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Abstract: Evolutionary optimized coefficients of discrete orthogonal Tchebichef moment transform (TMT) are utilized

in this study to ameliorate the quality of the traditional moments-based image compression methods. Most of the

existing methods compute moment-transform coefficients for the input image and then select the coefficients sequentially

downward to a certain order based on the desired compression ratio. However, the proposed method divides the input

image into nonoverlapping square blocks of specific size in order to circumvent the problem of numerical instability and

then computes the TMT coefficients for each block. In this work, a real-coded genetic algorithm is employed to optimize

the TMT coefficients of each block, which produces reconstructed images of better quality for the desired compression

ratio. Here the optimization is carried out by minimizing the mean square error function. Standard test images of

two different sizes (128 × 128 and 256 × 256) have been subjected to the proposed compression method for the block

sizes (4 × 4 and 8 × 8) in order to assess its performance. The results reveal that the proposed real-coded genetic

algorithm-based method outperforms others, namely the conventional sequential selection method and simple random

optimization method, for the chosen input images in terms of the task of compression.
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1. Introduction

Satellite images, medical images, multimedia images, nondestructive testing images, etc. require huge memory

and a higher bandwidth channel for their storage and transmission, respectively. However, these problems can

certainly be minimized by compressing those images by means of suitable techniques without much compromising

of their information and visual quality. In the past two decades, many researchers have reported quite a few

compression techniques for binary, gray, and color still images, as well as for video images [1–3]. Different

transforms and statistical methods have long been employed in developing more and more efficient image

compression algorithms.

In the past, geometric and orthogonal moment functions were employed for various applications of image

processing, which include image segmentation, computer vision, image analysis, and image compression [4–

10]. Moments are derived from polynomial functions and computed for a digital image. They are statistical

∗Correspondence: ahragamathunisabegum@yahoo.com
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values that represent both low frequency information and high frequency details of an image. Unlike geometric

moments, orthogonal moments, represent independent features of the image and thus have near zero or very

minimum information redundancy in a set. The invariant property of orthogonal moments with respect to

image translation, rotation, and sizing invites scientists/researchers to make use of them for various image

processing applications [11–13]. Since continuous moments suffer from discretization error severely when

they are numerically implemented in the domain of the discretized image coordinate space, few orthogonal

polynomials/moments were directly defined in the discrete domain [14–18]. It has been well proven that the

discrete orthogonal moments are very useful as pattern features in the analysis of two-dimensional images.

A general form for Krawtchouk, Charlier, Tchebichef, Mexiner, and Hahn moments was proposed by

Zhu et al. recently [19]. Of the three moments, namely Tchebichef, Krawtchouk, and Hahn, considered in for

their study for the task of compression, the Tchebichef outperformed others by reaching the highest value of

peak-signal-to-noise ratio (PSNR), and the Hahn performed second best. To achieve the desired compression

ratio, Zhu et al. arranged the absolute value of all moment values in a downward order and chose a part of them

to reconstruct the image. This work aimed to build a simple compression method with better performance.

The discrete orthogonal Tchebichef moment is considered in this study as its compression efficiency has already

been proven [14,19,20].

A simple evolutionary optimization technique, the real-coded genetic algorithm (RGA), has been em-

ployed in this present work to choose the Tchebichef moment transform (TMT) coefficients required for recon-

struction [21]. Different classes of benchmark images of various sizes are subjected to the proposed compression

scheme in order to assess its performance. The results of the RGA-optimized-moment-based compression method

reveal that the statistical quality measures computed for the reconstructed images are far better than that of

other reported methods [19,22–24].

2. Theory of proposed compression method

The overall schematic diagram of the proposed compression method is shown in Figure 1. Before the compression

process is instigated, the nonsquare input image is resized into the nearest possible square by replicating the

required number of additional rows and columns in such a way that the resulting size (N × N) should be an

integral multiple of the block size (n × n) for further processing. Based on the input block size, the resized

image is divided into nonoverlapping square blocks of size n × n. Orthogonal discrete coefficients of TMT are

then computed for each block up to the maximum possible order, i.e. n + n. Optimum TMT coefficients that

contribute significantly for better quality of the reconstructed image are selected by minimizing the objective

function, the so-called mean square error (MSE) function, using the RGA. A compressed image is then obtained

by concatenating the optimal blocks horizontally, and then vertically. If the pixel intensity values of the original

and reconstructed image block of size n × n are denoted as gb(u, v) and g̃b(u, v), respectively, the MSE is

computed using Eq. (1).

