition in Theorem 3.1) is further relaxed.

As an application of Theorem 3.1 below, we shall prove that the complete function ξF , defined by
(5) can be represented as a ∗-convergent (Hadamard) product over its zeros.

In the sequel, the ∗-convergence will denote the convergence (of a series or an infinite product
over complex numbers ρ) in the sense of the limit as T → ∞ of the finite sum or product over all ρ
with |Imρ| � T .

In Appendix B, it is proved that the class S #� when considered as a set of triples (F , F ,ΨF ), where

ΨF (s) = w Q 2s−1
F

r∏
j=1

Γ (λ j s + μ j)

Γ (λ j(1 − s) + μ j)

is a factor of the functional equation (iii), is an important subclass of the fundamental class of func-
tions. In this case, the factor ΨF of the functional equation is of a regularized product type of a
reduced order (M,m) = (0,0). (The definition of a function of a regularized product type and its
reduced order is explained in Appendix B.)

Therefore, it is possible to apply results on explicit formulas, proved in [2] (with M = 0) and [3]
to obtain the following theorem.

Theorem 3.1. Let a regularized function G satisfy the following conditions:

1. G ∈ φBV(R) ∩ L1(R).
2. G(x)e(1/2+ε)|x| ∈ φBV(R) ∩ L1(R), for some ε > 0.
3. G(x) + G(−x) − 2G(0) = O (| log |x||−α), as x → 0, for some α > 2.

Let g(x) = G(− log x), for x > 0 and G j(x) = G(x)exp(
ix Imμ j

λ j
). Then, the formula

lim
T →∞

∑
ρ∈Z(F )

|Imρ|�T

ord(ρ)M 1
2

g(ρ)

= mF M 1
2

g(0) + mF M 1
2

g(1)

−
∑

n

cF (n)

n1/2
g(n) −

∑
n

cF (n)

n1/2
g(1/n) + 2G(0) log Q F

+
r∑

j=1

∞∫
0

[
2λ j G j(0)

x
−

exp
((

1 − λ j
2 − Reμ j

) x
λ j

)
1 − e

− x
λ j

(
G j(x) + G j(−x)

)]
e
− x

λ j dx (7)

holds true for an arbitrary function F ∈ S #� , where M 1
2

g denotes the translate by 1/2 of the Mellin transform

of the function g.
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Proof. We shall not give a proof here, since it closely follows the lines of the proof of the explicit
formula proved in [2, Theorem 6.1]. The only difference is the evaluation of the Weil functional

WΨF (G) = 1√
2π

lim
T →∞

T∫
−T

Ĝ(t)
Ψ ′

F

ΨF

(
1

2
+ it

)
dt,

in such a way to enable a test function G to have a discontinuity at zero. This is done in the same
way as in the proof of [3, Theorem 1] and [4, Theorem 1]. �
Remark 3.2. A possible zero of the function F ∈ S #� at s = 0 requires a special attention, since it may
arise both as a trivial and a non-trivial zero. If mF � 1, due to the axiom (iii) and the fact that a
function F has a pole at s = 1 of order mF , the function F may have only a trivial zero at s = 0 if
the number (say, nF ) of coefficients μ j that are equal to zero is greater than mF . In that case s = 0
is a trivial zero of F of order nF − mF , and it is not a zero of ξF . If mF = 0, then F may have both a
non-trivial zero at s = 0 and a trivial zero at s = 0 of order nF . The functional equation axiom implies
that, in this case 0 /∈ Z(F ) if and only if 1 /∈ Z(F ).

These arguments are also used in the proof of formula (7) since the only possible zero or pole of
the factor ΨF (s) (due to bounds on the parameters λ j and μ j in the axiom (iii)) in the (half) strip
0 � Re s � 1/2 is a pole at s = 0 of order nF , if nF � 1. That is why only the sum over non-trivial
zeros of F appears on the left-hand side of (7).

Lemma 3.3. Let F ∈ S#� . Then, ξF is an entire function of order 1.

Proof. Since the analogous proofs appear in many books on analytic number theory, we shall only
give a sketch here.

Clearly, axioms (ii) and (iii) imply that ξF is entire of some finite order. By the Stirling formula,
the gamma factors in the function ξF are of order 1. The Dirichlet series axiom implies that ξF (s) is
bounded by ecR log R for |s| < R in the half-plane Re s > 1. The functional equation yields the same
bound for Re s < 0. The application of Phragmén–Lindelöf principle (e.g. [32, Section 5.6]) in the crit-
ical strip implies that the maximum modulus of ξF (s) in the disc |s| < R is bounded by ecR log R and
the proof is complete. �

Let us note here that the axiom (v′) was not used in the above proof. This means that Lemma 3.3
holds true for functions F ∈ S#. Therefore, if ξF (s) 	= 0 (or, equivalently, if s = 0 is not a non-trivial
zero of F ∈ S#), the Hadamard factorization theorem implies that the function ξF possesses a repre-
sentation as the product over its zeros:

ξF (s) = ξF (0)ebF s
∏
ρ

(
1 − s

ρ

)
e

s
ρ , (8)

where bF = ξ ′
F

ξF
(0). The following theorem shows that, due to the arithmetic information contained

in (v′), we may obtain more information about the function ξF , for F ∈ S#� .

