UMBRAL CALCULUS ASSOCIATED WITH FROBENIUS-TYPE EULERIAN POLYNOMIALS

TAEKYUN KIM AND TOUFIK MANSOUR

ABSTRACT. In this paper, we study some properties of several polynomials arising from umbral calculus. In particular, we investigate the properties of the orthogonality-type of the Frobenius-type Eulerian polynomials which are derived from umbral calculus. By using our properties, we can derive many interesting identities of special polynomials associated with Frobenius-type Eulerian polynomials. An application to normal ordering is presented.

1. INTRODUCTION

It is well known that the Euler numbers have a long history (see [7,8,13]). They are of fundamental importance in several parts of mathematics and mathematical physics (see [5–8]). In the last decades, several interesting extensions and modifications were considered along with related combinatorial, probabilistic, and statistical applications (see [9–12,16]). One of the well known extensions it is the Frobenius-Euler numbers and polynomials [5,6,13]). The aim of this paper is to study several properties of the orthogonality-type of the Frobenius-type Eulerian polynomials which are derived from umbral calculus (see [22,23,30,31]). Note that umbral calculus has an application in the physics of gases (see [35]) and in the group theory and quantum mechanics (see [1,2]). Umbral calculus, in particular Sheffer sequences, has also been applied to the normal ordering of expressions involving bosonic creation and annihilation operators [3,4].

In this paper, umbral calculus is considered for some special Sheffer polynomials such as Frobenius-Euler polynomials, Changhee polynomials, Dahee polynomials and Bessel polynomials. Let Π be the algebra structure of polynomials in a single variable x over \mathbb{C} and let Π^e be the vector space of all linear functionals on Π. The action of a linear functional L on a polynomial $p(x)$ is denoted by $(L|p(x))$. We note that $(L|p(x))$ satisfies $(cL + c'L|p(x)) = c(L|p(x)) + c'(L'|p(x))$, for any $c, c' \in \mathbb{C}$ and $L, L' \in \Pi^\text{e}$ (see [22,23,30,31]). Let

\begin{equation}
\mathcal{H} = \left\{ f(t) = \sum_{k \geq 0} a_k \frac{t^k}{k!} \mid a_k \in \mathbb{C} \right\}.
\end{equation}

For $f(t) = \sum_{k \geq 0} a_k \frac{t^k}{k!} \in \mathcal{H}$, we define a linear functional on Π by setting

\begin{equation}
(L|p(x)) = \sum_{k \geq 0} (L|\frac{t^k}{k!}) = a_k, \text{ for all } n \geq 0, \text{ (see } [22,23,30,31]).
\end{equation}

By (1.1) and (1.2), we have

\begin{equation}
\langle t^k | x^n \rangle = n! \delta_{n,k}, \text{ for all } n, k \geq 0, \text{ (see } [22,23,30,31]),
\end{equation}

2000 Mathematics Subject Classification. 05A40, 81S05.

Key words and phrases. Normal ordering, Bessel polynomial, Changhee polynomial, Dahee polynomial, Frobenius-Euler polynomial, Sheffer polynomial, Umbral Calculus.
where $\delta_{n,k}$ is the Kronecker’s symbol. Let us assume that $f_L(t) = \sum_{k \geq 0} \langle L|x^k \rangle k!^k$. Then by (1.2), we easily obtain that $\langle f_L(t)|x^n \rangle = \langle L|x^n \rangle$ and $f_L(t) = L$. So, the map $L \mapsto f_L(t)$ is a vector space isomorphic from \mathcal{H} onto \mathcal{H}. Henceforth, \mathcal{H} is thought of as both set of formal power series and set of linear functionals. We call \mathcal{H} the umbral algebra. The umbral calculus is the study of umbral algebra.