MSE =
1

n2

n−1∑
u=0

n−1∑
v=0

(gb(u, v)− g̃b(u, v))
2

(1)

During the decompression process, the compressed image is divided into nonoverlapping square blocks in the

same way as in the compression process. Subsequently, the inverse orthogonal discrete moment transform is

performed for each block. Finally, an image of the original size (N × N) is simply constructed by concatenating

the inversely transformed blocks horizontally and then vertically.
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Figure 1. Schematic diagram of proposed TMT–RGA-based compression method.

3. Computation of 2-D discrete orthogonal Tchebichef moment

While the Tchebichef moments are directly defined in the discrete domain, computation of them for higher

orders, particularly for large images, causes a numerical instability problem, which certainly affects the quality

of the reconstructed image to a significant extent. This instability problem has been circumvented by computing

the Tchebichef polynomial using the scaled-squared norm recurrence equations proposed by Mukundan [14,15].

For an image intensity distribution g(u, v) of an image of size N × N, the coefficients of i+ j order TMT are

computed from the scaled orthogonal Tchebichef polynomials ti(u)andtj(v) as:

Tij =
1

φ(i,N)φ(j,N)

N−1∑
u=0

N−1∑
v=0

ti(u)tj(v)g(u, v) i, j = 0, 1, 2, . . .N-1. (2)

The inverse moment transform for the exact reconstruction of the image is:

g(u, v) =
N−1∑
i=0

N−1∑
j=0

Tijti(u)tj(v) u, v = 0, 1, 2, . . .N-1, (3)

where:

ti(u) =
(2i− 1)t1(u)ti−1(u)− (i− 1)

(
1− (i−1)2

N2

)
ti−2(u)

i
(4)

where i = 2,3,4,. . .N-1.
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Similarly, tj(v) can be obtained from Eq. (4) by replacing the variables appropriately. The polynomials

ti(u) and tj(v) in Eq. (2) satisfy the recurrence formula given in Eq. (4). The initial conditions are given in

Eq. (5).

to(u) = to(v) = 1

t1(u) =
(2u−N+1)

N and t1(v) =
(2v−N+1)

N

(5)

The squared-norm ϕ(i,N)in Eq. (2) is expressed by:

ϕ(i,N) =
N

(
1− 1

N2

) (
1− 22

N2

)
...
(
1− i2

N2

)
2i+ 1

(6)

i = 0,1,2,. . .N-1.

Similarly, ϕ(j,N)in (2) can be obtained from Eq. (6) by replacing the variables appropriately.

For better compression applications, the Tchebichef moments Tij are optimized for the given compression

ratio by minimizing the MSE function using the RGA. The optimal Tchebichef moments are here denoted asT opt
pq .

The pixel intensity values of the reconstructed image are obtained from T opt
pq using Eq. (7).

g̃(u, v) =

N−1∑
i=0

N−1∑
j=0

T opt
ij ti(u)tj(v) (7)

4. Proposed compression algorithm

Figure 2 shows the flowchart of the proposed compression algorithm, which is explained as follows. The image

of size N × N that is to be compressed is input. The desired compression ratio (CR), the block size (n × n),

and the number of iterations are keyed in. The image is divided into nonoverlapping blocks of size n × n. The

pixel intensity values of a block are denoted as gb(u, v). The required number of coefficients (RNC) that are to

be selected from each block is calculated using Eq. (8).

RNC = Round

{(
1− CR

100

)
× n2

}
(8)

Then the Tchebichef polynomials ti(u) and tj(v) and square-norm φ(i,N) and φ(j,N) are computed for a

block of size (n × n) using Eqs. (4), (5), and (6). The blocks are processed horizontally from the topmost-left

one. The Tchebichef coefficients are computed using Eq. (2) for each block. Numbers of row and column blocks

are represented as NRB and NCB, respectively, and are determined by dividing the size of the square image