Theorem 3.4. Let F ∈ S#� be such that 0 /∈ Z(F ). Then, for all s ∈ C different from zeros of ξF one has

a)
ξ ′

F

ξF
(s) = lim

T →∞
∑

ρ∈Z(F )
|Imρ|�T

ordρ

s − ρ
=

∑∗

ρ

1

s − ρ
,

b) ξF (s) = ξF (0)
∏∗

ρ∈Z(F )

(
1 − s

ρ

)
,
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and specially

bF = ξ ′
F

ξF
(0) = −

∑∗

ρ∈Z(F )

1

ρ
.

Proof. a) The test function

Gs(x) =
⎧⎨⎩

0, x > 0,

1/2, x = 0,

exp(s − 1/2)x, x < 0,

s ∈ C, Re s > 1, (9)

firstly considered by K. Barner in [4], obviously satisfies conditions of Theorem 3.1 (it has a bounded
variation on R). Inserting the function (9) into the explicit formula (7), having in mind that

M 1
2

gs(ρ) =
∞∫

−∞
Gs(x)e−(ρ−1/2)x dx = 1

s − ρ

for ρ ∈ Z(F ), and the fact that

∞∫
0

[
λ j

x
−

exp
((

1 − λ j
2 − Reμ j

) x
λ j

)
1 − e

− x
λ j

e−(s−1/2)xe
− ix Imμ j

λ j

]
e
− x

λ j dx = λ j
Γ ′

Γ
(λ j s + μ j),

by the Gauss formula, one obtains the equation

F ′

F
(s) = lim

T →∞
∑

ρ∈Z(F )
|Imρ|�T

ordρ

s − ρ
− mF

(
1

s
+ 1

s − 1

)

−
r∑

j=1

λ j
Γ ′

Γ
(λ j s + μ j) − log Q F , (10)

valid for Re s > 1. The definition of the function ξF implies that (10) can be written in the form

ξ ′
F

ξF
(s) = lim

T →∞
∑

ρ∈Z(F )
|Imρ|�T

ordρ

s − ρ
, for Re s > 1. (11)

On the other hand, (8) implies that

ξ ′
F

ξF
(s) = bF +

∑
ρ∈Z(F )

ord(ρ)

(
1

s − ρ
+ 1

ρ

)
(12)

for all complex s /∈ Z(F ). Comparing (11) and (12) with s = 2 one immediately obtains that bF =
−∑∗

ρ∈Z(F )
1
ρ . The statement now follows by the uniqueness of analytic continuation.

b) Direct consequence of a). �
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4. Li’s criterion

In this section we shall define an analogue of the Li coefficients for functions in the class S #� ,
prove that these coefficients are well defined and formulate an analogue of Li’s criterion for the
Riemann hypothesis. In Appendix A we shall discuss more about other two equivalent definitions of
the Li coefficients.

Theorem 4.1. Let F ∈ S #� be a function such that 0 /∈ Z(F ). Then, the series

λF (n) =
∑

ρ∈Z(F )

[
1 −

(
1 − 1

ρ

)n]
(13)

is ∗-convergent for every integer n. Moreover, the series

ReλF (n) =
∑

ρ∈Z(F )

Re

[
1 −

(
1 − 1

ρ

)n]

converges absolutely for all integers n

Proof. The function ξF is an entire function of order one, hence the series

σF (k) =
∑

ρ∈Z(F )

1

ρk

converges absolutely for every integer k � 2. Theorem 3.4 implies that the series σF (1) is ∗-conver-
gent, hence the series

λF (n) =
n∑

k=1

(−1)k−1
(

n

k

) ∑
ρ∈Z(F )

1

ρk

is ∗-convergent for every positive integer n. Furthermore, the axiom (iii) implies that set Z(F ) is
invariant under transformation ρ �→ 1 − ρ , hence the equality

1 −
(

1 − 1

ρ

)−n

= 1 −
(

1 − 1

1 − ρ

)n

= 1 −
(

1 − 1

1 − ρ

)n

yields that for positive n one has λF (−n) = λF (n). This proves that the series (13) is ∗-convergent for
all integers n.

Since ξF is an entire function of order 1, and its zeros lie in the critical strip 0 � Re s � 1, we also
obtain that the series ∑

ρ∈Z(F )

1 + |Reρ|
(1 + |ρ|)2

is convergent. Now, the application of [6, Lemma 1, p. 276] to the multiset Z(F ) of non-trivial zeros
of F completes the proof. �

The numbers λF (n) defined by (13) are called the Li coefficients of the function F ∈ S #� (such that
0 /∈ Z(F )).
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Remark 4.2. A different proof of the ∗-convergence of the series σF (1), for F ∈ S #� such that 0 /∈ Z(F ),
and hence, a different proof of Theorem 4.1, may be obtained following the ideas of J.C. Lagarias
[16, Lemma 2.1]. This proof uses the results on the distribution of zeros of F ∈ S #� that will be given
in the next section.

The next theorem is the analogue of Li’s criterion for the Selberg class.

Theorem 4.3 (Generalized Riemann Hypothesis criterion). Let F ∈ S #� be a function such that 0 /∈ Z(F ). Then,
all non-trivial zeros of F lie on the line Re s = 1

2 if and only if ReλF (n) � 0 for all n ∈ N.

Proof. Since λF (−n) = λF (n), one has ReλF (−n) = ReλF (n), for all n ∈ N. Application of [6, Theo-
rem 1] to the multiset Z(F ) yields that Reρ � 1/2 if and only if ReλF (−n) � 0, for all n ∈ N. The
application of the same theorem to the multiset 1 − Z(F ) = Z(F ) yields that Reρ � 1/2 if and only if
ReλF (n) � 0. This completes the proof. �
5. Distribution of zeros and the prime number theorem

In this section, we shall prove that zeros of the function F ∈ S #� are distributed as (2). Then, we
shall discuss further on the distribution of zeros of F ∈ S and the Selberg class analogue of the prime
number theorem.