As is definition, the order $O(f(t))$ of a non-zero power series $f(t)$ is the smallest integer k for which the coefficient t^k does not vanish (see [22, 23, 30, 31]). If $O(f(t)) = 1$ (respectively, $O(f(t)) = 0$) then $f(t)$ is called a delta (respectively, an invertible) series. Let us assume that $f(t), g(t) \in \mathcal{H}$ with $O(f(t)) = 1$ and $O(g(t)) = 0$, so there exists a unique sequence $S_n(x)$ of polynomials with

$$\langle g(t)(f(t))^k|S_n(x) \rangle = n!\delta_{n,k}$$

for all $n, k \geq 0$. The sequence $S_n(x)$ is called the Sheffer sequence for $(g(t), f(t))$ which is denoted by $S_n(x) \sim (g(t), f(t))$ (see [22, 23, 30, 31]). Let $f(t) \in \mathcal{H}$ and $p(x) \in \mathbb{P}$, then we note that

$$\langle e^{y|p(x)} \rangle = p(y), \quad \langle f(t)g(t)|p(x) \rangle = \langle f(t)g(t)p(x) \rangle,$$

and

$$f(t) = \sum_{k \geq 0} \langle f(t)|x^k \rangle \frac{t^k}{k!}, \quad p(x) = \sum_{k \geq 0} \langle t^k|p(x) \rangle \frac{x^k}{k!}.$$

(see [22, 23, 30, 31]). From (1.6), we see that

$$\langle t^k|p(x) \rangle = p^{(k)}(0) \quad \text{and} \quad \langle 1|p^{(k)}(x) \rangle = p^{(k)}(0),$$

where $p^{(k)}(0)$ denotes the k-th derivative of $p(x)$ respect to x at $x = 0$. From (1.7) we can derive the following equation $t^k p(x) = p^{(k)}(x)$ (see [22, 23, 30, 31]). For $S_n(x) \sim (g(t), f(t))$, we have

$$\frac{1}{g(f(t))} e^{y f(t)} = \sum_{k \geq 0} S_k(y) \frac{t^k}{k!},$$

for all $y \in \mathbb{C}$, where $\tilde{f}(t)$ is the compositional inverse of $f(t)$ (see [22, 23, 30, 31]). For $S_n(x) \sim (g(t), f(t))$ and $R_n(x) \sim (h(t), \ell(t))$, let us assume that $S_n(x) = \sum_{k=0}^{n} C_{n,k} R_k(x)$. Then we see that

$$C_{n,k} = \frac{1}{k!} \frac{\langle h(f(t)) \rangle}{g(f(t))} \frac{(\ell(f(t)))^k}{k!} \langle x^n \rangle,$$

(1.9)

For all $n, k \geq 0$ (see [22, 23, 30, 31]).

Throughout this paper, we assume that $\lambda \in \mathbb{C}$ with $\lambda \neq 1$. The Frobenius-type Eulerian polynomials of order r are also given by

$$\left(\frac{1 - \lambda}{e^{t \lambda} - \lambda}\right)^r e^{xt} = \sum_{n \geq 0} A_r^{(n)}(x) \frac{t^n}{n!} \quad \text{see} \quad [7, 8, 14, 15, 19, 20],$$

(1.10)

where r is a positive integer. In particular case, $x = 0$, $A_r^{(0)}(0) = A_r^{(n)}(\lambda)$ are called the n-th Frobenius-Euler numbers of order r. As is well known, the Frobenius-Euler polynomials of order r are defined by the generating function to be

$$\left(\frac{1 - \lambda}{e^{t \lambda} - \lambda}\right)^r e^{xt} = \sum_{n \geq 0} F_r^{(r)}(x) \frac{t^n}{n!} \quad \text{see} \quad [23–25].$$

(1.11)
In the special case, \(x = 0 \), \(F^{(r)}_n(0, \lambda) = F^{(r)}_n(\lambda) \) are called the \(n \)-th Frobenius-Euler numbers of order \(r \). The Hermite polynomials are defined by the generating function to be

\[
(1.12) \quad e^{2xt - t^2} = \sum_{n \geq 0} H_n(x) \frac{t^n}{n!} \quad \text{(see \[21,22,30,31\]).}
\]

In the special case, \(x = 0 \), \(H_n(0) = H_n \) are called the \(n \)-th Hermite numbers. From (1.12), we note that \(H_n(x) = \sum_{j=0}^{n} 2^j \binom{n}{j} H_{n-j} x^j \). It is well known that the Poisson-Charlier sequence is given by

\[
C_n(x; a) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} a^{-k} (x)_k \sim \left(e^{a(e^t-1)}, a(e^t - 1) \right) \quad \text{and} \quad \sum_{k \geq 0} C_n(k; a) \frac{t^k}{k!} = \left(\frac{t-a}{a} \right)^n e^t,
\]

