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1 Introduction

The aim of this article is to present the software CCOP—Connection
Coef f icients for Orthogonal Polynomials written in Mathematica® language
(version 8), and some new formulas for the connection coefficients (in the
sequel indicated as CC) obtained by mean of this implementation. The soft-
ware CCOP is available in the library Numeralgo of Netlib (http://www.
netlib.org/numeralgo/) as na34 package. All the explanations concerning the
programming of the commands have been inserted in the tutorial provided
with the package. This software has already produced the results presented
in [14, 15] for obtaining closed formulas for the CC between two orthogonal
polynomials sequences, or between the canonical sequence and an orthogonal
one. In this work, we follow the same methodology employed in [14, 15], which
is based on symbolic computations, verifications and demonstrations, and we
explore a new topic on automatic proofs.

We proceed with the simplest method based only on the recurrence relation
fulfilled by any orthogonal sequence, which leads to a general recurrence rela-
tion with two indexes satisfied by the CC. The implementation of this relation
allows always the recursive computation of the first CC up to a certain order.
The capabilities of simplification and factorization of Mathematica® are crucial
to get these coefficients written in a convenient form that enable us to infer
the corresponding closed formulas. This task is not always possible and could
be more or less difficult depending on the complexity of the examples. For
many families the recurrence coefficients are factorized polynomial or rational
functions in n. So the Mathematica® algebraic manipulation commands work
pretty well. This software is mostly intended for those cases. If we identify the
model for the closed formulas, then they can be translated in Mathematica®

commands and we can easily verify the first results obtained. The final goal of
the work is to provide a demonstration of the fact that the closed formulas
are really true, that is, the model is a solution of the general recurrence
relation. In principle, this demonstration can also be achieved uniquely by
implementation depending on the success of the simplifications abilities of
Mathematica®. When this is not possible, we can always try the procedures
employed in [14, 15] doing only a part of the demonstration with the help of
that symbolic language.

We would like to refer the Navima software [2, 3, 7, 16] which implements a
similar recursive approach to connection problems in Mathematica®. Navima
algorithm generates in a systematic way a linear recurrence relation in one
index only, using some additional proprieties of the orthogonal families, like
structure relations or differential equations among others. Then that recur-
rence relation is solved in the following way: computation of the first few
CC from the recurrence in order to guess its general expression; afterwards,
Navima verify by substitution that this guess satisfies the recurrence relation [3,
pp. 768 and 773]. In the present work, any specified character of the sequences
like classical, semi-classical or other (which is translated by structure relations,
differential equations or others proprieties) are not directly employed, the

Author's personal copy



Numer Algor

general recurrence relation that we use is based only on the orthogonality of
the sequences. Concerning expansion of multivariable polynomials with some
applications to connection problems following the Navima principles see [17].
Other recursive methods to compute recurrence relations for the connection
coefficients are also considered in [8, 9] and a computer algebra based method
using Zeilberger’s algorithm was proposed in [11] taking into account several
structure formulas of the classical systems. See also [5] with a implementation
in Maple™.

We remark the fact that the mathematical literature on this subject is
extremely vast and a wide variety of methods have been developed using
several other techniques. The reader can find some of the main references
in [15]. Furthermore, nowadays, there are symbolic implementations in the
domain of orthogonal polynomials. We refer, in particular, to the package
CAOP [10] for calculating formulas for orthogonal polynomials belonging to
the Askey scheme by Maple™ and available on internet.

Let us present the summary of this work. In Section 2 we recall the basic
definitions and mathematical results needed to understand the subject, and in
Section 3, we present briefly the main commands of CCOP giving their names
and a small description. The commands corresponding to the symmetrical case
and the ones concerning the cases of Sections 5.2.1 and 5.2.2, that need a
specific treatment, are considered directly in the package.

Section 4 is dedicated to the presentation of a very simple test example:
the Charlier polynomials. We follow all the steps of the methodology giving
the implementation and the results. Other test examples can be found in
the software, namely the cases of the canonical polynomials in terms of the
Laguerre ones and the symmetric generalized Hermite family.