5.1. Distribution of zeros of a function F ∈ S #�

In surveys [13] and [28] on the Selberg class by J. Kaczorowski and A. Perelli it is stated (without
proof ) that the counting function of non-trivial zeros of F ∈ S satisfies (2). Actually, we could not
find any reference with the correct and the complete proof of (2). The proof is standard and based
on the application of the argument principle and the functional equation. However, in our opinion,
the issue of obtaining an upper bound O (log T ) for the variation of arg F (1/2 + iT ) along the straight
lines joining 2, 2 + iT and 1/2 + iT , starting at T = 0 is not so trivial. Therefore, for the sake of
completeness, we give a sketch of the proof of (2), for F ∈ S #� . Another reason for stating and proving
this result is the fact that S #� ⊇ S , hence the proof of (2) is surely not deduced for functions F ∈ S #� .

Lemma 5.1. Let F ∈ S#� . Then, (2) holds true with

c1 = 1

2π

(
log qF − dF (log 2π + 1)

)
,

where qF = (2π)dF Q 2
F

∏r
j=1 λ

2λ j

j is the conductor of F .

Proof. The standard argument, based on the application of the argument principle, the functional
equation axiom (iii) and the Stirling formula for the gamma function implies that, for T > 1

N+
F (T ) = dF

2π
T log T + c1T + c2 log T + O (1/T ) + S F (T ),

where c2 = 1
π

∑r
j=1 Imμ j . Namely, the first four summands arise as the variation of the argu-

ment of the function Q 1/2+iT
F

∏r
j=1 Γ (λ j(1/2 + iT ) + μ j), while S F (T ) is a variation of the function

1
π arg F (1/2 + iT ) both taken along the straight lines joining 2, 2 + iT and 1/2 + iT , starting at T = 0.

In order to prove that S F (T ) = O (log T ), as T → ∞, following standard methods (as in [21]) one
needs an approximation formula for the function F ′

F in terms of the sum over zeros, analogous to
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formula obtained in [33, Theorem 9.6] for ζ ′
ζ

. Namely, one should start with formula (10) and deduce
that

F ′

F
(s) =

∑∗

ρ∈Z(F )

1

s − ρ
+ O F

(
log |T |),

for s = σ + iT , uniformly in −1 � σ � 2. Then, applying the same equation with s = 2 + iT , after
subtraction and some analytic considerations (analogous to the second proof of Theorem 9.2 in [33])
we end up with the equation

F ′

F
(z) =

∑
|T −γ |�1

1

z − ρ
+ O F (log T ),

where the sum is taken over all non-trivial zeros ρ = β + iγ of F such that |T − γ | � 1. In a similar
way we also deduce that the number of zeros ρ such that |T − γ | � 1 is O (log T ). (Complete details
are given in [24, Lemma 2.2].) Now, by the argument principle, we conclude that S F (T ) = O (log T ),
as T → ∞.

The distribution of zeros in the lower half-plane is obtained in the same way. �
Remark 5.2. If a function F ∈ S has a polynomial Euler product (more about this subclass of the
Selberg class can be found in [14]), it is possible to obtain the approximation formula for N±

F (T ) by a
direct application of the results of Bombieri and Hejhal [5].

Remark 5.3. The second proof of the ∗-convergence of the series σF (1) can be deduced from
Lemma 5.1 repeating the arguments given in the proof of Lemma 2.1 in [16].

5.2. The prime number theorem in the Selberg class

For the function F ∈ S we shall denote by ΛF (n) the analogue of the von Mangoldt function, i.e.

ΛF (n) =
{

bF (pk) log pk, if n = pk,

0, if n 	= pk,

and by

ψF (x) =
∑
n<x

ΛF (n)

the analogue of the Tchebyshev ψ-function.
The Selberg class analogue of the prime number theorem is a theorem that explains the asymptotic

behavior of the function ψF (x), as x → ∞.
J. Kaczorowski and A. Perelli [15] have proved that the non-vanishing of the function F ∈ S on

the line Re s = 1 is equivalent with the prime number theorem for the Selberg class. They proved the
following theorem

Proposition 5.4. (See [15, Theorem 1].) Let F ∈ S . Then, ψF (x) = mF x + o(x) if and only if F (1 + it) 	= 0 for
every t ∈ R.

The proof of Proposition 5.4 is based on the classical contour integration methods and the follow-
ing zero density lemma
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Lemma 5.5. ([15, Lemma 3].) Let F ∈ S and ε > 0. Then, there exists a constant C > 0 such that

N F (σ , T ) �ε T C(1−σ )+ε, (14)

where N F (σ , T ) denotes the number of non-trivial zeros ρ = β + iγ of a function F ∈ S , such that β > σ and
0 < γ � T .

Lemma 5.5 implies the existence of the number θ < 1, sufficiently close to 1 such that∑
ρ∈Z(F )
Reρ>θ

xρ

ρ
= o(x), as x → ∞,

for F ∈ S , non-vanishing on the line Re s = 1 and this is an error term the prime number theorem.

Remark 5.6. The above error term o(x) is difficult to improve, assuming non-vanishing of the function
F on Re s = 1 alone, since the zeros of F can approach arbitrary close to the line Re s = 1. We shall
illustrate this statement with the following example.