(see \[22,23,30,31\]), where \(a \neq 0 \), \(n \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\} \) and \((x)_k = x(x-1) \cdots (x-k+1)\). The solution of the Bessel differential equation \(x^2 y'' + 2(x+1)y' + n(n+1)y = 0 \) is given by

\[
(1.13) \quad y_n(x) = \sum_{k=0}^{n} \frac{(n+k)!}{(n-k)! k!} \left(\frac{x}{2} \right)^k.
\]

The Stirling numbers of the second kind is defined by the generating function to be

\[
(1.14) \quad (e^t - 1)^n = n! \sum_{j \geq n} S_n(j, n) \frac{t^j}{j!} \quad \text{(see \[22,30\]).}
\]

In this paper, we present some properties of several polynomials arising from umbral calculus. In particular, we investigate the properties of the orthogonality-type of the Frobenius-type Eulerian polynomials which are derived from umbral calculus. Finally, in the last section, we establish a connection between our results and the problem of normal ordering.

2. Umbral calculus associated with Frobenius-type Eulerian polynomials

From (1.8), (1.12) and (1.10) we note that

\[
(2.1) \quad A^{(r)}_n(x|\lambda) \sim \left(\frac{e^{t(1-\lambda)} - \lambda}{1 - \lambda} \right)^r \quad \text{and} \quad H_n(x) \sim (e^{r^2/4}, t/2).
\]

Let us assume that

\[
(2.2) \quad A^{(r)}_n(x|\lambda) = \sum_{k=0}^{n} C_{n,k} H_k(x).
\]
By (1.9) and (2.2), we get that

$$C_{n,k} = \frac{1}{k!} \left(\frac{e^{t^2/4}}{(e^{(t^2/4)\lambda} - \lambda)^t} \right) \left(\frac{1}{(e^{(t^2/4)\lambda} - \lambda)^t} \right)^r |x^n|^{2^k} = \frac{1}{2^k} \binom{n}{k} \left(\frac{1 - \lambda}{(1 - \lambda)^t} \right)^r |x^{n-k}|^{2^k}$$

$$= \frac{1}{2^k} \binom{n}{k} \sum_{j=0}^{(n-k)/2} \frac{(n-k)2j}{4j!} \left(\frac{1}{(e^{(t^2/4)\lambda} - \lambda)^t} \right)^r |x^{n-k-2j}|$$

$$= \frac{1}{2^k} \binom{n}{k} \sum_{j=0}^{(n-k)/2} \frac{(2j)!}{2^{2j}j!} \binom{n-k}{2j} \left(\frac{1}{(e^{(t^2/4)\lambda} - \lambda)^t} \right)^r A_{n-k-2j}^{(r)}(x|\lambda)$$

$$= \frac{1}{2^k} \binom{n}{k} \sum_{j=0, j \text{ even}}^{n-k} \frac{(2j)!}{2^{2j}j!} \binom{n-k}{2j} A_{n-k-2j}^{(r)}(\lambda)$$

$$= \sum_{j=0, j \text{ even}}^{n-k} \frac{A_{n-k-2j}^{(r)}(\lambda)}{2^{2j}j!} |x^{n-k}|^{2^j}$$

Therefore, by (2.2), we obtain the following result.

Theorem 2.1. Let \(r \in \mathbb{Z}_+ \). For \(n \geq 0 \),

$$A_n^{(r)}(x|\lambda) = n! \sum_{k=0}^{n} \binom{n}{k} \frac{A_{n-k-2j}^{(r)}(\lambda)}{2^{2j}j!} |x^{n-k}|^{2^j}$$

Now, let us assume that

(2.3) \[
H_n(x) = \sum_{k=0}^{n} C_{n,k} A_k^{(r)}(x|\lambda).
\]

Then, by (1.9) and (2.3), we get

$$C_{n,k} = \frac{1}{k!} \left(\frac{e^{2t(\lambda-1) - \lambda}}{1 - \lambda} \right)^t |x^n|^{2^k} e^{-t^2}$$

$$= 2^k \binom{n}{k} \sum_{j=0}^{(n-k)/2} \frac{(-1)^j(n-k)2j}{j!} \left(\frac{e^{2t(\lambda-1) - \lambda}}{1 - \lambda} \right)^t |x^{n-k-2j}|$$

$$= \frac{2^k}{(1 - \lambda)^t} \binom{n}{k} \sum_{j=0}^{(n-k)/2} \frac{(-1)^j(n-k)2j}{j!} \left(\frac{e^{2t(\lambda-1) - \lambda}}{1 - \lambda} \right)^t |x^{n-k-2j}|$$

