Some identities on Bernoulli and Euler polynomials arising from the orthogonality of Laguerre polynomials

Taekyun Kim¹*, Seog-Hoon Rim², DV Dolgy³ and Sang-Hun Lee⁴

1 Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea

Abstract

In this paper, we derive some interesting identities on Bernoulli and Euler polynomials by using the orthogonal property of Laguerre polynomials.

1 Introduction

The generalized Laguerre polynomials are defined by

\[
\exp\left(-\frac{xt}{1-t}\right) = \sum_{n=0}^{\infty} L_\alpha^n(x)t^n \quad (\alpha \in \mathbb{Q} \text{ with } \alpha > -1).
\]

From (1.1), we note that

\[
L_\alpha^n(x) = \sum_{r=0}^{n} \frac{(-1)^r (n+r)_{\alpha}}{r!} x^r \quad \text{(see [1–3]).}
\]

By (1.2), we see that \(L_\alpha^n(x)\) is a polynomial with degree \(n\). It is well known that Rodrigues’ formula for \(L_\alpha^n(x)\) is given by

\[
L_\alpha^n(x) = x^{-\alpha} e^x \frac{d^n}{dx^n} \left(e^{-x} x^n e^{-\alpha x}\right) \quad \text{(see [1–3]).}
\]

From (1.3) and a part of integration, we note that

\[
\int_0^{\infty} x^n e^{-x} L_m^{\alpha}(x) L_n^{\alpha}(x) \, dx = \frac{\Gamma(\alpha + n + 1)}{n!} \delta_{m,n},
\]

where \(\delta_{m,n}\) is a Kronecker symbol. As is well known, Bernoulli polynomials are defined by the generating function to be

\[
\frac{t}{e^t - 1} e^{\beta(x)t} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \quad \text{(see [1–29]),}
\]

with the usual convention about replacing \(B^n(x)\) by \(B_n(x)\).
In the special case, \(x = 0 \), \(B_n(0) = B_n \) are called the \(n \)th Bernoulli numbers. By (1.5), we get

\[
B_n(x) = \sum_{l=0}^{n} \binom{n}{l} B_{n-l} x^l \quad \text{(see [1–29]).} \tag{1.6}
\]

The Euler numbers are defined by

\[
E_0 = 1, \quad (E + 1)^n + E_n = 2\delta_{0,n} \quad \text{(see [27, 28])}, \tag{1.7}
\]

with the usual convention about replacing \(E_n \) by \(E_n \).

In the viewpoint of (1.6), the Euler polynomials are also defined by

\[
E_n(x) = (E + x)^n = \sum_{l=0}^{n} \binom{n}{l} E_{n-l} x^l \quad \text{(see [11–24])}. \tag{1.8}
\]

From (1.7) and (1.8), we note that the generating function of the Euler polynomial is given by

\[
\frac{2}{e^t + 1} e^{xt} = e^{E(tx)} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!} \quad \text{(see [15–29])}. \tag{1.9}
\]

By (1.5) and (1.9), we get

\[
\frac{2}{e^t + 1} e^{xt} = \frac{1}{t} \left(2 - 2 \frac{2}{e^t + 1} \right) \left(te^{xt} \right) = -2 \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \frac{E_{l+1}}{l+1} \binom{n}{l} B_{n-l}(x) \right) \frac{t^n}{n!}. \tag{1.10}
\]

Thus, by (1.10), we see that

\[
E_n(x) = -2 \sum_{l=0}^{n} \binom{n}{l} \frac{E_{l+1}}{l+1} B_{n-l}(x). \tag{1.11}
\]

By (1.7) and (1.8), we easily get

\[
\frac{t}{e^t - 1} e^{xt} = \frac{t}{2} \left(\frac{2e^{xt}}{e^t + 1} \right) + \left(\frac{t}{e^t - 1} \right) \left(\frac{2e^{xt}}{e^t + 1} \right). \tag{1.12}
\]