Example. By the present state of knowledge on the distribution of zeros of a function F ∈ S , non-
vanishing Re s = 1, the set of possible non-trivial zeros could be Z(F ) = Z1(F ) ∪ (1 − Z1(F )) ∪ Z2(F ),
where Z1(F ) = {1−e−k +2π i�ek�}k∈N and Z2(F ) is the set of zeros ρ = 1

2 ± iγ , such that the number

of elements of the set {γ | 0 < γ < T } is approximately dF
2π T log T + c1T + O (log T ). In this case,

N F (σ , T ) = O (log T ), for σ > 1/2, so the estimate (14) is also satisfied.
Furthermore, it is easy to see that, for any 1/2 < θ < 1 and k0 such that 1 − e−k0 > θ one has, for

a sequence xn = en

−Im

( ∑
ρk∈Z1(F )

Reρ>θ

xρk−1
n

ρk

)
∼

∞∑
k=k0

e−ke−ne−k ∼
∞∫

k0

e−ne−u
e−u du ∼

e−k0∫
0

e−nt dt � 1

n
= log−1 xn,

hence ∑
ρ∈Z(F )
Reρ>θ

xρ

ρ
	= o

(
x

log x

)
, as x → ∞

regardless of a choice of θ .
Therefore, in order to obtain a bound o( x

log x ) in the prime number theorem, an additional assump-
tions on F ∈ S (besides non-vanishing Re s = 1) should be imposed.

On the other hand, the following lemma holds

Lemma 5.7. Let F ∈ S be non-vanishing at Re s = 1. Then, for any positive integer l

lim
x→∞ logl x

(
mF − ψF (x)

x

)
= 0 (15)

if and only if

lim
x→∞ logl x

∑
ρ

xρ−1

ρ
= 0. (16)
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Proof. A direct application of the Perron formula, e.g. [21, p. 67] to Dirichlet series − F ′
F implies that

for any x > 1 (not an integer) and T > 1 one has

ψF (x) = mF x −
∑

|Imρ|�T

xρ

ρ
+ O

(
x1+ε

T

)
, (17)

for some small ε > 0. The equivalence of formulas (15) and (16) is easily seen, once we let T → ∞
and multiply the above formula with logl x

x . �
Formula (16) is essential part of the proof of [25, Theorem 2] and the proof of our Theorem 6.2

below. The example in Remark 5.6 shows that some additional assumptions need to be imposed on
F ∈ S , non-vanishing on the line Re s = 1 in order that (16) holds true for positive integers l.

Furthermore, if ψF (x) = mF x + gF (x), then, after representing the sum
∑

k<x
ΛF (k)

k logl−1 k as
a Stieltjes integral and integrating by parts we get

∑
k<x

ΛF (k)

k
logl−1 k − mF

l
logl x = gF (x)

x
logl−1 x −

x∫
1

gF (t)(logl−1 t − (l − 1) logl−2 t)

t2
dt.

Hence, the limit

lim
x→∞

(
mF

l
logl x −

∑
k<x

ΛF (k)

k
logl−1 k

)
(18)

that appears on the right-hand side of the expression for λF (n) in [25, Theorem 2] and [26, Theo-
rem 2.3] exists for all positive integers l, only if we assume that (15) holds true for all l. Therefore,
the assumption of non-vanishing of a function F ∈ S on the line Re s = 1, with the present state of
knowledge on the distribution of non-trivial zeros of F ∈ S is not enough to deduce the existence of
the limit (18). (This obstacle was overcome in [27] by assuming the Landau type zero free region for
functions in S .) However, this assumption can be weakened.

This justifies the following definition.

Definition. We shall denote by S � the set of all functions F ∈ S , non-vanishing on the line Re s = 1
and such that (16) holds true for all positive integers l. Obviously, S � ⊆ S .

Basic properties of the class S � are given in the following lemma

Lemma 5.8.

a) F ∈ S � if and only if F ∈ S and

ψF (x) = mF x + o

(
x

logl x

)
, for any l ∈ N.

b) If a function F ∈ S has a Landau type zero free region, i.e. if non-trivial zeros ρ = σ + iT , (|T | > 1)
of F ∈ S are such that

σ � 1 − c

log qF (1 + |T |) ,

then F ∈ S � .
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Proof. a) Follows directly from Lemma 5.7.
b) The Landau type zero free region implies, by standard analytic arguments (cf. [9, Chapter 5])

that the error term in the prime number theorem is O (−c
√

log x), hence (16) holds true. �
Finally, let us note that, due to the functional equation, ρ = 0 cannot be a non-trivial zero of a

function F ∈ S � .

6. Arithmetic formulas for Li’s coefficients: Statement of results

The main result of the paper are two theorems that give arithmetic formulas for Li’s coefficients.
The first theorem gives us a formula for the coefficients of the function F ∈ S #� , while the second

theorem gives us the formula for F ∈ S � , in terms of a limit of a certain sum over primes.
For F ∈ S #� let us denote by γF (n) coefficients appearing in the Laurent (or Taylor) series expan-

sion of the function F ′
F around s = 1, i.e. let

F ′

F
(s) = − mF

s − 1
+

∞∑
n=0

γF (n)(s − 1)n,

for s close to 1. We shall call the constants γF (n) generalized Stieltjes constants, since they are the

Selberg class analogues of the Stieltjes constants appearing in the Laurent series expansion of ζ ′
ζ

around s = 1. The Li coefficients can be expressed in terms constants γF (n).

Theorem 6.1. Let F ∈ S #� be a function such that 0 /∈ Z(F ). Then, for all n ∈ N

λF (−n) = mF + n log Q F +
n∑

l=1

(
n

l

)
γF (l − 1) +

n∑
l=1

(
n

l

)
ηF (l − 1), (19)

where

ηF (0) =
r∑

j=1

λ j
Γ ′

Γ
(λ j + μ j) and ηF (l − 1) =

r∑
j=1

(−λ j)
l

∞∑
k=0

1

(λ j + μ j + k)l
,

for l � 2.