(2.4)

From (1.14), we note that

$$\left(e^{2t(\lambda-1) - \lambda} \right)^t = \left(e^{2t(\lambda-1) - 1} - 1 - \lambda \right)^t = \sum_{d=0}^{r} \binom{r}{d} (1 - \lambda)^{r-d} \left(e^{2t(\lambda-1) - 1} \right)^d$$

$$= \sum_{d=0}^{r} \sum_{m=0}^{d} (-1)^{r-d-j} m^{2+m-d} \binom{r}{d} (\lambda - 1)^{r+m} (m + d)! S_2(m + d, d) t^{m+d},$$
which implies
\[
(21) \quad (e^{2t(1-\lambda)} - \lambda)^r x^{n-k-2j} \\
= \sum_{d=0}^{r} \sum_{m=0}^{d} \frac{(-1)^{r-d}d!2^{m+d}d^r(2j)!\lambda^{r+m}}{(m+d)!} S_2(m+d, d)(n-k-2j)(n-k-2j-d)_m x^{n-k-2j-d}.
\]

By (24) and (25), we have
\[
C_{n,k} = r! \binom{n}{k} \sum_{j=0}^{(n-k)/2} \sum_{d=0}^{r} \frac{(-1)^{j+d}(2j)!d!}{j!} \binom{n-k}{2j} \binom{r}{d} \lambda^{n-k-2j-d}S_2(n-k-2j, d).
\]

Therefore, by (23), we can state the following result.

Theorem 2.2. Let \(r \in \mathbb{Z}_+. \) For all \(n \geq 0, \)
\[
H_n(x) = \sum_{k=0}^{n-1} \frac{(n-k)!}{(n-1-k)!2k!} x^{n-k} \sim (1, t - t^2/2).
\]

By (2.6), we can derive the generating function of \(J_n(x) \) as follows: \(\sum_{n \geq 0} J_n(x) t^n = e^{(1+\sqrt{1-2t})}. \) By (1.13), we easily obtain
\[
J_n(x) = \sum_{k=0}^{n-1} \frac{(n-1+k)!}{(n-1-k)!2k!2^k} x^{n-k} \sim (1, t - t^2/2).
\]

Let us assume that
\[
(2.8) \quad A^{(r)}_n(x|\lambda) = \sum_{k=0}^{n} C_{n,k} J_k(x).
\]

Then, by (1.9) and (2.8), we have
\[
C_{n,k} = \binom{n}{k} \left(\frac{1-\lambda}{e^{t(\lambda-1)} - \lambda} \right)^r \left(\frac{2-t}{t} \right)^k x^{n-k} \\
= (-1)^k \binom{n}{k} \sum_{j=0}^{n-k} \frac{C_k(j; 2)}{j!} \left(\frac{1-\lambda}{e^{t(\lambda-1)} - \lambda} \right)^r e^{-tj} x^{n-k} \\
= (-1)^k \binom{n}{k} \sum_{j=0}^{n-k} C_k(j; 2) \binom{n-k}{j} \left(\frac{1-\lambda}{e^{t(\lambda-1)} - \lambda} \right)^r (x-1)^{n-k-j} \\
= (-1)^k \binom{n}{k} \sum_{j=0}^{n-k} C_k(j; 2) \binom{n-k}{j} A^{(r)}_{n-k-j}(-1|\lambda).
\]

Therefore, by (2.8) we have the following result.
Theorem 2.3. Let \(r \in \mathbb{Z}_+ \). For \(n \geq 0 \), we have
\[
A_{n}^{(r)}(x|\lambda) = \sum_{k=0}^{n} \left(\sum_{j=0}^{n-k} \binom{n-k}{j} \binom{n-1}{k-j} \right) C_{k}(j;2)A_{n-k-j}^{(r)}(-1|\lambda) J_{k}(x).
\]

It is well known that Eulerian-type Chaughee polynomials are defined by the generating function to be
\[
(2.9) \quad \sum_{n=0}^{\infty} Ch_{n}(x|\lambda) = \frac{(1+t)^{\lambda-1}-\lambda}{1-\lambda} (1+t)^{x} \quad \text{(see [19,22,23,30,31]).}
\]