Thus, by (1.12), we see that

\[
B_n(x) = \sum_{k=0,k\neq l}^{n} \binom{n}{k} B_k E_{n-k}(x). \tag{1.13}
\]

Throughout this paper, we assume that \(\alpha \in \mathbb{Q} \) with \(\alpha > -1 \). Let \(P_n = \{ p(x) \in \mathbb{Q}[x] \mid \deg p(x) \leq n \} \) be the inner product space with the inner product

\[
\langle p(x), q(x) \rangle = \int_{0}^{\infty} x^\alpha e^{-x} p(x)q(x) \, dx,
\]
Therefore, by (2.1) and (2.3), we obtain the following theorem.

\[\begin{align*}
\text{In this paper, we give some interesting identities on Bernoulli and Euler polynomials which can be derived by an orthogonal basis } \{L_n^0(x), L_n^1(x), \ldots, L_n^n(x)\} \text{ for } \mathbb{P}_n. \\
\end{align*} \]

2 Some identities on Bernoulli and Euler polynomials

Let \(p(x) \in \mathbb{P}_n \). Then \(p(x) \) can be generated by \(\{L_n^0(x), L_n^1(x), \ldots, L_n^n(x)\} \) in \(\mathbb{P}_n \) to be

\[p(x) = \sum_{k=0}^{n} C_k L_k^n(x), \quad (2.1) \]

where

\[\begin{align*}
\langle p(x), L_k^n(x) \rangle &= C_k \{L_k^n(x), L_k^n(x)\} \\
&= C_k \int_{0}^{\infty} x^\alpha e^{-x} L_k^n(x) L_k^n(x) \, dx \\
&= C_k \frac{\Gamma(\alpha + k + 1)}{k!}. \quad (2.2)
\end{align*} \]

From (2.2), we note that

\[\begin{align*}
C_k &= \frac{k!}{\Gamma(\alpha + k + 1)} \langle p(x), L_k^n(x) \rangle \\
&= \frac{k!}{\Gamma(\alpha + k + 1)} \frac{1}{k!} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha} e^{-x} \right) p(x) \, dx \\
&= \frac{1}{\Gamma(\alpha + k + 1)} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha} e^{-x} \right) p(x) \, dx. \quad (2.3)
\end{align*} \]

Let us take \(p(x) = \sum_{m=0}^{n} \binom{n}{m} B_m E_n - m(x) \in \mathbb{P}_n \). Then, from (2.3), we have

\[\begin{align*}
C_k &= \frac{1}{\Gamma(\alpha + k + 1)} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha} e^{-x} \right) \sum_{m=0}^{n} \binom{n}{m} B_m E_{n-m}(x) \, dx \\
&= \frac{(-1)^k}{\Gamma(\alpha + k + 1)} \sum_{m=0}^{n-k} \sum_{l=k}^{n-m} \binom{n}{m} \binom{n-m}{l} B_m E_{n-m-l} \frac{l!}{(l-k)!} \int_{0}^{\infty} x^{l+k-\alpha} e^{-x} \, dx \\
&= \frac{(-1)^k}{\Gamma(\alpha + k + 1)} \sum_{m=0}^{n-k} \sum_{l=k}^{n-m} \binom{n}{m} \binom{n-m}{l} B_m E_{n-m-l} \frac{l!}{(l-k)!} \Gamma(l+\alpha+1) \\
&= (-1)^k \sum_{m=0}^{n-k} \sum_{l=k}^{n-m} \binom{n}{m} \binom{n-m}{l} B_m E_{n-m-l} \frac{l!}{(l-k)!} \frac{(l+\alpha)(l+\alpha-1) \cdots \alpha}{(\alpha+k)(\alpha+k-1) \cdots \alpha} \\
&= (-1)^k n! \sum_{m=0}^{n-k} \sum_{l=k}^{n-m} \frac{B_m}{m!} \frac{E_{n-m-l}}{(n-m-l)!} \frac{(l+\alpha)}{(l-k)}. \quad (2.4)
\end{align*} \]

Therefore, by (2.1) and (2.4), we obtain the following theorem.
Theorem 2.1 For $n \in \mathbb{Z}_+$, we have

$$
\sum_{m=0, m \neq 1}^{n} \binom{n}{m} B_m E_{n-m}(x)
$$

$$
= n! \sum_{k=0}^{n-k} (-1)^k \left(\sum_{m=0, m \neq 1}^{n} \sum_{l=k}^{n-m} B_m \frac{E_n - m - l}{m! (n-m-l)!} \binom{l + \alpha}{l-k} \right) L_k^\alpha(x).
$$

From (1.13), we can derive the following corollary.