In the next section we shall give the proof of Theorem 6.1 using the explicit formula (Theorem 3.1).
In Appendix A we shall give another, completely independent proof of this theorem, based on the
product formula for the function ξF .

The arithmetic formula similar to (19) appears in [26, Formula (9)] (the correct formula should
have λF (−n) on the left-hand side and the sum on the right-hand side of [26, Formula (10)] should
start at l = 0). However, its proof is not correct, as pointed out in Section 1.

Our next theorem applies only to functions F ∈ S such that ψF (x) = mF x + o( x
logl x

), for any l ∈ N

and gives the formula for the generalized Stieltjes constants.

Theorem 6.2. Let F ∈ S � . Then

λF (n) = n log Q F +
n∑

l=1

(
n

l

)
(−1)l−1

(l − 1)! lim
x→∞

(
mF

l
logl x −

∑
k<x

ΛF (k)

k
logl−1 k

)

+ mF + n
r∑

j=1

λ j
Γ ′

Γ
(λ j + μ j) −

n∑
l=2

(
n

l

)
(−1)l

r∑
j=1

λl
j

∞∑
k=0

1

(λ j + μ j + k)l
,

for all n ∈ N.
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Comparing Theorems 6.1 and 6.2 we can deduce the expression for generalized Stieltjes con-
stants γF (n).

Corollary 6.3. For F ∈ S � , one has

γF (n) = (−1)n

n! lim
x→∞

(
mF

n + 1
logn+1 x −

∑
k<x

ΛF (k)

k
logn k

)
.

7. Proof of Theorem 6.1

Proofs of our theorems are based on the application of the explicit formula to a suitable test
function.

Bombieri and Lagarias have noticed that if

Gn(x) =

⎧⎪⎨⎪⎩
e−x/2 ∑n

l=1

(n
l

)
(−1)l−1xl−1

(l−1)! , if x > 0,

n/2, if x = 0,

0, if x < 0,

(20)

then

Hn(s) = M 1
2

gn(s) =
∞∫

−∞
Gn(x)e−(s−1/2)x dx = 1 −

(
1 − 1

s

)n

,

for all n ∈ N, where gn(x) = Gn(− log x), x > 0. Let us note here that the function Hn(s) has a pole
at s = 1 for negative integers n, and a pole at s = 0 for positive n. The assumption 0 /∈ Z(F ), or,
equivalently 1 /∈ Z(F ), implies that

λF (n) =
∑

ρ∈Z(F )

Hn(ρ)

is well defined ∗-convergent sum (according to Theorem 4.1) for all integers n.
Throughout this proof and the proof of Theorem 6.2, we assume n to be a positive integer.
The function Gn does not satisfy the second growth condition of Theorem 3.1 (it does not decay as

e−(ε+1/2)x , for some ε > 0) hence, to prove Theorem 6.1 we shall apply the explicit formula to the test
function that is a small perturbation of the function Gn . Namely, we shall consider the test function

Gn,z(x) =

⎧⎪⎨⎪⎩
e−(z+1/2)x ∑n

l=1

(n
l

)
(−1)l−1xl−1

(l−1)! , if x > 0,

n/2, if x = 0,

0, if x < 0

(21)

for some positive constant z. It is easy to conclude that Gn,z(x) satisfies all assumptions posed on the
test function in Theorem 3.1. Now,

Hn,z(s) = M 1
2

gn,z(s) =
∞∫

Gn,z(x)e−(s−1/2)x dx = 1 −
(

1 − 1

s + z

)n

.

−∞
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Since

∑
ρ∈Z(F )

(
Hn,z(ρ) − Hn(ρ)

) = nz
∑

ρ∈Z(F )

1

ρ(ρ + z)
+

n∑
k=2

(
n

k

)
(−1)k

∑
ρ∈Z(F )

(
1

(ρ + z)k
− 1

ρk

)
,

and all series on the right-hand side converge absolutely and uniformly in z in the interval (0, δ), for
a small δ > 0, passing to the limit as z → 0+ , we obtain

lim
z→0+

∑
ρ∈Z(F )

Hn,z(ρ) =
∑

ρ∈Z(F )

Hn(ρ).

It is left to evaluate the right-hand side of the explicit formula with the test function Gn,z . Simple
calculations, analogous to the ones used in the proof of Theorem 3.4 yield

∑
ρ∈Z(F )

Hn,z(ρ) =
n∑

l=1

(
n

l

)
(−1)l−1

(l − 1)!
(

mF
(l − 1)!

zl
−

∑
m

cF (m)

m(1+z)
(log m)l−1

)

+ mF Hn(z + 1) + n log Q F + n
r∑

j=1

λ j
Γ ′

Γ

(
λ j(1 + z) + μ j

)

+
n∑

l=2

(
n

l

) r∑
j=1

(−λ j)
l

∞∑
k=0

1

(λ j(1 + z) + μ j + k)l
. (22)

On the other hand, since

F ′

F
(z + 1) = −

∑
m

cF (m)

m(1+z)
,

and F ′
F

is a holomorphic function in the half-plane Re s > 1, one has

(
F ′

F

)(l−1)

(z + 1) = (−1)l−1
(

−
∑

m

cF (m)

m(1+z)
(log m)l−1

)
, for l � 1.

