A Generalization of Laguerre Polynomials

You must be logged in with an active subscription to view this.
The authors study orthogonal polynomials on $[0, +\infty)$ with respect to an inner product involving derivatives that cannot be derived from a weight function. These polynomials can be written as a ${}_3F_3$ hypergeometric series and they satisfy a second-order differential equation and a five term recurrence relation. At most one zero of each polynomial is located outside $(0, +\infty)$, the interior of the interval of orthogonality. As a special case Koornwinder’s Laguerre polynomials $\{L_n^{\alpha,M}(x)\}_{n=0}^{+\infty}$ are included.
POLYNOMIALS: ZEROS AND ELECTROSTATIC INTERPRETATION.
The ANZIAM Journal 55, 39-54. [CrossRef]
(2013) Jacobi–Sobolev-type orthogonal polynomials: holonomic equation and electrostatic interpretation – a non-diagonal case. Integral Transforms and Special Functions 24, 70-83. [CrossRef]
(2011) A new approach to the asymptotics of Sobolev type orthogonal polynomials. Journal of Approximation Theory 163, 460-480. [CrossRef]
(2005) FINITE ORTHOGONAL POLYNOMIALS SATISFYING A SECOND ORDER DIFFERENTIAL EQUATION. Communications of the Korean Mathematical Society 20, 765-774. [CrossRef]
A Generalization of Laguerre Polynomials: SIAM Journal on Mathematical Analysis: Vol. 24, No. 3 (Society for Industrial and Applied Mathematics)

© 2015 SIAM By using *SIAM Publications Online* you agree to abide by the *Terms and Conditions of Use.*

Banner art adapted from a figure by Hinke M. Osinga and Bernd Krauskopf (University of Auckland, NZ).

Powered by *Atypon® Literatum*