In the last but one section, we present some examples of CC derived with
our method corresponding to a symmetric semi-classical of class 1 sequence
and two non-symmetric semi-classical of class 1 families. All these cases are
included in the software. The formulas corresponding to these last examples
are new.

We would like to recall that we have already tested this methodology in the
cases of Laguerre and Bessel [14], Gegenbauer and Jacobi [15], generalized
Hermite [14] (see also the tutorial), and, also, with other semi-classical of class
1 example [15]. We believe that this method allows to explore other cases and
derive new closed formulas for CC.

Conclusions and commentaries on the work presented here and in [14, 15]
end the paper.

2 Connection coefficients for orthogonal polynomials

Let P be the vector space of polynomials with coefficients in C and let P ′
be its dual. We denote by 〈u, p〉 the effect of u ∈ P ′ on p ∈ P . In particular,
〈u, xn〉 := (u)n , n � 0 represent the moments of u.
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Let {Pn}n�0 be a monic polynomial sequence (MPS) with deg Pn = n, n ≥ 0,
that is, Pn(x) = xn + .... A form u is said regular [12, 13] if and only if there
exists a MPS {Pn}n�0, such that:

〈u, Pn Pm〉 = 0 , n �= m , n, m ≥ 0 , (1)
〈
u, P2

n

〉 �= 0 , n ≥ 0 . (2)

In this case, {Pn}n�0 is said regularly orthogonal with respect to u and is
called a monic orthogonal polynomial sequence (MOPS). The orthogonality
conditions are given by (1) and (2) corresponds to the regularity conditions.

The sequence {Pn}n�0 is regularly orthogonal with respect to u if and only
if [12, 13] there exist two sequences of coefficients {βn}n�0 and {γn+1}n�0, with
γn+1 �= 0, n � 0, such that, {Pn}n�0 satisfies the following initial conditions and
recurrence relation of order 2:

P0(x) = 1, P1(x) = x − β0, (3)

Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1 Pn(x), n � 2. (4)

Furthermore, the recurrence coefficients {βn}n�0 and {γn+1}n�0 satisfy:

βn =
〈
u, xP2

n(x)
〉

〈
u, P2

n(x)
〉 , n � 0,

γn+1 =
〈
u, P2

n+1(x)
〉

〈
u, P2

n(x)
〉 , n � 0. (5)

We remark that, from (3) and (5), the regularity conditions (2) are equiva-
lent to the conditions γn+1 �= 0, n � 0.

As usual, we suppose that

βn = 0, γn+1 = 0, Pn(x) = 0, n < 0.

A form u is said symmetric if and only if (u)2n+1 = 0, n ≥ 0. A polynomial
sequence, {Pn}n�0, is said symmetric if and only if Pn(−x)=(−1)n Pn(x), n�0.

Let {Pn}n�0 be a MOPS with respect to u. The following statements are
equivalent [6]:

(a) u is symmetric.
(b) {Pn}n�0 is symmetric.
(c) βn = 0, n � 0.

The canonical sequence {Xn}n�0, Xn(x) = xn, is orthogonal with respect
to the Dirac measure δ0, 〈δ0, f 〉 = f (0), defined by the moments (δ0)n =
δ0,n, n � 0, where δ is the Dirac symbol. This sequence is not regularly
orthogonal, since its recurrence coefficients are

βn = 0 , γn+1 = 0 , n � 0 .
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Given two MPS {Pn}n�0 and {P̃n}n�0 the coefficients that satisfy the equality

Pn(x) =
n∑

m=0

λn,m P̃m(x), n � 0, (6)

are called the CC: λn,m := λPP̃
n,m := λn,m(P ← P̃).

It is obvious that these coefficients exist and are unique, because the
polynomials are linearly independent.

