Research Article

q-Extensions for the Apostol Type Polynomials

Nazim I. Mahmudov and Marzieh Eini Keleshteri

Mathematics Department, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey

Correspondence should be addressed to Nazim I. Mahmudov; nazim.mahmudov@emu.edu.tr

Received 12 March 2014; Accepted 20 May 2014; Published 2 June 2014

The aim of this work is to introduce an extension for q-standard notations. The q-Apostol type polynomials and study some of their properties. Besides, some relations between the mentioned polynomials and some other known polynomials are obtained.

1. Introduction, Preliminaries, and Definitions

Throughout this research we always apply the following notations.

\mathbb{N} indicates the set of natural numbers, \mathbb{N}_0 indicates the set of nonnegative integers, \mathbb{R} indicates the set of all real numbers, and \mathbb{C} denotes the set of complex numbers. We refer the readers to [1] for the following q-standard notations.

The q-shifted factorial is defined as

$$(a;q)_n = \prod_{j=0}^{n-1} (1-q^j a), \quad n \in \mathbb{N},$$

$$(a;q)_\infty = \prod_{j=0}^{\infty} (1-q^j a),$$

$$|q| < 1, \quad a \in \mathbb{C}.$$

The q-numbers and q-factorials are defined by

$$[a]_q = \frac{1-q^a}{1-q}, \quad q \neq 1;$$

$$[0]_q! = 1;$$

$$[n]_q! = [1]_q [2]_q \cdots [n]_q,$$

$$n \in \mathbb{N}, \quad a \in \mathbb{C},$$

respectively. The q-polynomial coefficient is defined by

$$\left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}.$$

The q-analogue of the function $(x+y)^n$ is defined by

$$(x+y)_q^n := \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right]_q q^{(1/2)k(k-1)} x^{n-k} y^k, \quad n \in \mathbb{N}_0.$$

The q-binomial formula is known as

$$(1-a)_q^n = \prod_{j=0}^{n-1} (1-q^j a) = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] q^{(1/2)k(k-1)} (-1)^k a^k.$$

In the standard approach to the q-calculus, two exponential functions are used:

$$e_q(z) = \sum_{n=0}^{\infty} \frac{z^n}{[n]_q!} = \prod_{j=0}^{\infty} \frac{1}{(1-(1-q)q^j z)},$$

$$0 < |q| < 1, \quad |z| < \frac{1}{|1-q|};$$

$$E_q(z) = \sum_{k=0}^{\infty} \frac{q^{(1/2)k(k-1)} z^k}{[k]_q!} = \prod_{j=0}^{\infty} \frac{1 + (1-q) q^j z},$$

$$0 < |q| < 1, \quad z \in \mathbb{C}.$$
As an immediate result of these two definitions, we have \(e_q(z)E_q(-z) = 1 \).

Recently, Luo and Srivastava [2] introduced and studied the generalized Apostol-Bernoulli polynomials \(B_n^\alpha(x; \lambda) \) and the generalized Apostol-Euler polynomials \(E_n^\alpha(x; \lambda) \). Kurt [3] gave the generalization of the Bernoulli polynomials \(B_n^{[m-1,\lambda]}(x) \) of order \(\alpha \) and studied their properties. They also studied these polynomials systematically; see [2, 4–9]. There are numerous recent investigations on this subject by many other authors; see [3, 10–20]. More recently, Tremblay et al. [10] further gave the definition of \(B_n^{[m-1,\lambda]}(x; \lambda) \) and studied their properties. On the other hand, Mahmudov and Kelesh-teri [21, 22] studied various two dimensional \(q \)-polynomials. Motivated by these papers, we define generalized Apostol type \(q \)-polynomials as follows.

Definition 1. Let \(q, \alpha \in \mathbb{C}, m \in \mathbb{N}, \) and \(0 < |q| < 1 \). The generalized \(q \)-Apostol-Bernoulli numbers \(B_n^{[m,\alpha]} \) and polynomials \(B_n^{[m-1,\alpha]}(x, y; \lambda) \) in \(x, y \) of order \(\alpha \) are defined, in a suitable neighborhood of \(t = 0 \), by means of the generating functions:

\[
\left(\frac{t^m}{\lambda e_q(t) - T_{m-1,q}(t)} \right) \alpha = \sum_{n=0}^{\infty} B_n^{[m,\alpha]}(\lambda) \frac{t^n}{[n]_q!},
\]

\[
\left(\frac{t^m}{\lambda e_q(t) - T_{m-1,q}(t)} \right) e_q(tx) E_q(ty) = \sum_{n=0}^{\infty} B_n^{[m-1,\alpha]}(x, y; \lambda) \frac{t^n}{[n]_q!},
\]

where \(T_{m-1,q}(t) = \sum_{k=0}^{m-1} (t^k/[k]_q!) \).

