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Abstract. We consider k sequences of generalized order-k linear recurrences

with arbitrary initial conditions and coefficients, and we give their generalized

Binet formulas and generating functions. We also obtain a new matrix method
to derive explicit formulas for the sums of terms of the k sequences. Further,

some relationships between determinants of certain Hessenberg matrices and
the terms of these sequences are obtained.

2010 Mathematics Subject Classification: 11B37, 40C05, 15A36, 15A15

Keywords and phrases: Higher order recurrence, generating matrix, sum, ma-

trix method.

1. Introduction

Linear recurrences have played (and will most certainly play) an important role
in many areas of mathematics. Various authors have studied various properties of
linear recurrences (such as the well-known Fibonacci and Pell sequences).

In [2], Er defined k linear recurring sequences of order at most k as shown: For
n > 0 and 1 ≤ i ≤ k,

gin =
k∑
j=1

gin−j

with initial conditions

gin =
{

1 if n = 1− i,
0 otherwise, for 1− k ≤ n ≤ 0,

where gin is the nth term of the ith generalized order-k Fibonacci sequence.
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More generally, in [6], the author gave the generalized order-k Fibonacci and Pell
(F-P) sequence as follows: For m ≥ 0, n > 0 and 1 ≤ i ≤ k

uin = 2muin−1 + uin−2 + · · ·+ uin−k

with initial conditions

uin =
{

1 if n = 1− i,
0 otherwise, for 1− k ≤ n ≤ 0,

where uin is the nth term of the ith generalized order-k F-P sequence.
When m = 0, the generalized order-k F-P sequence

{
uin
}

is reduced to the gener-
alized order-k Fibonacci sequence

{
gin
}

. Also when m = 1, the generalized order-k
F-P sequence is reduced to the generalized order-k Pell sequence

{
P in
}

(for more
details see [5]).

Define k sequences of kth order linear recurrence relation
{
f in
}

as shown, for
n > 0 and 1 ≤ i ≤ k

(1.1) f in = c1f
i
n−1 + c2f

i
n−2 + · · ·+ ckf

i
n−k

with initial conditions

f in =
{

1 if n = 1− i,
0 otherwise, for 1− k ≤ n ≤ 0

where cj , 1 ≤ j ≤ k, are real constant coefficients, and f in is the nth term of the ith
sequence. When k = 2, c1 = c2 = 1, respectively, k = c1 = 2, c2 = 1 the sequence{
f2
n

}
is reduced to the Fibonacci sequence {Fn}, respectively, the Pell sequence

{Pn}.
Define the k × k companion matrix A and the matrix Gn as follows:

(1.2)

A =


c1 c2 . . . ck−1 ck
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , Gn =


f1
n f2

n . . . fkn
f1
n−1 f2

n−1 . . . fkn−1
...

...
. . .

...
f1
n−k+1 f2

n−k+1 . . . fkn−k+1


Using the approach of Kalman [3], Er [2] showed that

(1.3) Gn = An

and

f in+1 = cif
1
n + f i+1

n , for 1 ≤ i ≤ k − 1(1.4)

fkn+1 = ckf
1
n.(1.5)

Matrix methods are helpful and convenient in solving certain problems stemming
from linear recursion relations, such as that of finding an explicit expression for
the nth term of the Fibonacci sequence (see [9]), or of analyzing the vibration of
a weighted string [10, pp. 152–154]. Here we will consider a more general case
using matrix methods to obtain some explicit formulas for the nth term of a general
recurrence relation and the sums of terms of the recurrence. The general linear
recurrence relations have been considered by many mathematicians (for references,
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see [1, 2, 4, 5]). The authors of [4, 6, 7] give the generalized Binet formula for the
generalized order-k Fibonacci, Lucas and Pell numbers by matrix methods.

In this paper, we consider k sequences of general order-k linear recurrences with
k arbitrary initial conditions and coefficients. Then we study the properties of k
linear recursive sequences and derive many applications to matrices.

2. General linear recurrence with k initial conditions

Define a set of k sequences satisfying the generalized order-k linear recurrence
{tin(r1, r2, . . . , rk)} as shown: For n > 0 and 1 ≤ i ≤ k,

tin = c1t
i
n−1 + c2t

i
n−1 + · · ·+ ckt

i
n−k

with k initial conditions

tin =



r1 if n = 1− i,
r2 if n = 2− i,
...

