Permutations Containing and Avoiding 123 and 132 Patterns

Aaron Robertson

Department of Mathematics
Temple University
Philadelphia, PA 19122
aaron@math.temple.edu

Abstract

We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals \((n - 2)2^{n-3}\), for \(n \geq 3\). We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is \((n - 3)(n - 4)2^{n-5}\), for \(n \geq 5\).

Introduction

In 1990, Herb Wilf asked the following: How many permutations of length \(n\) avoid a given pattern, \(p\)? By pattern-avoiding we mean the following: Let \(\pi\) be a permutation of length \(n\) and let \(p = (p_1, p_2, \ldots, p_k)\) be a permutation of length \(k \leq n\) (we will call this a pattern of length \(k\)). Let \(J\) be a set of \(r\) integers, and let \(j \in J\). Define \(\text{place}(j, J)\) to be 1 if \(j\) is the smallest element in \(J\), 2 if it is the second smallest, ..., and \(r\) if it is the largest. The permutation \(\pi\) avoids the pattern \(p\) if and only if there does not exist a set of indices \(I = (i_1, i_2, \ldots, i_k)\), such that \(p = (\text{place}(\pi(i_1), I), \text{place}(\pi(i_2), I), \ldots, \text{place}(\pi(i_k), I))\).

In two beautiful papers ([B] and [N]), the number of subsequences containing exactly one 132-pattern and exactly one 123-pattern are enumerated. Noonan shows in [N] that the number of permutations containing exactly one 123-pattern is the simple formula \(\frac{3}{n}\left(\begin{array}{c}2n \\ n+3\end{array}\right)\). Bóna proves that the even simpler formula \(\left(\begin{array}{c}2n-3 \\ n-3\end{array}\right)\) enumerates the number of permutations containing exactly one 132-pattern. Bóna’s result proved a conjecture first made by Noonan and Zeilberger in [NZ].

Noonan and Zeilberger considered in [NZ] the number of permutations of length \(n\) which contain exactly \(r\) \(p\)-patterns, for \(r \geq 1\). In this article we work towards the following generalization: How many permutations of length \(n\) avoid patterns \(p_i\), for \(i \geq 0\), and contain \(r_j p_j\)-patterns, for \(j \geq 1, r_j \geq 1\)? We will first consider the permutations of length \(n\) which avoid 132-patterns, but contain exactly one 123-pattern. We then define a natural bijection between these permutations and the permutations of length \(n\) which avoid 123-patterns, but contain exactly one 132-pattern. Finally, we will calculate the number of permutations which contain one 123-pattern and one 132-pattern. These results address questions first raised in [NZ].

\footnote{webpage: www.math.temple.edu/~aaron/}

This paper was supported in part by the NSF under the PI-ship of Doron Zeilberger.
Known Results

For completeness, two results which are already known are given below.

Lemma 1: The number of permutations of length n with one 12-pattern is $n - 1$.

Proof: Induct on n. The base case is trivial. A permutation, ϕ, of length n with one 12-pattern must have $n = \phi(1)$ or $n = \phi(2)$. If $n = \phi(1)$, by induction we get $n - 2$ permutation. If $n = \phi(2)$, then we must have $n - 1 = \phi(1)$ (or we would have more than one 12-pattern). The rest of the entries of ϕ must be decreasing. Hence we get 1 more permutation from this second case, for a total of $n - 1$.

Lemma 2: The number of permutations which avoid both the pattern 123 and 132 is 2^{n-1}.

Proof: Let f_n denote the number of permutations we are interested in. Then $f_n = \sum_{i=1}^{n} f_{n-i} + 1$ with $f_0 = 0$. To see this, let ρ be a permutation of length $n - 1$. Insert the element n into the i^{th} position of ρ. Call this new permutation of length $n \pi$. To assure that π avoids the 132-pattern, we must have all entries preceding n in π be larger than the entries following n. To assure that π avoids the 123-pattern, the entries preceding n must be in decreasing order. This argument gives the sum in the recursion. The recursion holds by noting that if $n = 1$, there is one permutation which avoids both patterns. To complete the proof note that $f_n = 2^{n-1}$.