From (1.8) and (2.9), we can derive \(Ch_{n}(x|\lambda) \sim \frac{\Gamma(\lambda-1)}{e(\lambda-1)-\lambda}, e^{t}-1 \). Let us assume that
\[
(2.10) \quad A_{n}^{(r)}(x|\lambda) = \sum_{k=0}^{n} C_{n,k} Ch_{k}(x|\lambda).
\]

Then, by (1.9), we obtain
\[
C_{n,k} = \frac{1}{k!} \left(\frac{1-\lambda}{e(\lambda-1)-\lambda} \right)^{r+1} \left(e^{t}-1 \right)^{k} \left| x^{n} \right|
\]
\[
= \sum_{j=0}^{n-k} S_{2}(j+k,k) \left(\frac{1-\lambda}{e(\lambda-1)-\lambda} \right)^{r+1} \left| t^{k+j} x^{n} \right|
\]
\[
= \sum_{j=0}^{n-k} S_{2}(j+k,k) \binom{n}{j+k} \left(\frac{1}{e(\lambda-1)-\lambda} \right)^{r+1} x^{n-k-j}
\]
\[
= \sum_{j=0}^{n-k} S_{2}(j+k,k) \binom{n}{j+k} A_{n-k-j}^{(r+1)}(\lambda).
\]

Hence, by (2.10) we can state the following theorem.

Theorem 2.4. Let \(r \in \mathbb{Z}_+ \). For \(n \geq 0 \), we have
\[
A_{n}^{(r)}(x|\lambda) = \sum_{k=0}^{n} \sum_{j=0}^{n-k} S_{2}(j+k,k) \binom{n}{j+k} A_{n-k-j}^{(r+1)}(\lambda) Ch_{k}(x|\lambda).
\]

Let us consider the Eulerian-type Dahee polynomials of the second kind as follows:
\[
(2.11) \quad D_{n}^{t}(x|\lambda) \sim \frac{1-\lambda}{e(\lambda-1)-\lambda} \frac{e^{t}-1}{e^{t}-\lambda}.
\]

From (1.8) and (2.11), we can derive the generating function of (2.11) as follows:
\[
\sum_{n>0} D_{n}^{t}(x|\lambda) \frac{x^{n}}{n!} = \frac{1-\lambda t^{x+\lambda-1} - \lambda(1-t)^{\lambda-1}(1-\lambda t^{x})}{(1-\lambda)(1-t)^{x+\lambda-1}},
\]
where \(t \neq 1 \). Let us assume that
\[
(2.12) \quad A_{n}^{(r)}(x|\lambda) = \sum_{k=0}^{n} C_{n,k} D_{k}^{t}(x|\lambda).
\]
Then, by (1.9) and (2.12), we have
\[
C_{n,k} = \frac{1}{k!} \left(\frac{1 - \lambda}{e^{\lambda(\lambda-1)} - \lambda} \right)^{r+1} \left(\frac{e^t - 1}{e^t - \lambda} \right)^k |x^n|
\]
\[
= \frac{1}{(1 - \lambda)^k} \sum_{j=0}^{n-k} \binom{n}{j+k} S_2(j+k,k) \left(\frac{1 - \lambda}{e^{\lambda(\lambda-1)} - \lambda} \right)^{r+1} F_{n-k-j}^{(r+1)}(x|\lambda)
\]
\[
= \frac{1}{(1 - \lambda)^k} \sum_{j=0}^{n-k} \sum_{m=0}^{n-k-j} \binom{n}{j+k} S_2(j+k,k) F_{n-k-j-m}^{(r+1)}(x|\lambda) A_m^{(r+1)}(\lambda).
\]
Therefore, by (2.12), we obtain the following result.