Let us suppose that the two monic polynomial sequences {Pn}n�0 and
{P̃n}n�0 are orthogonal and are given by their recurrence coefficients {βn}n�0,
{γn+1}n�0 and {β̃n}n�0, {γ̃n+1}n�0, respectively, let us consider the problem of
computing and determining closed formulas for the CC.

As demonstrated in [14, 15], the CC fulfill the following boundary and initial
conditions and general recurrence relation

λn,m = 0 , n < 0 or m < 0 or m > n , (7)

λn,n = 1 , n � 0 , (8)

λ1,0 = β̃0 − β0 , (9)

λn,m =
(
β̃m − βn−1

)
λn−1,m − γn−1λn−2,m + γ̃m+1λn−1,m+1 + λn−1,m−1, (10)

0 � m � n − 1 , n � 2 .

All the work developed in this article is based on this recurrence relation.
If {Pn}n≥0 and {P̃n}n≥0 are symmetric, then

λ2n−1,2m = 0 , λ2n,2m+1 = 0 , 0 � m � n − 1 , n � 1 ,

and the relation (10) is equivalent to

λ2n,2m = γ̃2m+1λ2n−1,2m+1 + λ2n−1,2m−1 − γ2n−1λ2n−2,2m ,

λ2n+1,2m+1 = γ̃2m+2λ2n,2m+2 + λ2n,2m − γ2nλ2n−1,2m+1 ,

0 � m � n − 1 , n � 1 .

3 Commands for symbolic computation of connection coefficients

In this section, we furnish a list with the description of the main com-
mands implemented in the software CCOP: CC, MOP, verificationRCC,
verificationDCC and demonstrationDCC.

• CC [rc, rct][p][pt][n, m]
CC computes recursively the connection coefficient λn,m := λn,m(P ← P̃)

defined in (6), using the conditions (7)–(9) and the recurrence relation
(10).
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• MOP [rc][p][n, x]
MOP computes recursively the monic orthogonal polynomial Pn(x) of
degree n in the variable x using the initial conditions (2) and the recurrence
relation (3).

• verificationRCC [rc, rct][p][pt][nmax]
verif icationRCC makes a verification of the first connection coefficients
λn,m := λn,m(P ← P̃) computed recursively by the CC command up to an
index n = nmax. verif icationRCC is based on the definition (6) of the
connection coefficients.

• verificationDCC [dcc][rc, rct][p][pt][nmax]
verif icationDCC makes a comparison between the values of the connec-
tion coefficients λn,m := λn,m(P ← P̃) computed by the CC command and
the ones computed using direct closed formulas, this, up to the index
n = nmax.

• demonstrationDCC [dcc][rc, rct][p][pt][n, m]
demonstrationDCC tries to demonstrate the direct closed formulas for the
connection coefficients λn,m := λn,m(P ← P̃) for every integers n and m
such that 0 � m � n − 1, n � 1.

• Arguments rc, rct, p, pt and dcc of the preceding commands.

– rc and rct are the names of the commands that define the recurrence
coefficients {βn, γn} and {β̃n, γ̃n} of the two polynomials sequences P
and P̃ with parameters p and pt respectively.

– dcc is the name of the command that implements the direct closed
formulas for the connection coefficients.

4 A complete case study

Let us see how the commands we have developed work and what results they
produce in the simple case of the classical discrete monic Charlier polynomials
{Pn(α, .)}n≥0 with parameter α [6]. The Charlier recurrence coefficients

βn(α) = n + α , n ≥ 0 ; γn(α) = nα , n ≥ 1 , α �= 0 ,

are implement in the following command.

CharlierC[α_][n_] := CharlierC[α][n] =
If [ And[NumericQ[n], n < 0], Return[{0, 0}], Return[{n + α, α ∗ n}] ];

The monic Charlier polynomials are defined, using the MOP command, by

CharlierP[α_][n_, x_] := CharlierP[α][n, x] = MOP[CharlierC][α][n, x];
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The connection coefficients λn,m := λn,m(P(α; −) ← P(α̃; −)) are computed
recursively up to n = 6, for example, by the next calling statement of the CC
command.