(Let us recall that F (s) = F (s).) Therefore

n∑
l=1

(
n

l

)
(−1)l−1

(l − 1)!
(

mF
(l − 1)!

zl
−

∑
m

cF (m)

m(1+z)
(log m)l−1

)

=
n∑

l=1

(
n

l

)
1

(l − 1)!
((

F ′

F

)(l−1)

(z + 1) + (−1)l−1mF
(l − 1)!

zl

)
.

The Laurent series expansion of F implies that, for l � 1

(l − 1)!γF (l − 1) = lim
z→0

((
F ′ )(l−1)

(z + 1) + (−1)l−1mF
(l − 1)!

zl

)
.

F
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Passing to the limit as z → 0+ on both sides of (22) (having in mind that limz→0 Hn(z + 1) = 1, for
n ∈ N) yields

∑
ρ∈Z(F )

Hn(ρ) =
n∑

l=1

(
n

l

)
γF (l − 1) + mF + n log Q F + n

r∑
j=1

λ j
Γ ′

Γ
(λ j + μ j)

+
n∑

l=2

(
n

l

) r∑
j=1

(−λ j)
l

∞∑
k=0

1

(λ j + μ j + k)l
.

The fact that λF (−n) = λF (n) completes the proof of Theorem 6.1.

8. Proof of Theorem 6.2

To prove Theorem 6.2 we shall consider the cut-off test function

Gn,X (x) =

⎧⎪⎪⎨⎪⎪⎩
Gn(x), if 0 < x < log X,

n/2, if x = 0,
1
2 Gn(log X), if x = log X,

0, otherwise

(23)

and denote by Hn,X (s) the translate by 1/2 of the Mellin transform of gn.X . It is easy to see that
Gn,X (x) satisfies all conditions posed on the test function in Theorem 3.1.

Firstly, we shall prove that

lim
X→∞

∑
ρ∈Z(F )

Hn,X (ρ) =
∑

ρ∈Z(F )

Hn(ρ).

A direct calculation shows that∑
ρ∈Z(F )

(
Hn,X (ρ) − Hn(ρ)

)

=
n∑

l=1

(
n

l

)
(−1)l−1 logl−1 X

∑
ρ∈Z(F )

X−ρ

ρ
+ O

( ∑
ρ∈Z(F )

X−Reρ logn−2 X

|ρ|2
)

. (24)

Since zeros of F come in pairs ρ and 1 − ρ , we see that

∑
ρ∈Z(F )

X−ρ

ρ
=

∑
ρ∈Z(F )

X−1+ρ

1 − ρ
=

∑
ρ∈Z(F )

X−1+ρ

ρ(1 − ρ)
−

∑
ρ∈Z(F )

X−1+ρ

ρ
.

The assumption (16) on F ∈ S � implies that

lim
X→∞ logn−1 X

∑
ρ∈Z(F )

X−ρ

ρ
= − lim

X→∞

(
logn−1 X

∑
ρ∈Z(F )

Xρ−1

ρ
−

∑
ρ∈Z(F )

X−1+ρ

ρ(1 − ρ)

)
= 0.

Similarly, we conclude that

lim
X→∞

∑
ρ∈Z(F )

X− Reρ logn−2 X

|ρ|2 = 0.
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Therefore, the left-hand side of (24) tends to zero, as X → ∞, hence limX→∞
∑

ρ∈Z(F ) Hn,X (ρ) =∑
ρ∈Z(F ) Hn(ρ).
Inserting the test function Gn,X into the explicit formula we obtain

∑
ρ∈Z(F )

Hn,X (ρ) = n log Q F + mF

n∑
l=1

(
n

l

)
(−1)l−1

(
1 −

l∑
j=1

1

(l − j)!
logl− j X

X

)

−
n∑

l=1

(
n

l

)
(−1)l−1

(l − 1)!
(

mF
logl X

l
−

∑
p,m

pm<X

ΛF (pm)

pm

(
log pm)l−1

)

+
r∑

j=1

n

log X∫
0

[
λ j

x
−

exp
(
(1 − λ j − μ j)

x
λ j

)
1 − e

− x
λ j

]
e
− x

λ j dx

−
r∑

j=1

n∑
l=1

(
n

l

)
(−1)l−1

(l − 1)!

log X∫
0

xl−1
exp

(
(−λ j − μ j)

x
λ j

)
1 − e

− x
λ j

dx. (25)

Since the left-hand side of (25) tends to λF (n), as X → ∞, it is left to evaluate the limit of the first
sum and integrals on the right-hand side of (25).

Obviously,

lim
X→∞

n∑
l=1

(
n

l

)
(−1)l−1

(
1 −

l∑
j=1

1

(l − j)!
logl− j X

X

)
= 1.

The application of the Gauss formula for the logarithmic derivative of the gamma function yields

lim
X→∞

log X∫
0

[
λ j

x
−

exp
(
(1 − λ j − μ j)

x
λ j

)
1 − e

− x
λ j

]
e
− x

λ j dx = λ j
Γ ′

Γ
(λ j + μ j).

Finally, since

1

1 − e
− x

λ j

=
∞∑

k=0

e
− kx

λ j

we obtain that

lim
X→∞

log X∫
0

xl−1
exp

(
(−λ j − μ j)

x
λ j

)
1 − e

− x
λ j

dx = (l − 1)! · λl
j

∞∑
k=0

1

(λ j + μ j + k)l
.