...
rk if n = k − i,
0 otherwise,

for 1− k ≤ n ≤ 0

where the coefficients ci and the initial conditions ri are arbitrary, for 1 ≤ i ≤ k,
and tin is the nth term of ith sequence. Clearly,

{
tin (1, 0, . . . , 0)

}
=
{
f in
}

, where f in
are given by (1.1).

Next, we define a k × k matrix Hn = [hij ] by

(2.1) Hn =


t1n t2n . . . tkn
t1n−1 t2n−1 . . . tkn−1

...
...

. . .
...

t1n−k+1 t2n−k+1 . . . tkn−k+1

 .
By Kalman’s [3] approach, we find that

(2.2) Hn = AHn−1 and so, Hn = An−1H1,

where the matrix A is given by (1.2).

Theorem 2.1. For n > 0,

tin =
i∑

j=1

ri+1−jf
j
n,

where f in is defined as before.

Proof. From (2.2), we have Hn = An−1H1. From (2.1) we get

H1 =


t11 t21 · · · tk1
t10 t20 · · · tk0
...

...
. . .

...
t12−k t22−k · · · tk2−k

 =



1∑
j=1

cjr2−j

2∑
j=1

cjr3−j . . .

k∑
j=1

cjrk+1−j

r1 r2 · · · rk
0 r1 · · · rk−1

...
...

. . .
...

0 0 · · · r1


,
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which implies that

(2.3) H1 = AE,

where the matrix E is the k × k upper tridiagonal matrix of the form

E =


r1 r2 r3 . . . rk

r1 r2 . . . rk−1

r1 . . . rk−2

. . .
...

0 r1

 .
Using Er’s approach [2] and (1.3), we obtain An = Gn. Since Hn = An−1H1 and
H1 = AE, we get

(2.4) Hn = AnE,

which can be re-written as

(2.5) tin =
i∑

j=1

ri+1−jf
j
n,

and the proof is complete.
Therefore we see that the general recurrence with arbitrary initial conditions can

be written as a linear combination of terms of the recurrence
{
f in
}

. By this result,
we can easily derive some properties of the recurrence

{
tin
}

.

Corollary 2.1. For n ∈ Z,

det


t1n t2n . . . tkn
t1n−1 t2n−1 . . . tkn−1

...
...

...
t1n−k+1 t2n−k+1 . . . tkn−k+1

 = (−1)k+1
ckr

k
1 .

Proof. Let Hn, Gn and E be the matrices defined in the proof of Theorem 2.1.
It is clear that detGn = (−1)k+1

ck and detE = rk1 . Taking the determinant in
Hn = GnE shows our claim.

Corollary 2.1 is a vast generalization of the well-known Cassini’s identity for the
Fibonacci numbers, that is, F 2

n − Fn−1Fn+1 = (−1)n−1
.

Corollary 2.2. Let xk − c1x
k−1 − c2x

k−2 − · · · − ck = (x− λ1) · · · (x− λk) and
en = λn1 + λn2 + · · ·+ λnk . Then

en =
k∑
i=1

(
i∑

m=1

ri+1−mf
m
n+1−t

)
.

Proof. A is the companion matrix from (1.2) and xk − c1xk−1 − c2xk−2 − · · · − ck
is its characteristic polynomial, whose roots (also, eigenvalues of A) are λ1, . . . , λk.
Thus the eigenvalues of An are λn1 , . . . , λ

n
k . Denote the trace of the matrix W by

tr(W ) . By Theorem 2.1,

en = λn1 + λn2 + · · ·+ λnk = tr (Hn) = tr (GnE)
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=
k∑
i=1

(
i∑

m=1

ri+1−mf
m
n+1−t

)
.

Thus the proof is complete.

3. Sums of the terms of recurrence
{
tkn
}

In this section we deal with the sums of the terms of recurrence
{
tkn
}

subscripted
from 1 to n. By the result of Theorem 2.1, clearly

(3.1) tkn =
k∑
j=1

rk−j+1f
j
n.

The characteristic polynomial of both the matrix A and the sequence
{
fkn
}

is
E(x) = xk − c1xk−1 − c2xk−2 − · · · − ck−1x − ck. Let λ1, λ2, . . . , λk be the charac-
teristic roots of the equation.

Hypothesis 1. Throughout this paper, we suppose that the roots λ1, . . . , λk are
distinct (which happens if gcd(E,E′) = 1) and not equal to 1.

As special cases, we note that when ci = 1 for 1 ≤ i ≤ k, the equation xk −
xk−1− · · · − x− 1 = 0 does not have multiple roots (see [7]). Also, when c1 = 2 and
ci = 1 for 2 ≤ i ≤ k, the equation xk− 2xk−1−xk−2− · · ·−x− 1 = 0 does not have
multiple roots (see [5]). For the case c1 = 2m, ci = 1 for 2 ≤ i ≤ k and m ≥ 0, we
refer to [6].

