Diego Marques

FIBONOMIAL COEFFICIENTS AT MOST ONE AWAY FROM FIBONACCI NUMBERS

Abstract. Let F_n be the nth Fibonacci number. For $1 \leq k \leq m$, let
\[
\left[\begin{array}{c} m \\ k \end{array} \right]_F = \frac{F_m F_{m-1} \cdots F_{m-k+1}}{F_1 \cdots F_k}
\]
be the corresponding Fibonomial coefficient. It is known that $\left[\begin{array}{c} m \\ k \end{array} \right]_F$ is a Fibonacci number if and only if either $k = 1$ or $m \in \{k, k + 1\}$. In this note, we find all solutions of the Diophantine equation
\[
\left[\begin{array}{c} m \\ k \end{array} \right]_F \pm 1 = F_n.
\]

1. Introduction

Let $(F_n)_{n \geq 0}$ be the Fibonacci sequence given by $F_0 = 0$ and $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$, for $n \geq 1$. The first few terms of this sequence are $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$.

The problem of the existence of infinitely many prime numbers in the Fibonacci sequence remains open, however several results on the prime factors of a Fibonacci number are known. For instance, a primitive divisor p of F_n is a prime factor of F_n which does not divide $\prod_{j=1}^{n-1} F_j$. It is known that a primitive divisor p of F_n exists whenever $n \geq 13$. The above statement is usually referred to the Primitive Divisor Theorem (see [1] for the most general version).

The Fibonomial coefficient $\left[\begin{array}{c} m \\ k \end{array} \right]_F$ is defined, for $1 \leq k \leq m$, by replacing each integer appearing in the numerator and denominator of $\left(\begin{array}{c} m \\ k \end{array} \right) = \frac{m(m-1) \cdots (m-k+1)}{k(k-1) \cdots 1}$ with its respective Fibonacci number. That is
\[
\left[\begin{array}{c} m \\ k \end{array} \right]_F = \frac{F_m F_{m-1} \cdots F_{m-k+1}}{F_1 \cdots F_k}.
\]

It is surprising that this quantity will always take integer values. This

\textit{2000 Mathematics Subject Classification:} Primary 11Dxx; Secondary 11B39.

\textit{Key words and phrases:} Diophantine equation, Fibonacci, Lucas.
can be shown by an induction argument and the recursion formula
\[
\begin{bmatrix} m \\ k \end{bmatrix}_F = F_{k+1} \begin{bmatrix} m-1 \\ k \end{bmatrix}_F + F_{m-k-1} \begin{bmatrix} m-1 \\ k-1 \end{bmatrix}_F,
\]
which is a consequence of the formula \(F_m = F_{k+1}F_{m-k} + F_kF_{m-k-1} \).

As an application of the Primitive Divisor Theorem, it is immediate that if \(\begin{bmatrix} m \\ k \end{bmatrix}_F = F_n \), then \(\max\{m, n\} < 13 \). Hence, assuming that \(m-1 > k > 1 \) a quick computation reveals that there are no solutions for the previous Diophantine equation in that obtained range.

In this paper, we find all Fibonomial coefficients at most one away from a Fibonacci number. Our result is the following

Theorem 1. The solutions of the Diophantine equation
\[
\begin{bmatrix} m \\ k \end{bmatrix}_F \pm 1 = F_n
\]
with \(m-1 \geq k > 1 \), are \((m, k, n) = (3, 2, 4) \) and \((m, k, n) = (3, 2, 1), (3, 2, 2), (4, 2, 5), (4, 3, 3) \) according to whether the sign is + or −, respectively.

2. The proof of Theorem

2.1. Auxiliary results. The sequence of the Lucas numbers is defined by \(L_{n+1} = L_n + L_{n-1} \), with \(L_0 = 2 \) and \(L_1 = 1 \). Let us state some interesting and helpful facts which will be essential ingredients in what follows.

Let \(\alpha = (1 + \sqrt{5})/2 \) and \(\beta = (1 - \sqrt{5})/2 \). For all \(n \geq 1 \), we have
\begin{enumerate}
 \item [(L1)] \(F_{2n} = F_nL_n \);
 \item [(L2)] (Binet’s formulae) \(F_n = \alpha^n - \beta^n \) and \(L_n = \alpha^n + \beta^n \);
 \item [(L3)] \(\alpha^{n-2} \leq F_n \leq \alpha^{n-1} \).
\end{enumerate}

We may note that the Fibonacci and Lucas sequences can be extrapolated backwards using \(F_n = F_{n+2} - F_{n+1} \) and \(L_n = L_{n+2} - L_{n+1} \). Thus, for example, \(F_{-1} = 1, F_{-2} = -1 \), and so on. Furthermore, Binet’s formulae (L2) remain valid for Fibonacci and Lucas numbers with negative indices, and they allow us to show that

Lemma 1. For any integers \(a, b \), we have
\[
F_aL_b = F_{a+b} + (-1)^bF_{a-b}.
\]