This proves the theorem.
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L. Smajlović / Journal of Number Theory 130 (2010) 828–851 847
Appendix A. Definitions of Li coefficients in the Selberg class

In this appendix we will discuss various definitions of the Selberg class analogue of the Li coeffi-
cients and prove that they are equivalent for functions F ∈ S #� , such that 0 /∈ Z(F ) (or 1 /∈ Z(F )).

Following Li, Bombieri and Lagarias we shall introduce two definitions of the Li coefficients, anal-
ogous to (3) and (4). Namely, for a positive integer n, we define coefficients λ1,F (n) by the formula

λ1,F (n) = 1

(n − 1)!
dn

dsn

(
sn−1 log ξF (s)

)∣∣
s=1, (26)

and coefficients λ2,F (n) to be the coefficients in the Taylor series expansion

d

ds
log ξF

(
1

1 − s

)
= 1

(1 − s)2

ξ ′
F

ξF

(
1

1 − s

)
=

∞∑
n=0

λ2,F (n + 1)sn. (27)

Theorem A.1. Let F ∈ S#� , such that 0 /∈ Z(F ). Then, λF (−n) = λ1,F (n) = λ2,F (n), for all positive integers n.

Proof. Firstly, we shall prove that λF (−n) = λ1,F (n). The functional equation axiom yields

dn

dsn

(
sn−1 log ξF (s)

)∣∣
s=1 = (−1)n dn

dsn

(
(1 − s)n−1 log ξF (s)

)∣∣
s=0.

Theorem 3.4(b) implies that

log ξF (s) =
∑∗

ρ∈Z(F )

log

(
1 − s

ρ

)
= −

∑∗

ρ∈Z(F )

∞∑
m=1

ρ−m

m
sm,

for s in a small enough neighborhood of zero (where the power series on the right-hand side of the
above formula converges uniformly). Hence

log ξF (s) = −
∞∑

m=1

sm

m
σF (m). (28)

The uniform convergence enable us to differentiate the above power series term by term and obtain

λ1,F (n) = (−1)n

(n − 1)!
n∑

k=0

(
n

k

)(
(1 − s)n−1)(n−k)(

log ξF (s)
)(k)∣∣

s=0 =

=
n∑

k=1

(
n

k

)
(−1)2n−k+1σF (k) =

∑∗

ρ∈Z(F )

(
−

n∑
k=1

(
n

k

)(
− 1

ρ

)k
)

= λF (n).

This proves the first part of theorem (since λF (−n) = λF (n)).
Theorem 3.4(a) yields

1

(1 − s)2

ξ ′
F

ξF

(
1

1 − s

)
=

∑∗

ρ∈Z(F )

1

1 − ρ
· 1

1 − s
· 1

1 − (
ρ

ρ−1 )s
.

In the small enough neighborhood of zero, one has
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1

1 − ρ
· 1

1 − s
· 1

1 − (
ρ

ρ−1 )s
= 1

1 − ρ

∞∑
k=0

sk ·
∞∑
j=0

(
ρ

ρ − 1
s

) j

=
∞∑

m=0

[
1 −

(
ρ

ρ − 1

)m+1]
sm.

Therefore, in a small enough neighborhood of zero

1

(1 − s)2

ξ ′
F

ξF

(
1

1 − s

)
=

∞∑
m=0

( ∑∗

ρ∈Z(F )

[
1 −

(
1 − 1

1 − ρ

)m+1]
sm

)

=
∞∑

m=0

λF (m + 1)sm,

since Z(F ) is invariant under transformation ρ �→ 1 − ρ . Hence, λ2,F (m + 1) = λF (m + 1), for m � 0
and the proof is complete. �

Now, we shall give another proof of Theorem 6.1, following ideas of Lagarias [16, Section 4].

Second proof of Theorem 6.1. We start with formula (28) together with the functional equation for
the function ξF in order to obtain that, in the neighborhood of s = 0 one has

ξ ′
F

ξF
(s + 1) = − ξ ′

F

ξF
(−s) =

∞∑
m=0

(−1)mσF (m + 1) · sm. (29)

On the other hand, by the definition of ξF one has

ξ ′
F

ξF
(s + 1) = mF

s + 1
+ F ′

F
(s + 1) + mF

s
+ log Q F +

r∑
j=1

Γ ′

Γ

(
λ j(s + 1) + μ j

)
. (30)

Let us define numbers τF (n) to be coefficients in the Taylor series expansion of the function log Q F +∑r
j=1

Γ ′
Γ

(λ j(s + 1)λ + μ j) at s = 0, i.e. let us put

log Q F +
r∑

j=1

Γ ′

Γ

(
λ j(s + 1) + μ j

) =
∞∑

n=0

τF (n)sn.

Since

F ′

F
(s + 1) + mF

s
=

∞∑
n=0

γF (n)sn and
mF

s + 1
= mF

∞∑
n=0

(−1)nsn

(around s = 0) comparing (29) and (30) we obtain that

(−1)mσF (m + 1) = (−1)mmF + γF (m) + τF (m),
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for m � 0. By the definition of λF (n) we obtain immediately

λF (−n) = mF +
n∑

m=1

(
n

m

)
γF (m − 1) +

n∑
m=1

(
n

m

)
τF (m − 1). (31)

Following the lines of the proof of Lemma 4.3 in [16] it is easy to deduce that τF (m − 1) = ηF (m − 1),
for m � 2, while τF (0) = n log Q F + ηF (0) and the proof of formula (19) is complete. �
Appendix B. The Jorgenson–Lang fundamental class of functions

The explicit formula for the class S #� , with a very broad class of test functions was the main
tool used in proofs of our main Theorems 4.1, 6.1 and 6.2. Its proof follows from the fact that S#�

is contained in a much wider class, a fundamental class of functions, introduced by J. Jorgenson and
S. Lang in [12]. In order to make this paper self-contained, in this appendix we recall definition of the
fundamental class of functions and show that S#� is the subclass of this class.