Definition 2. Let \(q, \alpha \in \mathbb{C}, 0 < |q| < 1, \) and \(m \in \mathbb{N} \). The generalized \(q \)-Apostol-Euler numbers \(E_n^{[m,\alpha]} \) and polynomials \(E_n^{[m-1,\alpha]}(x, y; \lambda) \) in \(x, y \) of order \(\alpha \) are defined, in a suitable neighborhood of \(t = 0 \), by means of the generating functions:

\[
\left(\frac{2^m t^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) \alpha = \sum_{n=0}^{\infty} E_n^{[m,\alpha]}(\lambda) \frac{t^n}{[n]_q!},
\]

\[
\left(\frac{2^m t^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) e_q(tx) E_q(ty) = \sum_{n=0}^{\infty} E_n^{[m-1,\alpha]}(x, y; \lambda) \frac{t^n}{[n]_q!}.
\]

Definition 3. Let \(q, \alpha \in \mathbb{C}, 0 < |q| < 1, \) and \(m \in \mathbb{N} \). The generalized \(q \)-Apostol-Genocchi numbers \(G_n^{[m,\alpha]} \) and polynomials \(G_n^{[m-1,\alpha]}(x, y; \lambda) \) in \(x, y \) of order \(\alpha \) are defined, in a suitable neighborhood of \(t = 0 \), by means of the generating functions:

\[
\left(\frac{2^m t^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) \alpha = \sum_{n=0}^{\infty} G_n^{[m-1,\alpha]}(\lambda) \frac{t^n}{[n]_q!},
\]

\[
\left(\frac{2^m t^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) e_q(tx) E_q(ty) = \sum_{n=0}^{\infty} G_n^{[m-1,\alpha]}(x, y; \lambda) \frac{t^n}{[n]_q!}.
\]

2. Properties of the Apostol Type \(q \)-Polynomials

In this section, we show some basic properties of the generalized \(q \)-polynomials. We only prove the facts for one of them. Obviously, by applying the similar technique, other ones can be proved.
Proposition 4. The generalized q-polynomials $B_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$, $E_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$, and $G_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$ satisfy the following relations:

\[
B_{n,q}^{[m-1,\alpha+\beta]}(x, y; \lambda) = \sum_{k=0}^{n} \binom{n}{k}_q B_{k,q}^{[m-1,\alpha]}(x, 0; \lambda) \times B_{n-k,q}^{[m-1,\beta]}(0, y; \lambda),
\]

\[
E_{n,q}^{[m-1,\alpha+\beta]}(x, y; \lambda) = \sum_{k=0}^{n} \binom{n}{k}_q E_{k,q}^{[m-1,\alpha]}(x, 0; \lambda) \times E_{n-k,q}^{[m-1,\beta]}(0, y; \lambda),
\]

\[
G_{n,q}^{[m-1,\alpha+\beta]}(x, y; \lambda) = \sum_{k=0}^{n} \binom{n}{k}_q G_{k,q}^{[m-1,\alpha]}(x, 0; \lambda) \times G_{n-k,q}^{[m-1,\beta]}(0, y; \lambda).
\]

Proof. We only prove the second identity. By using Definition 2, we have

\[
\sum_{n=0}^{\infty} E_{n,q}^{[m-1,\alpha+\beta]}(x, y; \lambda) \frac{t^n}{[n]_q!} = \left(\frac{2^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) \alpha e_q(tx) E_q(ty)
\]

\[
= \left(\frac{2^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) \alpha e_q(tx)
\]

\[
\times \left(\frac{2^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) E_q(ty)
\]

\[
= \sum_{n=0}^{\infty} E_{n,q}^{[m-1,\alpha]}(x, 0; \lambda) \frac{t^n}{[n]_q!} \times \sum_{n=0}^{\infty} E_{n,q}^{[m-1,\beta]}(0, y; \lambda) \frac{t^n}{[n]_q!}
\]

\[
= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k}_q E_{k,q}^{[m-1,\alpha]}(x, 0; \lambda) E_{n-k,q}^{[m-1,\beta]}(0, y; \lambda) \frac{t^n}{[n]_q!}.
\]