One 123-pattern, but no 132-pattern

Theorem 1: The number of permutations of length n which have exactly one 123-pattern, and avoid the 132-pattern is $(n - 2)2^{n-3}$.

Proof: Let g_n denote the number of permutation we desire to count. Call a permutation good if it has exactly one 123-pattern and avoids the 132-pattern. Let γ be a permutation of length $n - 1$. Insert the element n into the i^{th} position of γ. Call this newly constructed permutation of length $n \pi$. To assure that π avoids the 132-pattern, we must have all elements preceding n in π be larger than the elements following n in π. For π to be a good permutation, we must consider two disjoint cases.

Case I: The pattern 123 appears in the elements following n in π. This forces the elements preceding n to be in decreasing order. Summing over i, this case accounts for $\sum_{i=1}^{n} g_{n-i}$ permutations.

Case II: The pattern 123 appears in the elements preceding and including n in π. This forces the 3 in the pattern to be n. Hence the elements preceding n must contain exactly one 12-pattern. (Further there must be at least 2 elements. Hence i must be at least 3). From Lemma 1, this number is $i - 2$. We are also forced to avoid both patterns in the elements following n. Lemma 2 implies that there are 2^{n-i-1} such permutations. Summing over i, this case accounts for $\sum_{i=3}^{n-1} (i - 2)2^{n-i-1} + n - 2$ permutations.
We have established that the recurrence relation

\[g_n = \sum_{i=1}^{n} g_{n-i} + \sum_{i=3}^{n-1} (i-2)2^{n-i-1} + n - 2, \]

which holds for \(n \geq 3 \) \((g_0 = 0, g_1 = 0, g_2 = 0)\), enumerates the permutations of length \(n \) which avoid the pattern 132 and contain one 123-pattern.

The obvious way to proceed would be to find the generating function of \(g_n \). However, in this article we would like to employ a different, and in many circumstances more powerful, tool. We will use the Maple procedure \texttt{findrec} in Doron Zeilberger’s Maple package \texttt{EKHAD}\(^2\). (The Maple shareware package \texttt{gfun} could have also been used.) Instructions for its use are available online. To use \texttt{findrec} we compute the first few terms of \(g_n \). These are (for \(n \geq 4 \)) 4, 12, 32, 80, 192, 448, 1024. We type \texttt{findrec([4,12,32,80,192,448,1024],0,2,n,N)} and are given the recurrence

\[h_n = 4(h_n - 1 - h_{n-2}) \]

for \(n \geq 4 \). Define \(h_0 = 0, h_1 = 0, h_2 = 0, \) and \(h_3 = 1 \), and it is routine to verify that \(g_n = h_n \) for \(n \geq 0 \). Another routine calculation shows us that \(h_n = (n - 2)2^{n-3} \) for \(n \geq 3 \), thereby proving the statement of the theorem.

One 132-pattern, but no 123-pattern

Theorem 2: The number of permutations of length \(n \) which have exactly one 132-pattern, and avoid the 123-pattern is \((n - 2)2^{n-3}\).

Proof: We prove this by exhibiting a (natural) bijection from the permutations counted in Theorem 1 to the permutations counted in this theorem. Define \(S := \{ \pi : \pi \) avoids 132-pattern and contains one 123-pattern\} and \(T := \{ \pi : \pi \) avoids 123-pattern and contains one 132-pattern\}. We will show that \(|S| = |T|\), by using the following bijection:

Let \(\phi : S \rightarrow T \). Let \(s \in S \), and let \(abc \) be the 123-pattern in \(s \). Then \(\phi \) acts on the elements of \(s \) as follows: \(\phi(x) = x \) if \(x \not\in \{b,c\} \), \(\phi(b) = c \), and \(\phi(c) = b \). In other words, all elements keep their positions except \(b \) and \(c \) switch places. An easy examination of several cases shows that this is a bijection, thereby proving the theorem.