Let V = ΛT be a k × k Vandermonde matrix, where

(3.2) Λ =


λk−1

1 λk−2
1 . . . λ1 1

λk−1
2 λk−2

2 . . . λ2 1
...

...
...

...
λk−1
k λk−2

k . . . λk 1

 .
Let wik be the column matrix

wik =


λn+k−i

1

λn+k−i
2

...
λn+k−i
k


and Λ(i)

j be the k × k matrix obtained from Λ by replacing the jth column of Λ by
wik.

The generalized Binet formula for the recurrence
{
f in
}

can be expressed using
V = ΛT and V

(i)
j = Λ(i)

j .

Theorem 3.1. For n > 0 and 1 ≤ i ≤ k,

f jn−i+1 =
det
(
V

(i)
j

)
det (V )

.
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Proof. Since the eigenvalues of A are distinct (by our Hypothesis 1), we infer that A
is diagonalizable. It is readily seen that AV = V D, where D = diag (λ1, λ2, . . . , λk) .
Since V is invertible, V −1AV = D. Hence, A is similar to D. So we obtain AnV =
V Dn. Since An = Gn = [gij ], we obtain the following linear system of equations:

gi1λ
k−1
1 + gi2λ

k−2
1 + · · ·+ gik = λn+k−i

1

gi1λ
k−1
2 + gi2λ

k−2
2 + · · ·+ gik = λn+k−i

2
...

...
gi1λ

k−1
k + gi2λ

k−2
k + · · ·+ gik = λn+k−i

k .

Thus, for j = 1, 2, . . . , k, we get gij = det
(

Λ(i)
j

)
/det (Λ), where Gn = [gij ] and

gij = f jn−i+1. The proof is complete.

Corollary 3.1. For n > 0, we have

tin =
1

det (Λ)

i∑
j=1

rk+1−j det
(

Λ(1)
j

)
.

For example, when c1 = 2 and ci = 1 for all 2 ≤ j ≤ k, the sequence
{
f in
}

is reduced to the generalized order-k Pell sequence
{
P in
}

and so the sums of the
generalized order-k Pell numbers is given by

n∑
i=1

P ki =

(
P 1
n + P 2

n + · · ·+ P kn − 1
)

k
.

When k = 3, ci = 1 for 1 ≤ i ≤ 3, the sequence
{
f in
}

is reduced to the generalized
Tribonacci sequence

{
T in
}

and so
n∑
i=1

T 3
i =

(
T 1
n + T 2

n + T 3
n − 1

)
2

and by the definition of the
{
T in
}
, we have T 1

n = T 3
n+1 and T 2

n = T 3
n + T 3

n−1. For
easy writing, we denote T 3

n by Tn. Thus we can write
n∑
i=1

Ti =
(Tn+1 + 2Tn + Tn−1 − 1)

2
=

(Tn+2 + Tn − 1)
2

.

We expand our matrix method to find all sums of terms of k sequences of gener-
alized order-k recurrences

{
f in
}

subscripted 1 to n for all 1 ≤ i ≤ k.
Define the following two sums: For 1 ≤ i ≤ k, let S(i)

n =
∑n−1
m=1 f

i
m and T

(i)
n =∑n−i

m=1−i f
i
m. Then T

(i)
n = S

(i)
n−i+1 + 1, since

f in =
{

1 if i = 1− n,
0 otherwise, for 1− k ≤ n ≤ 0.

Further,

S
(i)
n+1 = f in + S(i)

n(3.3)

T
(i)
n+1 = f in−i+1 + T (i)

n(3.4)
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We next define two (k + 1)× (k + 1) matrices as follows:

Bi =



1 0 . . . 0
0
...
0 A
1
0
...
0


← (i+ 1) th row

and

Yn,i =



1 0 . . . 0
S

(i)
n

S
(i)
n−1
... Gn

S
(i)
n−i+2

T
(i)
n

T
(i)
n−1
...

T
(i)
n−k+i



← 1st row
← 2nd row
...

...
← (i− 1) th row
← ith row
← (i+ 1) th row
...

...
← kth row

where the matrices A and Gn were defined before. We have the following result.

Theorem 3.2. For n > 0,
Yn,i = Bni .

Proof. Combining the identities (3.3) and (3.4), we obtain

Yn+1,i = Yn,iBi = · · · = Y1,iB
n
i .