Comparing the coefficients of the term $t^n/[n]_q!$ in both sides gives the result. \qed

Corollary 5. The generalized q-polynomials $B_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$, $E_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$, and $G_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$ satisfy the following relations:

\[
B_{n,q}^{[m-1,\alpha]}(x, y; \lambda) = \sum_{k=0}^{n} \binom{n}{k}_q B_{k,q}^{[m-1,\alpha]}(0, y; \lambda) x^{n-k},
\]

\[
E_{n,q}^{[m-1,\alpha]}(x, y; \lambda) = \sum_{k=0}^{n} \binom{n}{k}_q E_{k,q}^{[m-1,\alpha]}(0, y; \lambda) x^{n-k},
\]

\[
G_{n,q}^{[m-1,\alpha]}(x, y; \lambda) = \sum_{k=0}^{n} \binom{n}{k}_q G_{k,q}^{[m-1,\alpha]}(0, y; \lambda) x^{n-k}.
\]

Proposition 6. The generalized q-polynomials $B_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$, $E_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$, and $G_{n,q}^{[m-1,\alpha]}(x, y; \lambda)$ satisfy the following relations:

\[
\lambda B_{n,q}^{[m-1,\alpha]}(1, y; \lambda) - E_{n,q}^{[m-1,\alpha]}(0, y; \lambda)
\]

\[
= \sum_{k=0}^{n} \binom{n}{k}_q B_{k,q}^{[m-1,\alpha]}(0, y; \lambda) B_{n-k,q}^{[0,-1]}(\lambda), \quad \text{for } n \geq 1,
\]

\[
\lambda E_{n,q}^{[m-1,\alpha]}(1, y; \lambda) + E_{n,q}^{[m-1,\alpha]}(0, y; \lambda)
\]

\[
= 2 \sum_{k=0}^{n} \binom{n}{k}_q E_{k,q}^{[m-1,\alpha]}(0, y; \lambda) E_{n-k,q}^{[0,-1]}(\lambda),
\]

\[
\lambda G_{n,q}^{[m-1,\alpha]}(1, y; \lambda) + G_{n,q}^{[m-1,\alpha]}(0, y; \lambda)
\]

\[
= 2 \sum_{k=0}^{n} \binom{n}{k}_q G_{k,q}^{[m-1,\alpha]}(0, y; \lambda) G_{n-k,q}^{[0,-1]}(\lambda), \quad \text{for } n \geq 1.
\]

Proof. We only prove (18). By using Definition 2 and starting from the left hand side of the relation (18), we have

\[
\sum_{n=0}^{\infty} \left(\lambda E_{n,q}^{[m-1,\alpha]}(1, y; \lambda) + E_{n,q}^{[m-1,\alpha]}(0, y; \lambda) \right) \frac{t^n}{[n]_q!}
\]

\[
= \lambda \left(\frac{2^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) ^\alpha e_q(t) E_q(ty)
\]

\[
+ \left(\frac{2^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) ^\alpha E_q(ty)
\]

\[
= \left(\frac{2^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) ^\alpha E_q(ty) \left(\lambda e_q(t) + 1 \right)
\]

\[
= 2 \left(\frac{2^m}{\lambda e_q(t) + T_{m-1,q}(t)} \right) ^\alpha E_q(ty) \left(\frac{2}{\lambda e_q(t) + 1} \right) ^{-1}
\]

\[
= 2 \sum_{n=0}^{\infty} \binom{n}{n}_q E_{n,q}^{[m-1,\alpha]}(0, y; \lambda) \frac{t^n}{[n]_q!} \sum_{n=0}^{\infty} E_{n,q}^{[0,-1]}(\lambda) \frac{t^n}{[n]_q!}.
\]
\[= 2 \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(0, y; \lambda \right) E_{q, kq}^{n-1} \left(\lambda \right) \frac{t^n}{[n]_q!}. \]

(20)

Comparing the coefficients of the term \(t^n/[n]_q! \) in both sides gives the result.