Corollary 2.2 For $n \in \mathbb{Z}_+$, we have

$$
B_n(x) = n! \sum_{k=0}^{n} (-1)^k \left(\sum_{m=0, m \neq 1}^{n} \sum_{l=k}^{n-m} B_m \frac{E_n - m - l}{m! (n-m-l)!} \binom{l + \alpha}{l-k} \right) L_k^\alpha(x).
$$

Let us take $p(x) = \sum_{l=0}^{n} \binom{n}{l} E_{l+1} B_{n-l}(x)$. By the same method, we get

$$
C_k = \frac{1}{\Gamma(\alpha + k + 1)} \int_{0}^{\infty} \frac{d^k}{dx^k} x^{k+\alpha} e^{-x} \left(\sum_{l=0}^{n} \binom{n}{l} \frac{E_{l+1}}{l+1} B_{n-l}(x) \right) dx
$$

$$
= \frac{1}{\Gamma(\alpha + k + 1)} \sum_{l=0}^{n-k} \sum_{m=0}^{n-l} \binom{n}{l} \frac{E_{l+1}}{l+1} B_{n-l-m} \frac{m!}{(m-k)!} \Gamma(m + \alpha + 1)
$$

$$
= (-1)^k \sum_{l=0}^{n-k} \sum_{m=k}^{n-l} \binom{\alpha + m}{m-k} \frac{E_{l+1}}{(l+1)! (n-l-m)!} B_{n-l-m} \frac{m!}{(m-k)!}
$$

$$
= (-1)^k n! \sum_{l=0}^{n-k} \sum_{m=k}^{n-l} \binom{\alpha + m}{m-k} \frac{E_{l+1}}{(l+1)! (n-l-m)!} B_{n-l-m} \frac{m!}{(m-k)!}
$$

(2.5)

Therefore, by (1.11), (2.1), and (2.5), we obtain the following theorem.

Theorem 2.3 For $n \in \mathbb{Z}_+$, we have

$$
-\frac{E_n(x)}{2} = n! \sum_{k=0}^{n} (-1)^k \left(\sum_{l=0}^{n-k} \sum_{m=k}^{n-l} \binom{\alpha + m}{m-k} \frac{E_{m+1}}{(m+1)! (n-m-l)!} B_{n-m-l} \frac{B_{n-l-m}}{(l+1)! (n-l-m)!} \right) L_k^\alpha(x).
$$

For $n \in \mathbb{N}$ with $n \geq 2$ and $m \in \mathbb{Z}_+$ with $n - m \geq 0$, we have

$$
B_{n-m}(x) B_n(x) = \sum_{r} \left[\binom{n-m}{2r} m + \binom{m}{2r} (n-m) \right] \frac{B_{2r} B_{n-2r}(x)}{n-2r}
$$

$$
+ (-1)^{m+1} \frac{(n-m)! m!}{m!} B_n(x) \quad \text{see [8]}. \hspace{1cm} (2.6)
$$
Let us take \(p(x) = B_{a+m}(x)B_m(x) \in \mathbb{P}_n \). Then \(p(x) \) can be generated by an orthogonal basis \(\{L_0^a(x), L_1^a(x), \ldots, L_n^a(x)\} \) in \(\mathbb{P}_n \) to be

\[
p(x) = \sum_{k=0}^{n} C_k L_k^a(x). \tag{2.7}
\]