Theorem 2.5. Let \(r \in \mathbb{Z}_+ \). For \(n \geq 0 \), we have
\[
A_n^{(r)}(x|\lambda) = \sum_{k=0}^{n} \left(\sum_{j=0}^{n-k} \sum_{m=0}^{n-k-j} \frac{n-k-j}{j+m} S_2(j+k,k) F_{n-k-j-m}^{(r+1)}(x|\lambda) A_m^{(r+1)}(\lambda) \right) C_h(x|\lambda).
\]

Let \(p_n(x) \sim (1,f(t)) \) and \(q_n(x) \sim (1,g(t)) \) \((n \geq 0)\). Then we note that
\[
q_n(x) = x \left(\frac{f(t)}{g(t)} \right)^n x^{-1} p_n(x).
\]
Let us consider the following Sheffer sequences
\[
S_n(x|\lambda) \sim \left(1, \frac{1}{1-\lambda} \lambda t \right) \quad \text{and} \quad x^n \sim (1,t).
\]
From (2.13) and (2.14), we can derive
\[
S_n(x|\lambda) = x \left(\frac{1 - \lambda}{e^{\lambda(\lambda-1)} - \lambda} \right)^n x^{n-1}
\]
and
\[
S_n(x|\lambda) = (1-\lambda)^n x(e^{\lambda(\lambda-1)} - 1 + \lambda)^{-n} x^{n-1}
\]
\[
= x \sum_{j=0}^{n} \binom{n}{j} \left(\frac{e^{\lambda(\lambda-1)}}{1-\lambda} - 1 \right)^j x^{n-1}
\]
\[
= x \sum_{j=0}^{n} \binom{n+1}{j} (1-\lambda)^{-j} (e^{\lambda(\lambda-1)} - 1)^j x^{n-1}.
\]
By (1.14), we easily get
\[
(e^{\lambda(\lambda-1)} - 1)^j = \sum_{m=0}^{j} \frac{j!}{(m+j)!} S_2(m+j,j)(\lambda-1)^{j+m} t^{j+m}.
\]
Thus, from (2.16) and (2.17), we have
\[
S_n(x|\lambda) = x \sum_{j=0}^{n} \sum_{m=0}^{n-j} \frac{j!}{(m+j)!} \binom{n}{j+m} (\lambda-1)^{j+m} t^{j+m} x^{n-1}.
\]
\[
S_n(x|\lambda) = x \sum_{j=0}^{n-j} \sum_{m=0}^{n-j} \frac{j!}{(m+j)!} \binom{n+1}{j+m} (\lambda-1)^{j+m} x^{n-1}.
\]
Hence, by (2.15) and (2.18), we obtain the following result.
Theorem 2.6. Let $r \in \mathbb{Z}_+$. For $n \geq 1$, we have

$$x A_{n-1}^{(r)}(x|\lambda) = \sum_{j=0}^{n-1} \sum_{m=0}^{n-1-j} j! \binom{n+1-j}{j} \binom{n-1}{m+j} (\lambda - 1)^m S_2(m+j,j)x^{n-1-m-j}. $$

If we consider the following Sheffer sequences

\begin{equation}
 p_n(x) \sim \left(1, \left(\frac{e^{t(\lambda - 1)}}{1 - \lambda} \right)^t \right) \text{ and } x^n \sim (1, t),
\end{equation}

then, by (2.13) and (2.19), we get

\begin{equation}
 p_n(x) = x \left(\frac{1 - \lambda}{e^{t(\lambda - 1)} - \lambda} \right)^{rn} x^{n-1} = x A_{n-1}^{(rn)}(x|\lambda).
\end{equation}

Therefore, we can state the following result.

Theorem 2.7. Let $r \in \mathbb{Z}_+$. For $n \geq 1$, we have

$$x A_{n-1}^{(rn)}(x|\lambda) \sim \left(1, \left(\frac{1 - \lambda}{e^{t(\lambda - 1)} - \lambda} \right)^r t \right).$$

3. Orthogonality-type

Let $\Pi_n = \{ p(x) \in \mathbb{C}[x] \mid \deg p(x) \leq n \}$. Then we note that Π_n is the $(n + 1)$-dimensional vector space over \mathbb{C}. It is not difficult to see that $\{ A_0^{(r)}(x|\lambda), A_1^{(r)}(x|\lambda), \ldots, A_n^{(r)}(x|\lambda) \}$ is a basis for Π_n. For $p(x) \in \Pi_n$, let us assume that

\begin{equation}
 p(x) = \sum_{k=0}^{n} a_k A_k^{(r)}(x|\lambda), \ (n \geq 0).
\end{equation}