3. \(q \)-Analogue of the Luo-Srivastava Addition Theorem

In this section, we state and prove a \(q \)-generalization of the Luo-Srivastava addition theorem.

Theorem 7. The following relation holds between generalized \(q \)-Apostol-Euler and \(q \)-Apostol-Bernoulli polynomials:

\[E_{n}^{m-1, \alpha} \left(x; y; \lambda \right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(0; y; \lambda \right) \frac{t^n}{[n]_q!}. \]

(21)

Proof. We take aid of the following identity to prove (21):

\[\lambda e_q^{\alpha} \frac{t}{\lambda e_q^{\alpha} (t) - 1} e_q^{\alpha} \left(t x; y; \lambda \right) = \frac{t e_q^{\alpha} (tx)}{\lambda e_q^{\alpha} (t) - 1} = t e_q^{\alpha} (tx). \]

(22)

Therefore, we can write

\[\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(0; y; \lambda \right) \frac{t^n}{[n]_q!} \frac{t^n}{[n]_q!} \]

\[= \sum_{n=0}^{\infty} \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \frac{t^n}{[n+1]_q!} \]

\[= \sum_{n=0}^{\infty} [n]_q x^{n-1} \frac{t^n}{[n+1]_q!}. \]

(23)

From that we can conclude the following:

\[\sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(x; 0; \lambda \right) - B_{n,q} \left(x; 0; \lambda \right) = [n]_q x^{n-1}. \]

(24)

That is,

\[x^n = \frac{1}{[n+1]_q} \left(\lambda \sum_{k=0}^{n} \frac{1}{k!} B_{q, n-k} \left(x; 0; \lambda \right) - B_{n+1, q} \left(x; 0; \lambda \right) \right). \]

(25)

Substituting (25) into the right hand side of (16), we obtain

\[E_{n}^{m-1, \alpha} \left(x; y; \lambda \right) = \sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(0; y; \lambda \right) \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \]

\[\times \left(\lambda \sum_{j=0}^{n-k} \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \right) \]

\[\times B_{q, n-k+1} \left(x; 0; \lambda \right) \]

\[= \sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(0; y; \lambda \right) \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \]

\[\times \left(\lambda \sum_{j=0}^{n-k+1} \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \right) \]

\[\times B_{q, n-k+1} \left(x; 0; \lambda \right) \]

\[= \sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(0; y; \lambda \right) \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \]

\[\times \left(\lambda \sum_{j=0}^{n-k+1} \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \right) \]

\[\times B_{q, n-k+1} \left(x; 0; \lambda \right) := I_1 + I_2. \]

Thus, from one hand, we can write

\[I_1 = \sum_{k=0}^{n} \frac{1}{k!} E_{q, kq}^{n} \left(0; y; \lambda \right) \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \]

\[\times \left(\lambda \sum_{j=0}^{n-k+1} \frac{1}{[n+1]_q} \frac{t^n}{[n+1]_q!} \right) \]

\[\times B_{q, n-k+1} \left(x; 0; \lambda \right) \]

\[\times E_{q, kq}^{n} \left(0; y; \lambda \right) B_{q, kq} \left(x; 0; \lambda \right). \]

As we know that

\[\left[m \atop l \right]_q \left[l \atop n \right]_q = \left[m-n \atop m-l \right]_q, \quad \text{for } m \geq l \geq n, \]

(28)
we can continue as

\[I_1 = \sum_{j=0}^{n-j} \sum_{k=0}^{n} \frac{\lambda}{[n+1]_q} \frac{[n+1]_q}{j} [n-j+1] [k]_q B_{j,q} (x,0;\lambda) \times E_{[m-1,\alpha]} (0,y;\lambda) \]

\[= \sum_{j=0}^{n-j} \frac{\lambda}{[n+1]_q} \frac{[n+1]_q}{j} B_{j,q} (x,0;\lambda) \times E_{[m-1,\alpha]} (0,y;\lambda) \times (E_{[m-1,\alpha]} (1,y;\lambda) - E_{[m-1,\alpha]} (0,y;\lambda)) \]

(29)