Proof. Since \(\alpha = (-\beta)^{-1} \) and thus \(\beta = (-\alpha)^{-1} \), we have
\[
F_aL_b = \frac{\alpha^a - \beta^a}{\alpha - \beta} (\alpha^b + \beta^b) = F_{a+b} + \frac{\alpha^a\beta^b - \beta^a\alpha^b}{\alpha - \beta} = F_{a+b} + (-1)^bF_{a-b}. \]

As a consequence of the previous lemma, a straight calculation gives a different factorization for \(F_n \pm 1 \) depending on the class of \(n \) modulo 4:
2.2. The proof. For \(1 \leq n \leq 8\), a quick computation reveals that the only solutions are those in the statement of the theorem. So, let us assume that \(n > 8\).

The equation (1) can be rewritten as \([m/k]_F = F_n + 1\). By the relations in (2), we have eight possibilities for this Diophantine equation (again depending on the class of \(n\) modulo 4): For the (+) case

\[
\begin{align*}
[m]_F &= F_{2\ell+1}L_{2\ell-1} ; \\
[k]_F &= F_{2\ell}L_{2\ell+1} \\
[m]_F &= F_{2\ell+2}L_{2\ell} ; \\
[k]_F &= F_{2\ell+1}L_{2\ell+2}
\end{align*}
\]

and the (-) case

\[
\begin{align*}
[m]_F &= F_{2\ell-1}L_{2\ell+1} ; \\
[k]_F &= F_{2\ell+1}L_{2\ell} \\
[m]_F &= F_{2\ell+2}L_{2\ell} ; \\
[k]_F &= F_{2\ell+1}L_{2\ell+2}.
\end{align*}
\]

We shall work only on the first equation in the left-hand side of (3) (the other ones can be handled in much the same way). Let us assume that \(m \geq \max\{14, k+1\}\). Thus, we have

\[
F_m \cdots F_{m-k+1} = F_{2\ell+1}L_{2\ell-1}F_1 \cdots F_k.
\]

Since \(L_{2\ell-1} = F_{4\ell-2}/F_{2\ell-1}\) (see (L1)), we get

\[
F_m \cdots F_{m-k+1}F_{2\ell-1} = F_{2\ell+1}F_{4\ell-2}F_1 \cdots F_k.
\]

However \(4\ell - 2 > 2\ell + 1\), since \(\ell = \lfloor n/4 \rfloor > 2\), and then the Primitive Divisor Theorem yields \(m = 4\ell - 2\). Thus, the identity (6) becomes

\[
F_{m-1} \cdots F_{m-k+1}F_{2\ell-1} = F_{2\ell+1}F_1 \cdots F_k.
\]

Since \(m-1 \geq 13\), we can use again the Primitive Divisor Theorem to get \(m - 1 = \max\{2\ell + 1, k\}\). However \(m - 1 = 4\ell - 3 > 2\ell + 1\) and therefore \(m - 1 = k\) and (7) becomes \(F_{2\ell-1} = F_{2\ell+1}\) which is an absurd.

So, we only need to consider the range \(2 \leq k \leq 10\) and \(k + 2 \leq m \leq 12\). By using (L3) we get

\[
\left(\frac{F_m}{F_1}\right) < \alpha^{m-1} \text{ and } \left(\frac{F_{m-t}}{F_{t+1}}\right) < \alpha^{m-2t}, \text{ for } 1 \leq t \leq k - 1.
\]
Therefore, we have

\[
\binom{m}{k}_F \leq \alpha^{m-1+m-2+\cdots+m-2(k-1)} = \alpha^{m-1+(m-k)(k-1)} \\
\leq \alpha^{43} < 9.7 \times 10^8 - 1.
\]

Thus \(F_n \leq \binom{m}{k}_F + 1 < 9.7 \times 10^8 \) and then \(n < 40 \).

We have written a simple program in Mathematica to see that in the obtained range \(2 \leq k \leq m - 1 \leq 10 \) and \(9 \leq n \leq 39 \) there is no further solution. Thus we have our desired result. Explicitly, \(\binom{3}{2}_F + 1 = F_4, \) \(\binom{3}{2}_F - 1 = F_1 = F_2, \) \(\binom{4}{2}_F - 1 = F_5 \) and \(\binom{4}{3}_F - 1 = F_3. \) \(\blacksquare \)

We finish by pointing out that the same method can be applied to provide all solutions of \(\binom{m}{k}_F + 1 = F_n^2. \) In fact, if \(n > 2 \), we have \(\binom{4}{2}_F + 1 = F_3^2, \) \(\binom{6}{5}_F + 1 = F_4^2, \) as the only such solutions. The useful fact here is that \(F_n^2 - 1 \) can be factored as \((F_n - 1)(F_n + 1)\) and thus we can use the formulas in (2).

Acknowledgement. The author is grateful to FEMAT for the financial support. He also would like to thank the anonymous referee for carefully examining this paper and providing it a number of important comments.

References