(N) by the size of the square block (n). The RNC is selected from each block using the RGA, the process of

which is discussed in detail in the next section. The optimal Tchebichef coefficients are denoted asT opt
ij . The

selection of coefficients by the RGA is shown using the subprogram symbol in the flowchart. Concatenation of

blocks with optimal coefficients is done horizontally and then vertically in order to represent the input image

in the transformed-compressed domain. During the process of decompression, the compressed image is again

block-processed, and then inverse TMT is performed for each block. Finally, the decompressed image of size N

× N is displayed by concatenating the blocks horizontally and vertically.
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5. Selection of optimum TMT coefficients

As the moments based on discrete polynomials exhibit a reasonable energy compaction for quite a few classes

of images, they are generally used for image compression applications. Conventionally, the TMT coefficients

are chosen sequentially downward to a certain order, based on the desired compression ratio. In general, it

was felt that only a few coefficients of moment transform yield a very high compression ratio and vice versa by

sacrificing the quality of reconstructed images [19]. However, if optimum coefficients are properly chosen, most

of the energy in an image will be concentrated on a relatively small number of moment transform coefficients.

Various components of the RGA are briefly explained in Section 5.1 as employed in this work to choose the

optimum TMT coefficients.

5.1. Real-coded genetic algorithm (RGA)

As the GA considers multiple points simultaneously during a genetic search, the chance of being trapped in the

local optimum is much less [25,26]. The generalized steps involved in a common optimization task using the GA

are as follows: 1) Possible solutions to the given problem are represented genetically. 2) Population of solutions

is created using an appropriate technique. 3) Fitness of the solution is rated using an evaluation function. 4)

During the process of reproduction, the genetic composition of the children that will be the parents for the next

generation is altered by parent selection mechanism and genetic operators. 5) Parameter values required for

the genetic algorithm are set specifically.

It has been well proven that for most of the constrained optimization problems, real-number encoding

yields the best performance in the sense that it always outperforms gray and binary encoding. Simulated binary

(SBX) crossover and nonuniform polynomial mutation considered for the reproduction process are adaptive and

are described in the following subsections [27,28].

6. Simulated binary crossover

Creation of two-offspring solutions from two parents in SBX crossover is achieved through the following equa-

tions.

βqk =


(2mk)

1
ηc+1 , mk ≤ 0.5(

1
2(1−mk)

) 1
ηc+1

, otherwise

(9)

Here, mk is a chosen random number in the interval [0, 1], and βqk and ηc are a spread factor and the crossover

index respectively. Eq. (10) computes the offspring z
(1,h+1)
k and z

(2,h+1)
k .

z
(1,h+1)
k = 0.5

[
(1 + βqk)z

(1,h)
k + (1− βqk)z

(2,h)
k

]
z
(2,h+1)
k = 0.5

[
(1− βqk)z

(1,h)
k + (1 + βqk)z

(2,h)
k

] (10)

7. Nonuniform polynomial mutation

Subsequent to SBX operation, a polynomial mutation operation is performed to generate new offspring using

the probability distribution function. If zUk is the upper and zLk is the lower limit value, the new offspring

y
(1,h+1)
k is derived using Eq. (11).

y
(1,h+1)
k = z

(1,h+1)
k + (zUk − zLk )δk (11)
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Figure 2. Flowchart of the proposed RGA-based compression algorithm.

Eq. (12) computes the parameter δk from P (δ).

P (δ) = 0.5(ηm + 1) (1− |δ|)ηm

δi =

{
(2vk)

1/(ηm+1) − 1, ifvk < 0.5

1− [2(1− vk)]
1/(ηm+1)

, ifvk ≥ 0.5

(12)

Here, ηm is the mutation index.

Parents are replaced by the newly generated offspring that become the population members for the

subsequent generation. These steps are repeated until the specified stopping criterion is satisfied.
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7.1. Selection of optimum TMT coefficients using RGA

The following steps are an elaborate description of the RGA-based procedure for selecting optimum coefficients

of TMT in order to yield a better quality reconstructed image without sacrificing the compression ratio.

Step 1: Input the desired compression ratio and block size.

Step 2: Calculate RNCs using Eq. (8).

Step 3: Compute TMT coefficients using Eq. (1) for a chosen block (gb(u, v)) of size n × n.