In[ ] := Table[ CC[CharlierC, CharlierC][α][α̃][n, m], {n, 0, 6}, {m, 0, n} ]//
TableForm

Out[ ]//TableForm =
1
−α + α̃ 1
(α − α̃)2 −2(α − α̃) 1
−(α − α̃)3 3(α − α̃)2 −3(α − α̃) 1
(α − α̃)4 −4(α − α̃)3 6(α − α̃)2 −4(α − α̃) 1
−(α − α̃)5 5(α − α̃)4 −10(α − α̃)3 10(α − α̃)2 −5(α − α̃) 1
(α − α̃)6 −6(α − α̃)5 15(α − α̃)4 −20(α − α̃)3 15(α − α̃)2 −6(α − α̃) 1

Now, we can verify these results and the next ones up to nmax = 20, for
example, calling

In[ ] := Timing[ verif icationRCC[CharlierC, CharlierC][α, α̃][20] ]
and we get the answer

Out[ ] = {75.0289, True}
Note that the Mathematica® command Timing[expr] evaluates expr and

returns a list of the time in seconds used, together with the result obtained.
The observation of the above results getting by the CC commands allows us

to infer the following direct closed formula for the connection coefficients

λn,m = (−1)n−m
(

n
m

)
(α − α̃)n−m, 0 ≤ m ≤ n − 1, n ≥ 1 , (11)

which can be implement in a command as follows

CharlierDCC[α_][αt_][n_, m_] :=
(−1)ˆ(n − m) ∗ Binomial[n, m] ∗ (α − αt)ˆ(n − m);

In order to compare the results given by this command with those produced
by CC up to nmax = 20, for example, we do

In[ ] := Timing[ verif icationDCC[CharlierDCC]
[CharlierC, CharlierC][α][α̃][20] ]

Out[ ] = {0.009881, True}
The automatic demonstration of the formula (11) is achieved in Mathematica®

doing

In[ ]:=Timing[
demonstrationDCC[CharlierDCC][CharlierC, CharlierC][α][α̃][n, m] ]

Out[ ] = {0.36858, True}
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We recall that the formula (11) is well known and can be found in several
references; see, among others, [2, 9].

5 Some results obtained

In this section, we present closed formulas for the connection coefficients
obtained by mean of our methodology for some cases of symmetric and
non-symmetric semi-classical of class 1 orthogonal families. The formulas
corresponding to the non-symmetric cases are new.

5.1 Symmetric semi-classical of class 1 case

Let us consider a symmetric semi-classical of class 1 sequence given in [1,
p. 317] and also in [6, p. 156]. The recurrence coefficients are

βn = 0 , (12)

γ2n+1 = (n + β + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
, (13)

γ2n+2 = (n + 1)(n + α + 1)

(2n + α + β + 2)(2n + α + β + 3)
, (14)

for n ≥ 0, with the regularity conditions α �= −(n + 1), β �= −(n + 1), α + β �=
−(n + 1), n ≥ 0.

In the sequel, first we present the CC with respect to the canonical sequence,
afterward we furnish the CC corresponding to the change of only one parame-
ter and at last we consider the change of the two parameters.

Proposition 5.1 The λn,m := λn,m(P(α, β; −) ← X) corresponding to (12)–(14)
are given by

λ2n,2m = (−1)n+m
(

n
m

) ∏n
k=m+1(β + k)

∏2n
k=n+m+1(α + β + k)

,

λ2n+1,2m+1 = (−1)n+m
(

n
m

) ∏n+1
k=m+2(β + k)

∏2n+1
k=n+m+2(α + β + k)

,

for 0 ≤ m ≤ n, n ≥ 0.