From (2.3), (2.6), and (2.7), we note that

\[
C_k = \frac{1}{\Gamma(\alpha + k + 1)} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha} e^{-x} \right) p(x) \, dx
\]

\[
= \frac{1}{\Gamma(\alpha + k + 1)} \sum_{r=0}^{\lfloor \frac{k}{2} \rfloor} \left\{ \binom{n-m}{2r} m + \binom{m}{2r} (n-m) \right\} \times \frac{B_{2r}}{n-2r} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha} e^{-x} \right) B_{n-2r}(x) \, dx
\]

\[
= \frac{1}{\Gamma(\alpha + k + 1)} \sum_{r=0}^{\lfloor \frac{k}{2} \rfloor} \sum_{l=0}^{n-2r} \left\{ \binom{n-m}{2r} m + \binom{m}{2r} (n-m) \right\} \frac{B_{2r}}{n-2r} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha} e^{-x} \right) x^l \, dx
\]

\[
= \frac{(-1)^k}{\Gamma(\alpha + k + 1)} \sum_{r=0}^{\lfloor \frac{k}{2} \rfloor} \sum_{l=0}^{n-2r} \left\{ \binom{n-m}{2r} m + \binom{m}{2r} (n-m) \right\} \frac{B_{2r} B_{n-2r-l}}{(n-2r)(l-k)!} \Gamma(\alpha + l + 1). \tag{2.8}
\]

It is easy to show that

\[
\frac{\Gamma(\alpha + l + 1)}{\Gamma(\alpha + k + 1)(l-k)!} = \frac{(\alpha + l)(\alpha + l - 1) \cdots \alpha \Gamma(\alpha)}{(\alpha + k)(\alpha + k - 1) \cdots \alpha \Gamma(\alpha)(l-k)!}
\]

\[
= \frac{(\alpha + l)(\alpha + l - 1) \cdots (\alpha + k + 1)}{(\alpha - k)!} = \binom{\alpha + l}{l-k}. \tag{2.9}
\]

By (2.8) and (2.9), we get

\[
C_k = (-1)^k \sum_{r=0}^{\lfloor \frac{k}{2} \rfloor} \sum_{l=0}^{n-2r} \left\{ \binom{n-m}{2r} m + \binom{m}{2r} (n-m) \right\} \times \binom{n-2r}{l} \binom{\alpha + l}{l-k} \frac{B_{2r} B_{n-2r-l}}{(n-2r)}. \tag{2.10}
\]

Therefore, by (2.7) and (2.10), we obtain the following theorem.
Theorem 2.4 For \(n \in \mathbb{N} \) with \(n \geq 2 \) and \(m \in \mathbb{Z} \), with \(n - m \geq 0 \), we have

\[
B_{n-m}(x)B_m(x) = \sum_{k=0}^{n} (-1)^k \left\{ \sum_{r=0}^{\lfloor \frac{n-k}{2} \rfloor} \left(\begin{array}{c} n-m \\ 2r \end{array} \right) m + \left(\begin{array}{c} m \\ 2r \end{array} \right)(n-m) \right\} \times \binom{n-2r}{l} \binom{\alpha+l}{l-k} \frac{B_{2r}B_{n-2r-l}}{(n-2r)} \right\} L_{\alpha}^k(x).
\]

It is easy to show that

\[
t^2e^{t(xy)} \left(\frac{e^t}{e^t-1} \right)^2 = (x+y-1) t^2e^{t(xy-1)} - t^2 \frac{d}{dt} \left(\frac{e^{t(xy-1)}}{e^t-1} \right).
\]

From (2.11), we have

\[
\sum_{k=0}^{n} \binom{n}{k} B_k(x)B_{n-k}(y) = (1-n)B_n(x+y) + (x+y-1)nB_{n-1}(x+y) \quad \text{(see [11])}.
\]

Let \(x = y \). Then by (2.12), we get

\[
\sum_{k=0}^{n} \binom{n}{k} B_k(x)B_{n-k}(x) = (1-n)B_n(2x) + (2x-1)B_{n-1}(2x).
\]