Step 4: Set the parameters required for genetic algorithm as follows. Number of variables to be optimized

= RNC, Number of runs = 10; Penalty factor = 1000; Lower bound value of the variables = 1; Upper bound

value of the variables = n2 ; Maximum number of function evaluations = 10,000; Population size = RNC ×
10; Crossover probability = 0.8; SBX crossover index = 5; Mutation index = 20; Mutation probability =

1/RNC.

Step 5: Create initial population of solutions.

Step 6: Evaluate the value of fitness function using the following steps.

Step 7: Sort the individuals (optimum locations) in an ascending order.

Step 8: Create an array of size 1 × n2 with all zeros.

Step 9: Replace the zeros in the above array by ‘1’ where the index of zeros equals the optimum locations

in the sorted array.

Step 10: Convert the resulted one-dimensional array of size 1 × n2 into a two-dimensional array of size

n × n so-called window.

Step 11: Perform element-by-element multiplication between the window and the block of TMT coeffi-

cients.

Step 12: Select parents required for reproduction using tournament selection mechanism.

Step 13: Perform SBX crossover between the selected parents and apply polynomial mutation in order

to produce children that are the population for the next generation.

Step 14: Repeat steps 6–13 until the maximum number of function evaluations is completed.

Step 15: Perform inverse TMT using Eq. (7) to get g̃b(u, v).

Step 16: Repeat steps 3 to 15 for the subsequent blocks.

8. Results and discussion

Various benchmark images of different sizes were subjected to the proposed compression method to prove its

performance. The images, namely Lena and Baboon of size 128 × 128 and Lady and House of size 256 × 256,

are considered in this study. These images were obtained from the University of Southern California Signal

and Image Processing Institute (USC-SIPI) [29]. The quality measures that numerically quantify the fidelity of

the reconstructed image, MSE and PSNR (dB), are computed using Eqs. (13) and (14), respectively, for three

different compression ratios (50%, 75%, and 87.5%) in order to precisely assess the performance of the proposed

method.

MSE =
1

N2

N−1∑
u=0

N−1∑
v=0

(g(u, v)− g̃(u, v))
2

(13)
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PSNR(dB) = 10 log10

 2552

1
N2

N−1∑
u=0

N−1∑
v=0

(g(u, v)− g̃(u, v))
2

 (14)

To find the optimal TMT coefficients of the chosen block, the RGA-based optimization method is employed

owing to its simplicity and effectiveness. The number of iterations required for the algorithm is set as 10. In

order to compare the performance of the proposed evolutionary selection method (ESM) on the compression

application, the sequential selection method (SSM) [19] and random selection method (RSM) [24] have been

considered. MATLAB codes were developed for the proposed algorithm and executed. To prove the consistency

of the RGA, for each block of the input image, the optimal moment coefficients were selected from the best 10

independent trials.

Having chosen the block size as 4 × 4 and 8 × 8, the performance measures were computed for both

the algorithms. The results are given in Tables 1 and 2, respectively, for all the chosen images of size 128 ×
128 and 256 × 256. The MSE and PSNR values indicate that the proposed algorithm performs better than

the sequential selection algorithm and random optimization method. The ability of the presented algorithm is

high in selecting optimum moment transform coefficients as compared to the other methods irrespective of the

size of the images and block size chosen.

Table 1. Results of proposed algorithm and recently reported methods for the images of size 128 × 128.

Image size 128 × 128

Block size 4 × 4 8 × 8

CR (%) 50 75 87.5 50 75 87.5

SSM

Lena
MSE 23.94 86.93 115.83 21.96 74.50 177.16

PSNR (dB) 34.33 28.74 27.49 34.71 29.41 25.65

Baboon
MSE 25.33 67.04 79.09 24.10 62.26 111.07

PSNR (dB) 34.10 29.87 29.15 34.31 30.19 27.68

RSM [24]

Lena
MSE 13.36 49.96 102.61 36.29 100.23 172.22

PSNR (dB) 36.87 31.14 28.02 32.53 28.12 25.77

Baboon
MSE 9.19 31.03 58.89 58.89 23.19 57.37

PSNR (dB) 38.50 33.21 30.43 30.43 34.48 30.54

ESM

Lena
MSE 5.38 30.16 91.19 12.21 24.98 55.07

PSNR (dB) 40.82 33.34 28.53 37.27 34.16 30.72

Baboon
MSE 4.44 20.54 52.94 9.98 18.20 36.46

PSNR (dB) 41.66 35.01 30.89 38.14 35.53 32.51

Though the sequential selection method and random optimization method had shorter computation time,

they may perhaps lack the ability of minimizing the MSE to the level attained by the proposed RGA based

technique. Since the optimization was not carried out online, the proposed method is not sluggish in relation

to the task of selecting the optimal TMT coefficients.