From the definitions of
{
T

(i)
n

}
and

{
S

(i)
n

}
, we can easily check that Y1,i = Bi, and

the theorem is proven.

Now we are going to derive an explicit expression for every sum S
(i)
n for 1 ≤ i ≤ k

by matrix methods.
We first make some observations. If we expand detBi with respect to the first

row, we get
detBi = detA

and the characteristic polynomials of A,Bi satisfy

CBi
(λ) = (1− λ)CA (λ) .

Since λ1, λ2, . . . , λk are the roots of CA (λ) (distinct and nonequal to 1), the eigen-
values of matrix Bi are λ1, λ2, . . . , λk, 1. Therefore the eigenvalues of the matrix Bi
are distinct, and so Bi is diagonalizable.
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For easy writing, let

µi =

k∑
t=i

ct

1−
k∑
t=1

ct

for 1 < i ≤ k and µ1 =
1

1−
k∑
t=1

ct

.

The following (k + 1)× (k + 1) matrix for 1 < i ≤ k

P =



1 0 0 . . . 0
µi λk−1

1 λk−1
2 . . . λk−1

k

µi λk−2
1 λk−2

2 . . . λk−2
k

...
...

...
...

µi λk−i+1
1 λk−i+1

2 λk−i+1
k

µi + 1 λk−i1 λk−i2 λk−ik

µi + 1 λk−i−1
1 λk−i−1

2 λk−i−1
k

... λ1 λ2 . . . λk
µi + 1 1 1 . . . 1


=



1 0 0 . . . 0
µi
µi
... V
µi

µi + 1
...

µi + 1


satisfies BiP = PD1, where D1 is the (k + 1) × (k + 1) diagonal matrix defined
previously, D1 = diag (1, λ1, λ2, . . . , λk) . Here we note that if we expand detP with
respect to the first row, then we get detP = det Λ. Since Λ is the Vandermonde
matrix, the matrix P is invertible.

Theorem 3.3. For n > 0 and 1 < i < k,

S(i)
n = µi

1−
k∑
j=1

f jn

− k∑
m=i

fmn

and

S(1)
n = µ1

1−
k∑
j=1

f jn

 .

Proof. Since BiP = PD1 for 1 < i ≤ k and the matrix P is invertible, we write
Bni P = PDn

1 and so Yn,iP = PDn
1 . By equating the (2, 1) entries of the equality

Yn,iP = PDn
1 , we have the conclusion.

For the case i = 1, one can see thatBP1 = P1D1 where the (k + 1)×(k + 1) matrices
B and P1 are as follows

B =


1 0 . . . 0
1
0 A
...
0

 and P1 =


1 0 . . . 0
µ1

... V
µ1

 .
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By induction on n, we see that

Y = Bn =


1 0 . . . 0
S

(i)
n

S
(i)
n−1 Gn
...

S
(i)
n−k+1

 .
Similar to the cases 1 < i ≤ k, the proof is easily seen for the case i = 1.

As a consequence of Theorem 3.3, we get

Sn =
n∑
i=1

fki =
ck

(∑k
j=1 f

j
n − 1

)
c1 + c2 + · · ·+ ck − 1

.

Let Vi,j be a k×k matrix obtained from the Vandermonde matrix V by replacing
the jth column of V by ei where V = ΛT is defined as in (3.2) and ei is the ith
element of the natural basis for Rn, that is,

ei = (0, . . . , 0, 1
↑
ith

, 0, . . . 0)T

and

Vi,j =



λk−1
1 . . . λk−1

j−1 0 λk−1
j+1 . . . λk−1

k

λk−2
1 . . . λk−2

j−1 0 λk−2
j+1 . . . λk−2

k
...

...
...

...
...

λk−i+1
1 . . . λk−i+1

j−1 0 λk−i+1
j+1 . . . λk−i+1

k

λk−i1 . . . λk−ij−1 1 λk−ij+1 . . . λk−ik

λk−i−1
1 . . . λk−i−1

j−1 0 λk−i−1
j+1 . . . λk−i−1

k
...

...
...

...
...

λ1 . . . λj−1 0 λj+1 . . . λk
1 . . . 1 0 1 . . . 1


Let q(i)j = |Vi,j |

|V | .

Theorem 3.4. For any integer n and 1 ≤ i ≤ k,

f in =
k∑
j=1

q
(i)
j λn+k−1

j .

Proof. We consider the following system of k linear equations in k unknowns x1, x2, . . . , xk:

λk−1
1 λk−1

2 . . . λk−1
k

...
...