On the other hand, for \(I_2 \), we can write

\[I_2 = \sum_{k=0}^{n} \left[\frac{n}{k} \right]_q E_{[m-1,\alpha]} (0,y;\lambda) \frac{\lambda - 1}{[n-k+1]_q} B_{n-k+1,q} (x,0;\lambda) \]

\[= \sum_{k=0}^{n} \frac{n}{k} \frac{[n+1]_q}{[n+1]_q} \frac{[n+1]_q}{j} \lambda B_{n-k+1,q} (x,0;\lambda) E_{[m-1,\alpha]} (0,y;\lambda) \]

\[- \frac{\lambda - 1}{[n+1]_q} B_{0,q} (x,0;\lambda) E_{[m-1,\alpha]} (0,y;\lambda), \]

(30)

and, as \(B_{0,q} (x,0;\lambda) = 0 \), we have

\[I_2 = \sum_{k=0}^{n} \left[\frac{n+1}{k} \right]_q \frac{\lambda - 1}{[n+1]_q} B_{n-k+1,q} (x,0;\lambda) E_{[m-1,\alpha]} (0,y;\lambda) \]

\[= \sum_{j=0}^{n} \frac{n+1}{j} \frac{[n+1]_q}{[n+1]_q} \frac{[n+1]_q}{j} \lambda B_{j,q} (x,0;\lambda) E_{[m-1,\alpha]} (0,y;\lambda) \]

\[+ \frac{\lambda - 1}{[n+1]_q} B_{n+1,q} (x,0;\lambda) E_{[m-1,\alpha]} (0,y;\lambda), \]

(31)

Adding \(I_2 \) to \(I_1 \) we obtain

\[E_{[m-1,\alpha]} (x,y;\lambda) = I_1 + I_2 \]

\[= \sum_{j=0}^{n} \frac{\lambda}{[n+1]_q} \frac{[n+1]_q}{j} B_{j,q} (x,0;\lambda) \times E_{[m-1,\alpha]} (0,y;\lambda) \]

\[\times (E_{[m-1,\alpha]} (1,y;\lambda) - E_{[m-1,\alpha]} (0,y;\lambda)) \]

(32)

Consequently,

\[E_{[m-1,\alpha]} (x,y;\lambda) = \sum_{j=0}^{n} \frac{1}{[n+1]_q} \frac{[n+1]_q}{j} \lambda E_{[m-1,\alpha]} (1,y;\lambda) - \lambda E_{[m-1,\alpha]} (0,y;\lambda) \]

\[+ \lambda \frac{1}{[n+1]_q} B_{n+1,q} (x,0;\lambda) E_{[m-1,\alpha]} (0,y;\lambda), \]

(33)
Taking $m = 1$ in Theorem 7, we get a q-generalization of the Luo-Srivastava addition theorem [2].

Corollary 8. The following relation holds between generalized q-Apostol-Euler and q-Apostol-Bernoulli polynomials:

$E_{nq}^{(α)}(x, y; λ) = \sum_{j=0}^{n} \frac{2}{j+1} \left[\frac{n}{j} \right]_q \times \left(E_{j+1,q}^{(α)}(0, y; λ) - E_{j+1,q}^{(α)}(0, y; λ) \right) \times B_{n-j,q}(x, 0; λ) + \frac{λ - 1}{n+1} \left(\frac{2}{λ + 1} \right)^α \times B_{n-1,q}(x, 0; λ).

(34)

Letting $q \uparrow 1$, we get the Luo-Srivastava addition theorem (see [12]):

$E_{n}^{(α)}(x + y; λ) = \sum_{j=0}^{n} \frac{1}{j+1} \left[\frac{n}{j} \right] \times \left(E_{j+1}^{(α)}(y; λ) - E_{j+1}^{(α)}(y; λ) \right) \times B_{n-j,q}(x; λ) + \frac{λ - 1}{n+1} \left(\frac{2}{λ + 1} \right)^α \times B_{n-1,q}(x; λ).

(35)

Next theorem gives relationship between $E_{n,q}^{[m-1,α]}(x, y; λ)$ and $G_{n,q}(x, 0)$.