Proposition 5.2 The λn,m := λn,m(X ← P(α̃, β̃; −)) corresponding to (12)–(14)
are given by

λ2n,2m =
(

n
m

) ∏n
k=m+1(β̃ + k)

∏n+m+1
k=2m+2(α̃ + β̃ + k)

,
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λ2n+1,2m+1 =
(

n
m

) ∏n+1
k=m+2(β̃ + k)

∏n+m+2
k=2m+3(α̃ + β̃ + k)

,

for 0 ≤ m ≤ n, n ≥ 0.

Proposition 5.3 The λn,m := λn,m(α, β; α̃, β) = λn,m(P(α, β; −) ← P(α̃, β; −))

corresponding to (12)–(14) are given by

λ2n,2m(α, β; α̃, β) =
(

n
m

) ∏n
k=m+1(β + k)

∏n−m−1
k=0 (α − α̃ + k)

∏2n
k=n+m+1(α + β + k)

∏n+m+1
k=2m+2(α̃ + β + k)

,

λ2n+1,2m+1(α, β; α̃, β) =
(

n
m

) ∏n+1
k=m+2(β + k)

∏n−m−1
k=0 (α − α̃ + k)

∏2n+1
k=n+m+2(α + β + k)

∏n+m+2
k=2m+3(α̃ + β + k)

,

for 0 ≤ m ≤ n, n ≥ 0.

Proposition 5.4 The λn,m := λn,m(α, β; α, β̃) = λn,m(P(α, β; −) ← P(α, β̃; −))

corresponding to (12)–(14) are given by

λ2n,2m(α, β; α, β̃)=(−1)n+m
(

n
m

) ∏n
k=m+1(α + k)

∏n−m−1
k=0 (β − β̃ + k)

∏2n
k=n+m+1(α+β+k)

∏n+m+1
k=2m+2(α+β̃ +k)

,

λ2n+1,2m+1(α, β; α, β̃)=(−1)n+m
(

n
m

) ∏n
k=m+1(α + k)

∏n−m−1
k=0 (β − β̃ + k)

∏2n+1
k=n+m+2(α+β+k)

∏n+m+2
k=2m+3(α+β̃ +k)

,

for 0 ≤ m ≤ n, n ≥ 0.

Remark 5.5 We remark that λ2n,2m(α, β; α, β̃) = (−1)n+mλ2n,2m(β, α; β̃, α).

Proposition 5.6 The λn,m :=λn,m(α, β; α̃, β̃) :=λn,m(P(α, β; −) ← P(α̃, β̃; −))

corresponding to (12)–(14) are given by

λ2n,2m
(
α, β; α̃, β̃

) =
n∑

ν=m

λ2n,2ν

(
α, β; α, β̃

)
λ2ν,2m

(
α, β̃; α̃, β̃

)
, (15)

λ2n+1,2m+1
(
α, β; α̃, β̃

) =
n∑

ν=m

λ2n+1,2ν+1
(
α, β; α, β̃

)
λ2ν+1,2m+1

(
α, β̃; α̃, β̃

)
,

where the CC in the right-hand side are furnished by Propositions 5.3 and 5.4.
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Proof Due to the symmetrical character, it holds

P2n(α, β; x) =
n∑

ν=0

λ2n,2ν

(
α, β; α, β̃

)
P2ν

(
α, β̃; x

)
, (16)

P2ν(α, β̃; x) =
ν∑

m=0

λ2ν,2m
(
α, β̃; α̃, β̃

)
P2m

(
α̃, β̃; x

)
. (17)

Replacing (17) in (16), we can deduce that

P2n(α, β; x) =
n∑

m=0

P2m
(
α̃, β̃; x

) n∑

ν=m

λ2n,2ν

(
α, β; α, β̃

)
λ2ν,2m

(
α, β̃; α̃, β̃

)
,

which implies (15). The demonstration for odd indexes is similar. ��

Closed formulas for the CC for a non-symmetric sequence related to this
one with the same second recurrence coefficients γn+1 but with βn = (−1)n are
given in [15, pp. 310–313].