From (1.4), (2.1) and (3.1), we can derive

$$\left\langle \left(\frac{e^{t(\lambda - 1)}}{1 - \lambda} \right)^r t^k | p(x) \right\rangle = \sum_{j=0}^{n} a_j \left\langle \left(\frac{e^{t(\lambda - 1)}}{1 - \lambda} \right)^r t^k | A_j^{(r)}(x|\lambda) \right\rangle = \sum_{j=0}^{n} j! a_j \delta_{j,k} = k!a_k. $$

So,

$$a_k = \frac{1}{k!} \left\langle \left(\frac{e^{t(\lambda - 1)}}{1 - \lambda} \right)^r t^k | p(x) \right\rangle = \frac{1}{k!} \left\langle \left(\frac{e^{t(\lambda - 1)}}{1 - \lambda} \right)^r | D^k p(x) \right\rangle = \frac{1}{k!(1 - \lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} \langle 0 | D^k p(x + j(\lambda - 1)) \rangle. $$

Therefore, by (3.1), we obtain the following theorem.

Theorem 3.1. For $r \in \mathbb{Z}_+$ and $p(x) \in \Pi_n$, let $p(x) = \sum_{k=0}^{n} a_k A_k^{(r)}(x|\lambda)$. Then

$$a_k = \frac{1}{k!(1 - \lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} D^k p(j(\lambda - 1)). $$
Now, we present several applications for the above theorem. At first, let us take

\begin{equation}
(3.2) \quad p(x) = L_n(-x) = \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{n!}{m!} x^n \sim (1, t/(1-t)),
\end{equation}

where \(L_n(x) \) is the \(n \)-th Laguerre polynomial. By Theorem 3.1, we obtain

\[
a_k = \frac{1}{k!(1-\lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} D^k p(j-1) = \frac{1}{k!(1-\lambda)^r} \sum_{j=0}^{r} \sum_{m=1}^{n} \binom{r}{j} (-\lambda)^{r-j} \binom{n-1}{m-1} \binom{m}{k} \frac{n!k!}{m!} (j-1)^{m-k-1} j^{m-k}
\]

Hence, by Theorem 3.1 we can state the following theorem.

Theorem 3.2. For \(r, n \in \mathbb{Z}_+ \), we have

\[
L_n(-x) = \sum_{k=0}^{n} \left\{ \sum_{j=0}^{r} \sum_{m=1}^{n} \binom{r}{j} (-\lambda)^{r-j} \binom{n-1}{m-1} \binom{m}{k} \frac{n!k!}{m!} (j-1)^{m-k-1} j^{m-k} \right\} A_k^{(r)}(x|\lambda).
\]

Let us take \(p(x) = J_n(x) = \sum_{m=0}^{\infty} \frac{(n-1+m)!}{m!(n-1-m)!2^m} x^{n-m} \sim (1, t - t^2/2) \), where \(J_n(x) \) is the \(n \)-th Bessel function. By Theorem 3.1, we obtain

\[
a_k = \frac{1}{k!(1-\lambda)^r} \sum_{j=0}^{r} \binom{r}{j} (-\lambda)^{r-j} D^k p(j-1) = \frac{1}{k!(1-\lambda)^r} \sum_{j=0}^{r} \sum_{m=0}^{n-1} \binom{r}{j} (-\lambda)^{r-j} \frac{(n-1+m)!}{m!(n-1-m)!2^m} \binom{n-m}{k} \frac{n!k!}{m!} (j-1)^{m-k-1} j^{m-k-1}
\]

Hence, by Theorem 3.1 we can state the following theorem.

Theorem 3.3. For \(r, n \in \mathbb{Z}_+ \), we have

\[
J_n(x) = \sum_{k=0}^{n} \left\{ \sum_{j=0}^{r} \sum_{m=0}^{n-1} \binom{r}{j} \binom{n-m}{k} \frac{(j-1)^{m-k-1} j^{m-k-1}}{m!(n-1-m)!2^m} \right\} A_k^{(r)}(x|\lambda).
\]