The fundamental class of functions is a class of triples (Z , Z̃ ,Φ) satisfying following three conditions
[12, pp. 45–46]:

1. (Meromorphy) Functions Z and Z̃ are meromorphic functions of a finite order.
2. (Euler sum) There are sequences {q} and { q̃ } of real numbers greater than one, depending on Z

and Z̃ such that for every q and q̃ there exist complex numbers c(q) and c( q̃ ) and σ ′
0 � 0 such that

for all Re s > σ ′
0

log Z(s) =
∑

q

c(q)

qs
and log Z̃(s) =

∑
q̃

c( q̃ )

q̃s
.

The series are assumed to converge uniformly and absolutely in any half-plane of the form Re s �
σ ′

0 + ε > σ ′
0.

3. (Functional equation) There exist a meromorphic function Φ of finite order and σ0 with 0 �
σ0 � σ ′

0 such that

Z(s)Φ(s) = Z̃(σ0 − s)

and the factor Φ of the functional equation is of a regularized product type.
The function Φ is of a regularized product type [12, Definition 6.1] if it can be written as

Φ(s) = eP (s) Q (s)
m∏

j=1

D j(α j s + β j)
k j , (32)

where Q (s) is a rational function, P (s) is a polynomial, k j is an integer, D j is a regularized product
and complex numbers α j and β j are chosen such that the zeros and poles of D j lie in the union
of vertical strips and sectors {z ∈ C: −π/2 + ε < arg(z) < π/2 + ε} and {z ∈ C: π/2 + ε < arg(z) <

3π/2 − ε}, for some ε > 0.
The definition of a regularized product associated to some sequences of complex numbers is fully

described in [11, Part I, Section 2]. Since the definition is rather long, let us note here that a regu-
larized product can be viewed as a generalization of a Weierstrass product. Therefore, the (classical)
gamma function is a regularized product. A reduced order of a regularized product D j is defined as a
pair of numbers (M j,m j) depending on D j in a way that is fully described in [12, pp. 18–19]. For
our purposes it is sufficient to know that a reduced order controls the growth of D j in vertical strips.

Namely, if (M j,m j) is a reduced order of D j , then,
D ′

j
D (σ ± iT ) grows at most as T M j logm j |T |.
j
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Specially, a gamma function is a regularized product of reduced order (0,0), as proved in [12, Ex. 1
on p. 39].

The notion of a reduced order of a function that is of a regularized product type is important in
the proof of the explicit formula. Namely, this order controls the growth of functions Z ′

Z and Φ ′
Φ

in
vertical strips, hence affects the conditions posed on the test function. A reduced order of a function
Φ(s) of a regularized product type defined by (32) is (M,m) where M = max{deg P − 1, M j} and m is
the largest of numbers m j such that M j = M .

Lemma B.1. The family of triples (F , F ,ΨF ), where F ∈ S #� is contained in the fundamental class.

Proof. The first axiom of the fundamental class is satisfied, since, by axiom (ii) (of the Selberg
class) F and F are meromorphic functions of finite order. The second axiom of the fundamental
class is satisfied with sequences {q} and {̃q} taken to be the sequence of positive integers n � 2,

c(q) = cF (n)
logn , c( q̃ ) = cF (n)

logn and σ ′
0 = 1. Namely, the function G(s) = ∑∞

n=2
cF (n)

logn·ns is defined by the ab-
solutely convergent Dirichlet series and, hence, holomorphic in the half-plane Re s > 1. Furthermore,
G ′(s) = −∑∞

n=2
cF (n)

ns = F ′
F (s) = (log F )′(s). Therefore, log F (s) also has a Dirichlet series representation

converging absolutely in the half-plane Re s > 1.
Finally, the functional equation axiom of the fundamental class is satisfied with σ0 = σ ′

0 = 1 and

Φ(s) = ΨF (s) = w Q 2s−1
F

r∏
j=1

Γ (λ j s + μ j)
(
Γ

(
λ j(1 − s) + μ j

))−1
.

Function ΨF (s) is of a regularized product type since gamma function is a regularized product and
numbers λ j and μ j are such that poles and zeros gamma factors lie in the union of vertical strips
and sectors, described above. Obviously, the reduced order of ΨF is (0,0). �
Remark B.2. The class S#� is unchanged if the axiom (v′) be replaced with the assumption that

log F (s) =
∞∑

n=2

cF (n)

log n · ns
,

where the series on the right converges absolutely in the half-plane Re s > 1. The reason for stating
the axiom (v′) in the form of the logarithmic derivative instead of logarithm (of a function F ) is the
proof of the explicit formula (Theorem 3.1), where only the logarithmic derivative appears.

Finally, let us note that triples (F , F ,ΨF ), where F ∈ S # need not belong to the fundamental class
since S # may contain functions which have zeros in all half-planes of the form Re s > σ , with σ > 0.
Such functions do not have an Euler sum, since the Euler sum axiom in the fundamental class implies
non-vanishing of the function in the half-plane Re s > σ ′

0.

Supplementary material

The online version of this article contains additional supplementary material. Please visit
doi:10.1016/j.jnt.2009.10.012.

References
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[23] A. Odžak, L. Smajlović, On Li’s coefficients for the Rankin–Selberg L-functions, Ramanujan J. (2010), doi:10.1007/s11139-

009-9175-z, in press.
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