5.2 Non-symmetric semi-classical of class 1 cases

In [4] are presented some generalizations of Jacobi polynomials obtained by
a procedure of perturbation of the functional equation. In that way, two new
sequences are given explicitly. In this article, we are going to derive the closed
formulas for the CC with respect to the canonical sequence in both senses.
These formulas are new.

5.2.1 Case 1

Let us consider the case 1 presented in [4]. The recurrence coefficients are

β0 = − μ − 1
μ − 2α − 3

, (18)

βn+1 = (−1)n μ(μ − 2n − 2α − 4) + (−1)n+1(2α + 1)

(2n + 2α + 3 − μ)(2n + 2α + 5 − μ)
, n ≥ 0, (19)

γ2n+1 = 2
(n + α + 1)(2n + 1 − μ)

(4n + 2α + 3 − μ)2 , n ≥ 0, (20)

γ2n+2 = (2n + 2)(2n + 2α + 3 − μ)

(4n + 2α + 5 − μ)2 , n ≥ 0 , (21)
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with the regularity conditions μ �=2n + 1, μ �=2n + 2α + 1, α �=−(n + 1), n≥0.

For μ=0, the classical monic Jacobi polynomials with parameters (α, α+1) are
recovered [6]. Next, we present the CC with respect to the canonical sequence.

Proposition 5.7 The λn,m := λn,m(P(α, μ; −) ← X) corresponding to (18)–(21)
are given by

λ2n,2m =
(

n
m

) ∏n
k=m+1(μ − 2k + 1)

∏2n
k=n+m+1(2α − μ + 2k + 1)

, 0 ≤ m ≤ n,

λ2n,2m+1 = 2n
(

n − 1
m

) ∏n
k=m+2(μ − 2k + 1)

∏2n
k=n+m+1(2α − μ + 2k + 1)

, 0 ≤ m ≤ n − 1,

λ2n+1,2m = −
(

n
m

) ∏n+1
k=m+1(μ − 2k + 1)

∏2n+1
k=n+m+1(2α − μ + 2k + 1)

, 0 ≤ m ≤ n,

λ2n+1,2m+1 =
(

n
m

) ∏n+1
k=m+2(μ − 2k + 1)

∏2n+1
k=n+m+2(2α − μ + 2k + 1)

, 0 ≤ m ≤ n,

for n ≥ 0.

Proposition 5.8 The λn,m := λn,m(X ← P(α̃, μ̃; −)) corresponding to (18)–
(21) are given by

λ2n,2m = (−1)n+m
(

n
m

) ∏n
k=m+1(μ̃ − 2k + 1)

∏n+m
k=2m+1(2α̃ − μ̃ + 2k + 1)

, 0 ≤ m ≤ n,

λ2n,2m+1 = (−1)n+m2n
(

n − 1
m

) ∏n
k=m+2(μ̃ − 2k + 1)

∏n+m+1
k=2m+2(2α̃ − μ̃ + 2k + 1)

, 0 ≤ m ≤ n − 1,

λ2n+1,2m = (−1)n+m
(

n
m

) ∏n+1
k=m+1(μ̃ − 2k + 1)

∏n+m+1
k=2m+1(2α̃ − μ̃ + 2k + 1)

, 0 ≤ m ≤ n,

λ2n+1,2m+1 = (−1)n+m
(

n
m

) ∏n+1
k=m+2(μ̃ − 2k + 1)

∏n+m+1
k=2m+2(2α̃ − μ̃ + 2k + 1)

, 0 ≤ m ≤ n,

for n ≥ 0.
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5.2.2 Case 2

Now, let us consider the case 2 presented in [4]. The recurrence coefficients
are

β0 =− μ−1
μ−α − 2

, β2n+1 = (μ + 1)(α + 1)

(2n + α + 3)(μ − 2n − α − 2)
, n ≥ 0, (22)

β2n = − (μ − 1)(α + 1)