4. Application to normal ordering

Since the seminal work of Katriel [17] the combinatorial aspects of normal ordering arbitrary words in the creation and annihilation operators \(a^\dagger \) and \(a \) of a single-mode boson having the usual commutation relations \([a, a^\dagger] = a a^\dagger - a^\dagger a = 1, [a, a] = 0 \) and \([a^\dagger, a^\dagger] = 0 \) have been studied intensively since the seventies, see [3, 4, 17, 18, 26–29, 32–34] and references therein. From a more mathematical point of view the consequences of the noncommutative calculus of operators has been considered, in particular by Maslov [29]. Recall that normal ordering \(\mathcal{N}(F(a, a^\dagger)) \) is a functional representation of
an operator function $F(a, a^\dagger)$ in which all the creation operators stand to the left of the annihilation operators. For example, Katriel [17] showed that

$$\mathcal{N}[a^\dagger a]^n = \sum_{k=0}^{n} S_2(n, k)(a^\dagger)^k a^k.$$

By the properties of coherent states (for instance, see [3]), the last identity can be written as

$$\langle z | e^{a^\dagger a} | z \rangle = \sum_{n\geq 0} \langle z | (a^\dagger a)^n | z \rangle \frac{t^n}{n!} = e^{z^2(t^2 - 1)}.$$

Now, we can state the relation between normal ordering and Sheffer sequences as follows. Let $S_n(x) \sim (g(t), f(t))$ and $R_n(x) \sim (h(t), \ell(t))$ be any two Sheffer sequences. Then one has

$$\langle z | [M_{g,f}(a, a^\dagger)]^n | z \rangle = \sum_{k=0}^{n} \frac{1}{k!} \left\langle \begin{array}{c} h(\tilde{f}(t)) \\ g(\tilde{f}(t)) \end{array} \right\rangle^{(k)} | a^n \rangle \langle z | [M_{h,\ell}(a, a^\dagger)]^k | z \rangle,'$$

where f denotes the compositional inverse of f and $M_{g,f}(x, y) = \left(y - \frac{g'(x)}{g(x)} \right) \frac{f'(x)}{f(x)}$. By (4.1) and the results in the previous sections, we can obtain several nice normal ordering identities. In the following, we present several examples.

Example 4.1. Let $(g, f) = (1, t - t^2/2)$ and $(h, \ell) = \left(\left(\frac{e^{(1-\lambda)x} - 1}{1-\lambda} \right)^r, t \right)$, so $M_{g,f}(a, a^\dagger) = a^\dagger - \frac{(1-\lambda)e^{a(1-\lambda)}}{e^{(1-\lambda)x} - \lambda}$ and $M_{h,\ell}(a, a^\dagger) = a^\dagger - \frac{(1-\lambda)e^{a(1-\lambda)}}{e^{(1-\lambda)x} - \lambda}$. Then, by the proof of Theorem 2.1 and (4.1), we obtain

$$n! \sum_{k=0}^{n} \frac{1}{k!} \frac{A_{n-k,j}(\lambda)}{2^{r+k}j!(j/2)!} \langle z | (2a^\dagger - a)^k | 0 \rangle = \langle z | (a^\dagger - \frac{(1-\lambda)e^{a(1-\lambda)}}{e^{(1-\lambda)x} - \lambda})^n | 0 \rangle.$$

Example 4.2. Let $(g, f) = \left(\left(\frac{e^{(1-\lambda)x} - 1}{1-\lambda} \right)^r, t \right)$ and $(h, \ell) = (1, t - t^2/2)$, so $M_{g,f}(a, a^\dagger) = a^\dagger - \frac{r(1-\lambda)e^{a(1-\lambda)}}{e^{(1-\lambda)x} - \lambda}$ and $M_{h,\ell}(a, a^\dagger) = a^\dagger(1-a)^{-1} = a^\dagger \sum_{j\geq 0} a^j$. Then, by the proof of Theorem 2.3 and (4.1), we obtain

$$\sum_{k=0}^{n} \frac{(-1)^k \binom{n-k}{k} C_k(j; 2) A_{n-k-j}(\lambda)}{(n-k-j)!} \langle z | (a^\dagger(1-a)^{-1})^k | 0 \rangle = \langle z | (a^\dagger - \frac{r(1-\lambda)e^{a(1-\lambda)}}{e^{(1-\lambda)x} - \lambda})^n | 0 \rangle.$$

REFERENCES

[29] Maslov, V.P., Operational Methods [in Russian], Nauka (1973); Maslov, V.P., Operational Methods, Mir, Moscow (1976).

DEPARTMENT OF MATHEMATICS, KWANGWON UNIVERSITY, SEOUL, S. KOREA
E-mail address: tkkim@kw.ac.kr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAIFA, 3498838 HAIFA, ISRAEL
E-mail address: tmansour@univ.haifa.ac.il