Let us take \(p(x) = \sum_{k=0}^{n} \binom{n}{k} B_k(x)B_{n-k}(x) \in \mathbb{P}_n \). Then \(p(x) \) can be generated by an orthogonal basis \(\{ L_{\alpha}^0(x), L_{\alpha}^1(x), \ldots, L_{\alpha}^n(x) \} \) in \(\mathbb{P}_n \) to be

\[
p(x) = \sum_{k=0}^{n} \binom{n}{k} B_k(x)B_{n-k}(x) = \sum_{k=0}^{n} C_k L_{\alpha}^k(x).
\]

From (2.3), (2.13), and (2.14), we can determine the coefficients \(C_k \)'s to be

\[
C_k = \frac{1}{\Gamma(\alpha + k + 1)} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha+k} e^{-x} \right) p(x) \, dx
\]

\[
= \frac{1}{\Gamma(\alpha + k + 1)} \left\{ (1-n) \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha+k} e^{-x} \right) B_n(2x) \, dx
\right.
\]

\[
+ n \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha+k} e^{-x} \right) (2x-1)B_{n-1}(2x) \, dx \right\}.
\]

By simple calculation, we get

\[
\frac{1}{\Gamma(\alpha + k + 1)} \int_{0}^{\infty} \left(\frac{d^k}{dx^k} x^{\alpha+k} e^{-x} \right) (2x-1)B_{n-1}(2x) \, dx
\]

\[
= 2(-1)^k \sum_{l=k}^{n-1} \binom{n-1}{l} 2^l B_{n-1-l} \left(\frac{\alpha+l+1}{l-k+1} \right) (l+1)!
\]

\[
+ (-1)^{k+1} \sum_{l=k}^{n-1} \binom{n-1}{l} 2^l B_{n-1-l} \left(\frac{\alpha+l}{l-k} \right) l!
\]

(2.16)
and
\[
\frac{1}{\Gamma(\alpha + k + 1)} \int_0^\infty \left(\frac{dk}{dx} x^{k+\alpha} e^{-x} \right) B_n(2x) \, dx \\
= (-1)^k \sum_{l=k}^n \binom{n}{l} 2^l B_{n-l} B_{l+k} (l + \alpha) (l - k).
\]

(2.17)

Therefore, by (2.13), (2.14), (2.15), (2.16), and (2.17), we obtain the following theorem.

Theorem 2.5 For \(n \in \mathbb{Z}_+ \), we get
\[
\sum_{k=0}^n \binom{n}{k} B_k(x) B_{n-k}(x) = (1 - n) \sum_{k=0}^n \left(-1 \right)^k \sum_{l=k}^n \binom{n}{l} 2^l B_{n-l} B_{l+k} (l + \alpha) (l - k) \right) L_\alpha(x) \\
+ n \sum_{k=0}^n \left(-1 \right)^k \sum_{l=k}^{n-1} \binom{n-1}{l} 2^l B_{n-l} B_{l+k} (l + 1) (l + \alpha + 1) (l - k + 1) \\
- \sum_{l=k}^{n-1} \binom{n-1}{l} 2^l B_{n-l} B_{l+k} (l + \alpha + 1) (l - k).
\]

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details
1Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea. 2Department of Mathematics Education, Kyungpook National University, Taegu, 702-701, Republic of Korea. 3Hannirinwon, Kwangwoon University, Seoul, 139-701, Republic of Korea. 4Division of General Education, Kwangwoon University, Seoul, 139-701, Republic of Korea.

Acknowledgements
The authors would like to express their deep gratitude to the referees for their valuable suggestions and comments.

Received: 8 August 2012 Accepted: 6 November 2012 Published: 22 November 2012

References
15. Kim, T: Some identities on the \(q \)-Euler polynomials of higher order and \(q \)-Stirling numbers by the fermionic \(p \)-adic integral on \(\mathbb{Z}_p \). Russ. J. Math. Phys. 16(4), 484-491 (2009)