(2n + α + 1)(μ − 2n − α − 2)
, n ≥ 1, (23)

γ2n+1 = (μ−2n−1)(μ−2α−2n−3)(2n+α+1)(2n+α+3)

(2n+α+2−μ)2(μ−4n−2α−3)(μ−4n−2α−5)
,n≥0, (24)

γ2n+2 =4(n+1)
(μ−α−2n−2)(μ−α−2n−4)(n+α+2)

(2n+α+3)2(μ−4n−2α−5)(μ−4n−2α−7)
, n≥0, (25)

with the regularity conditions μ �=2n + 1, μ �=2n + 2α + 3, α �=−(n + 1), n≥0.

For μ = 0, the classical monic Jacobi polynomials with parameters (α, α + 2)

are recovered [6]. Next, we present the CC with respect to the canonical
sequence.

Proposition 5.9 The λn,m := λn,m(P(α, μ; −) ← X) corresponding to (22)–(25)
are given by

λ2n,2m =
(n

m

)
(α + 2m + 1)

(α + 2n + 1)

∏n
k=m+1(μ − 2k + 1)

∏2n
k=n+m+1(2α − μ + 2k + 1)

, 0 ≤ m ≤ n,

λ2n,2m+1 = 2n
(n−1

m

)

(α + 2n + 1)

∏n
k=m+2(μ − 2k + 1)

∏2n
k=n+m+2(2α − μ + 2k + 1)

, 0 ≤ m ≤ n − 1,

λ2n+1,2m = −
(n

m

)

(α − μ + 2n + 2)

∏n+1
k=m+1(μ − 2k + 1)

∏2n+1
k=n+m+2(2α − μ + 2k + 1)

, 0 ≤ m ≤ n,

λ2n+1,2m+1 =
(n

m

)
(α − μ + 2m + 2)

(α − μ + 2n + 2)

∏n+1
k=m+2(μ − 2k + 1)

∏2n+1
k=n+m+2(2α − μ + 2k + 1)

, 0 ≤ m ≤ n,

for n ≥ 0.
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Proposition 5.10 The λn,m := λn,m(X ← P(α̃, μ̃; −)) corresponding to (22)–
(25) are given by

λ2n,2m =(− 1)n+m

(n
m

)
(α−μ+2n+2)

(α − μ + 2m + 2)

∏n
k=m+1(μ − 2k + 1)

∏n+m+1
k=2m+2(2α − μ + 2k + 1)

,0≤ m≤n,

λ2n,2m+1 = (−1)n+m 2n
(n−1

m

)

(α + 2m + 3)

∏n
k=m+2(μ − 2k + 1)

∏n+m+1
k=2m+3(2α − μ + 2k + 1)

, 0≤ m ≤ n −1,

λ2n+1,2m = (−1)n+m

(n
m

)

(α − μ + 2m + 2)

∏n+1
k=m+1(μ − 2k + 1)

∏n+m+1
k=2m+2(2α − μ + 2k + 1)

, 0≤m≤n,

λ2n+1,2m+1 = (−1)n+m

(n
m

)
(α + 2n + 3)

(α + 2m + 3)

∏n+1
k=m+2(μ − 2k + 1)

∏n+m+2
k=2m+3(2α − μ + 2k + 1)

, 0 ≤ m ≤ n,

for n ≥ 0.

6 Conclusions

There are two difficult steps in the methodology exposed here and in [14, 15].
The first one consists to infer the closed formulas for the CC from enough
data produced and treated by a symbolic language like Mathematica®. The
second one is to accomplish the demonstration of the model, which can be done
completely via Mathematica® or only in part with the help of that language.

In spite of some limitations, we know that this method can be useful
to treat several other examples of CC. Furthermore, the implementation
principles studied in the tutorial provided with the package can be applied in a
similar way to other situations in the branch of orthogonal polynomials and in
mathematics.

Acknowledgements The authors would like to thank the referees for some comments and
indication of references.
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