The reconstructed images of various sizes of the proposed method and sequential selection method are

shown in Figures 3 and 4.
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Figure 3. Reconstructed Lena and Baboon images (128 × 128) of proposed and sequential methods for the block size

4 × 4.

In spite of the fact that all the methods indeed compress the input images to a desirable extent, both the

visual quality of the images shown in Figures 3 and 4 and the performance measures given in Tables 1 and 2

strongly confirm that the proposed algorithm outperforms the sequential selection-based method and random
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selection method for all the chosen images. The percentage reduction in the MSE and percentage increase in

the PSNR values, computed using Eqs. (15) and (16), of the proposed method over the other methods are given

in Tables 3 and 4, respectively. This substantial reduction in MSE and the appreciable increase in the PSNR

values certainly show that the proposed method globally ameliorates the quality of the reconstructed images

for the compression ratios of 50%, 75%, and 87.5%.

Figure 4. Reconstructed Lady and House images (256 × 256) of proposed and sequential methods for the block size

4 × 4.
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Table 2. Results of proposed algorithm and recently reported methods for the images of size 256 × 256.

Image size 256 × 256
Block size 4 × 4 8 × 8
CR (%) 50 75 87.5 50 75 87.5

SSM

Lady
MSE 7.30 30.67 39.35 5.65 21.71 85.71
PSNR (dB) 39.50 33.26 32.18 40.61 34.76 28.80

House
MSE 22.79 61.60 67.54 16.02 53.59 119.41
PSNR (dB) 34.55 30.23 29.84 36.08 30.84 27.36

RSM [24]

Lady
MSE 1.51 9.07 30.98 5.38 25.66 62.71
PSNR (dB) 46.35 38.55 33.22 40.82 34.04 30.16

House
MSE 2.37 14.98 43.19 8.68 37.75 69.12
PSNR (dB) 44.39 36.38 31.78 38.75 32.36 29.73

ESM

Lady
MSE 0.67 3.72 21.72 1.61 3.20 7.71
PSNR (dB) 49.87 42.43 34.76 46.05 43.09 39.26

House
MSE 0.87 6.31 34.88 2.24 4.55 12.26
PSNR (dB) 48.72 40.13 32.71 44.64 41.55 37.25

Table 3. Percentage reduction in the MSE of the proposed method over the other methods.

Block size CR (%)

Percentage reduction in the MSE of ESM
Over SSM Over RSM [24]
128 × 128 256 × 256 128 × 128 256 × 256
Lena Baboon Lady House Lena Baboon Lady House

4 × 4

50 77.53 82.47 90.82 96.18 59.73 51.69 55.63 63.29
75 65.31 69.36 87.87 89.76 39.63 33.81 58.99 57.88
87.5 21.27 33.06 44.80 48.36 11.13 10.10 29.89 19.24

8 × 8

50 44.40 58.59 71.50 86.02 66.35 83.05 70.07 74.19
75 66.47 70.77 85.26 91.51 75.08 21.52 87.53 87.95
87.5 68.92 67.17 91.01 89.73 68.02 36.45 87.71 82.26

Table 4. Percentage increase in the PSNR of the proposed method over the other methods.

Block size CR (%)

Percentage increase in the PSNR of ESM
Over SSM Over RSM [24]
128 × 128 256 × 256 128 × 128 256 × 256
Lena Baboon Lady House Lena Baboon Lady House

4 × 4

50 15.90 18.15 20.79 29.09 9.68 7.59 7.06 8.89
75 13.80 14.68 21.61 24.67 6.60 5.14 9.15 9.35
87.5 3.65 5.63 7.42 8.77 1.79 1.49 4.43 2.84

8 × 8

50 6.87 10.04 11.81 19.18 12.72 20.22 11.36 13.19
75 13.91 15.03 19.33 25.78 17.68 2.96 21.00 22.12
87.5 16.50 14.86 26.64 26.55 16.11 6.06 23.18 20.19