One 132-pattern and one 123-pattern

Theorem 3: The number of permutations of length \(n \) which have exactly one 132-pattern and one 123-pattern is \((n - 3)(n - 4)2^{n-5}\).

Proof: We use the same insertion technique as in the proof of Theorem 1. Let \(g_n \) denote the number of permutation we desire to count. Call a permutation \textit{good} if it has exactly one 123-pattern and exactly one 132-pattern. Let \(\gamma \) be a permutation of length \(n - 1 \). Insert the element \(n \) into the \(i^{th} \) position of \(\gamma \). Call this newly constructed permutation of length \(n, \pi \).

\(^2\)Available for download at \url{www.math.temple.edu/~zeilberg/}
We note that the 132-pattern cannot consist of elements only preceding \(n \). If this were the case, we would have two 123-patterns ending with \(n \). For \(\pi \) to be a **good** permutation, we must consider the following disjoint cases.

Case I: The 132-pattern consists of elements following \(n \). In this case all elements preceding \(n \) must be larger than the elements following \(n \).

Subcase A: The 123-pattern consists of elements following \(n \). Summing over \(i \) we get \(\sum_{i=1}^{n} g_{n-i} \) good permutations in this subcase.

Subcase B: The elements preceding \(n \) have exactly one 12-pattern. This gives a 123-pattern where the 3 in the pattern is \(n \). We must also avoid the 123-pattern in the elements following \(n \). Summing over \(i \) and using Lemma 1 and Theorem 1, we get \(\sum_{i=3}^{n-3} (i-2)(n-i-3)2^{n-i-2} \) good permutations in this subcase.

Case II: The 132-pattern has the first element preceding \(n \), the last element following \(n \), and \(n \) as the middle element. The elements preceding \(n \) must be \(n-1, n-2, \ldots, n-1+2, n-i \), where \(n-i \) immediately precedes \(n \) in \(\pi \). See [B] for a more detailed argument as to why this must be true.

Subcase A: The elements preceding \(n \) have exactly one 12-pattern. This gives a 123-pattern where the last element of the pattern is \(n \). We must also avoid both the 123 and the 132 pattern in the elements following \(n \). Summing over \(i \) and using Lemma 1 and Lemma 2 we have \(\sum_{i=4}^{n-1} (i-3)2^{n-i-1} \) good permutations in this subcase.

Subcase B: The 123-pattern consists of elements following \(n \). We must have the elements preceding \(n \) in \(\pi \) be decreasing to avoid another 123-pattern. Further, the elements following \(n \) must not contain a 132-pattern. Using Theorem 1 and summing over \(i \), we get a total of \(\sum_{i=2}^{n-3} (n-i-2)2^{n-i-3} \) good permutations in this subcase.

In total, we find that the following recurrence enumerates the permutations of length \(n \) which contain exactly one 123-pattern and one 132-pattern.

\[
g_n = \sum_{i=1}^{n} g_{n-i} + \sum_{i=1}^{n-4} (2i(n-i-4) + n-3)2^{n-i-4}
\]

for \(n \geq 5 \) and \(g_1 = g_2 = g_3 = g_4 = 0 \).

Using `findrec` again by typing `findrec([2,12,48,160,480,1344,3584],1,1,n,N)` (where the list is the first few terms of our recurrence for \(n \geq 5 \)) we get the recurrence \(f_{n+1} = \frac{2(n+2)}{n} f_n \), with \(f_1 = 2 \). After reindexing, another routine calculation shows that \(f_n = g_n \). Solving \(f_n \) for an explicit answer, we find that \(g_n = (n-3)(n-4)2^{n-5} \).

We conjecture that the number of 132-avoiding permutations with \(r \) 123-patterns is always a sum of powers of 2. For more evidence, and further extensions see [ERZ].
References