Theorem 9. The following relation holds between generalized q-Apostol-Euler and q-Apostol-Genocchi polynomials:

$E_{n,q}^{[m-1,α]}(x, y; λ) = \sum_{k=0}^{n} \sum_{j=0}^{n-k} \left[\frac{n}{k} \right]_q \times \left(E_{n-k,q}^{[m-1,α]}(0, y; λ) \times \sum_{k=0}^{n} \sum_{j=0}^{n-k} \left[\frac{n}{k} \right]_q \times \left[\frac{n}{k} \right]_q \times \left(\frac{1}{k} \right) \times H_{n-k-j,q}(x) \right)

(36)

Proof. The proof follows from the following identity:

$e_q(tx) E_q(ty) = \left(\frac{2^m}{λ e_q(t) + T_{m-1,q}(t)} \right)^α e_q(tx) E_q(ty)

= \left(\frac{2^m}{λ e_q(t) + T_{m-1,q}(t)} \right)^α E_q(ty) e_q(t) \frac{2t}{e_q(t) + 1} \times e_q(tx) e_q(t) + 1 \frac{2t}{2t}.

(37)

Theorem 10. The following relation holds between generalized q-Apostol-Euler and q-Stirling polynomials $S_q(i, j)$ of the second kind:

$E_{n,q}^{[m-1,α]}(x, y; λ) = \sum_{k=0}^{n} \sum_{j=0}^{n-k} \left[\frac{n}{k} \right]_q \times \left[\frac{n}{k} \right]_q \times \left(\frac{1}{k} \right) \times H_{n-k-j,q}(x).

(40)

Proof. The q-Stirling polynomials $S_q(n, k)$ of the second kind are defined by means of the following generating function:

$x^n = \sum_{k=0}^{n} S_q(n, k) x_k(x).

(39)

where $x_k(x) = x(x - [1]_q)(x - [2]_q) \cdots (x - [k-1]_q);$ see [23]. Replacing identity (39) in the right hand side of (16), we have

$E_{n,q}^{[m-1,α]}(x, y; λ) = \sum_{k=0}^{n} \sum_{j=0}^{n-k} \left[\frac{n}{k} \right]_q \times \left[\frac{n}{k} \right]_q \times \left(\frac{1}{k} \right) \times H_{n-k-j,q}(x).

(41)

Theorem 11. The relationship

$E_{n,q}^{[m-1,α]}(x, y; λ) = \sum_{k=0}^{[n/2]} \sum_{j=0}^{[n-2k]} \left[\frac{n}{k} \right]_q \times \left[\frac{n-2k}{j} \right]_q \times \left(\frac{1}{k} \right) \times H_{n-2k-j,q}(x).

(42)
Proof. Indeed,
\[
\sum_{n=0}^{\infty} E_{\alpha m,n,q}(x,y;\lambda) \frac{t^n}{[n]_q!} = \left(\frac{2^n}{\lambda e_q(t) + T_{m-1,q}(t)} \right)^{\alpha} e_q(t) E_q(ty)
\]
\[
= \left(\frac{2^n}{\lambda e_q(t) + T_{m-1,q}(t)} \right)^{\alpha} E_q(ty) e_q(tx)
\]
\[
\times E_q\left(-\frac{t^2}{[2]_q} \right) E_q\left(\frac{t^2}{[2]_q} \right)
\]
\[
= \sum_{n=0}^{\infty} E_{\alpha m,n,q}(0, y; \lambda) \frac{t^n}{[n]_q!} \times \sum_{n=0}^{\infty} H_{n,q}(x) \frac{t^n}{[n]_q!} \sum_{n=0}^{\infty} \frac{t^{2n}}{[2]_q! [n]_q!}
\]
\[
= \sum_{n=0}^{\infty} \sum_{j=0}^{n} \left[\frac{n}{j} \right]_q \frac{[n-2k]}{[2]_q! [k]_q!} \times E_{\alpha m,j,q}(0, y; \lambda) H_{n-2k,j,q}(x) \frac{t^n}{[n]_q!}
\]
\[
= \sum_{n=0}^{\infty} \sum_{j=0}^{n} \left[\frac{n}{j} \right]_q \frac{[n-2k]}{[2]_q! [k]_q!} \times E_{\alpha m,j,q}(0, y; \lambda) H_{n-2k,j,q}(x) \frac{t^n}{[n]_q!}.
\]
\[\square\]

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

References