PercentagereductioninMSE =
MSE(othermehod)−MSE(proposed)

MSE(othermehod)
× 100 (15)

PercentageincreaseinPSNR =
PSNR(proposed)− PSNR(othermehod)

PSNR(proposed)
× 100 (16)

The quality measure that portrays human visual perception, the mean structural similarity (MSSIM) index,

has also been computed using the algorithm given in [30] for the three methods, namely SSM, RSM, and ESM,
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and is given in Table 5. It is observed that the standard conventional metrics such as MSE and PSNR are

also inconsistent with the MSSIM for assessing the image quality information. The computed values of MSSIM

revealed that the proposed method outperforms others for different block sizes and compression ratios.

Table 5. A comparison of MSSIM of the proposed method over the reported methods.

Image Block size

MSSIM
SSM RSM [24] ESM
Compression ratio (%) Compression ratio (%) Compression ratio (%)
50 75 50 50 75 87.5 50 75 87.5

Lena (128 × 128)
4 0.9505 0.8406 0.7778 0.9697 0.8975 0.7977 0.9861 0.9330 0.8232
8 0.9013 0.7462 0.6201 0.9044 0.7792 0.6671 0.9625 0.9225 0.8554

Baboon (128 × 128)
4 0.9023 0.7355 0.6781 0.9609 0.8638 0.7129 0.9788 0.9050 0.7707
8 0.9041 0.7451 0.5865 0.9011 0.7604 0.6277 0.9530 0.9084 0.8212

Lady (256 × 256)
4 0.9750 0.9167 0.8903 0.9881 0.9552 0.8952 0.9934 0.9721 0.9175
8 0.9718 0.9216 0.8365 0.9650 0.8855 0.7972 0.9853 0.9728 0.9458

House (256 × 256)
4 0.9211 0.8321 0.8111 0.9834 0.9377 0.8711 0.9915 0.9597 0.8905
8 0.9190 0.8284 0.7336 0.9507 0.8622 0.7934 0.9806 0.9633 0.9235

9. Conclusions

The evolutionary optimization-based compression scheme certainly improves the efficiency of the orthogonal

moments-based conventional compression technique to a reasonable extent. The proposed algorithm that utilized

optimally selected TMT coefficients was found to be quite suitable for the compression of varied sizes of images.

Optimal TMT coefficients required for compressing the images, namely Lena, Baboon, Lady, and House, were

obtained using the RGA. The proposed compression technique was simulated using MATLAB codes and it

yielded satisfactory results. In this work, the RGA method for selecting optimum TMT coefficients does its job

phenomenally by numerically minimizing the objective function. The results of the earlier reported methods

of other researchers were compared with the results of the evolutionary-based compression method. It was

well affirmed that for all the chosen images, the proposed compression method consistently produces better

results than the TMT-based traditional compression methods reported by Zhu et al. and Abu et al. Also,

the proposed evolutionary optimization-based method performs better than the random optimization method.

The proposed compression algorithm will certainly save the memory requirement to a greater extent when

multiple classes of images are stored and analyzed in a common image database. Since the basis functions

of discrete TMT and discrete cosine transform are orthogonal, the former can be straightforwardly deployed

instead of the latter in the JPEG baseline technique. In order to achieve improved compression performance

of international compression standard JPEG, the 4 × 4 block TMT coefficients selected using the proposed

method would be quantized and coded using Huffman tables as recommended in JPEG standards and then

stored so that the header information during the compression process can be uniquely decoded during the

decompression process. Appropriately incorporating the minimal changes in the present algorithm and using

a multicore digital processor can offer an efficient online compression engine for multimedia applications. It is

worth mentioning that this method is applicable not only to the images that were chosen in this study but also

for others possessing wide spectral variations of any nature, and for any desired compression ratio. This method

is inherently slow when compared with the sequential selection method conventionally employed for moments-

based compression because, for the desired compression ratio, quite a few iterations are to be inevitably elapsed

to select the optimum TMT coefficients from each block in order to have a higher value of the PSNR, but its

simplicity, versatility, and effective compression ability will undoubtedly attract end-users. The use of high-
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speed digital processors in a grid computing system to select the optimal TMT coefficients hopefully justifies

the real-time implementation of the proposed compression method.
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