...
λk−i1 λk−i2 . . . λk−ik

...
...

...
λ1 λ2 . . . λk
1 1 . . . 1





x1

...
xj
...
xk

 =



0
...
1
...
0


︸ ︷︷ ︸

ei

.
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Using Vandermonde’s determinants and Cramer rule, we get

q
(i)
j =

|Vi,j |
|V |

(i = 1, 2, . . . , k) ,

and so, for n, k > 0 and 1 ≤ i ≤ k, f in =
∑k
j=1 q

(i)
j λn+k−1

j , which completes the
proof.

Consequently, we extend the result of Theorem 3.4 to the general order linear
recurrences

{
tin
}

by the result given by (2.5).

Corollary 3.2. For any integer n and 1 ≤ i ≤ k,

tin =
i∑

j=1

k∑
s=1

ri+1−jq
(j)
s λn+k−1

s .

As an example, we consider the sequence
{
T in
}

,

T in = T in−1 + 3T in−2 + T in−2, n ≥ 2, 1 ≤ i ≤ 3

with

T in =
{

1 if i = 1− n,
0 otherwise, for 1− k ≤ n ≤ 0,

displayed in the following table:

i\n 1 2 3 4 5 6 7 8
1 1 4 8 21 49 120 288 697 . . .

{
T 1
n

}
2 3 4 13 28 71 168 409 984 . . .

{
T 2
n

}
3 1 1 4 8 21 49 120 288 . . .

{
T 3
n

}
Here we note that γ1 = −1, γ2 = 1 +

√
2, γ3 = 1−

√
2 and

q
(1)
1 = 1

(γ1−γ3)(γ1−γ2) , q
(1)
2 = 1

(γ2−γ3)(γ2−γ1) , q
(1)
3 = 1

(γ2−γ3)(γ1−γ3) ,

q
(2)
1 =− γ2+γ3

(γ1−γ2)(γ1−γ3) , q
(2)
2 = γ1+γ3

(γ2−γ3)(γ1−γ2) , q
(2)
3 = − γ1+γ2

(γ2−γ3)(γ1−γ3) ,

q
(3)
1 = γ2γ3

(γ1−γ3)(γ1−γ2) , q
(3)
2 = − γ1γ3

(γ1−γ2)(γ2−γ3) , q
(3)
3 = γ1γ2

(γ2−γ3)(γ1−γ3) .

Therefore, by Theorem 3.4, we get

T 1
n =

γn+2
1

(γ1 − γ3) (γ1 − γ2)
+

γn+2
2

(γ2 − γ3) (γ2 − γ1)
+

γn+2
3

(γ2 − γ3) (γ1 − γ3)
,

T 2
n = − (γ2 + γ3) γn+2

1

(γ1 − γ2) (γ1 − γ3)
+

(γ1 + γ3) γn+2
2

(γ2 − γ3) (γ1 − γ2)
− (γ1 + γ2) γn+2

3

(γ2 − γ3) (γ1 − γ3)
and since γ1γ2γ3 = 1,

T 3
n =

γ2γ3γ
n+2
1

(γ1 − γ3) (γ1 − γ2)
− γ1γ3γ

n+2
2

(γ1 − γ2) (γ2 − γ3)
+

γ1γ2γ
n+2
3

(γ2 − γ3) (γ1 − γ3)

=
γn+1
1

(γ1 − γ3) (γ1 − γ2)
+

γn+1
2

(γ2 − γ1) (γ2 − γ3)
+

γn+1
3

(γ2 − γ3) (γ1 − γ3)
= T 1

n−1.

Observe (from table above) that T 3
n = T 1

n−1.
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4. Generating Functions

In this section we derive the family of generating functions G (i, x) =
∑∞
n=0 f

i
nx

n for
the generalized order-k recurrences

{
f in
}

for all i, 1 ≤ i ≤ k.

Theorem 4.1. For 1 ≤ i ≤ k,

G (i, x) =
f i0 +

∑k−1
m=1

(∑k
v=m+1 cvf

i
m−v

)
xm

1− c1x− c2x2 − · · · − ckxk
.

Proof. Let G (i, x) = f i0x
0 + f i1x

1 + f i2x
2 + · · ·+ f inx

n + · · · . Consider(
1− c1x− c2x2 − · · · − ckxk

)
G (i, x)

= f i0 + f i1x+ f i2x
2 + · · ·+ f ikx

k + · · ·+ f inx
n + · · ·

− c1f i0x− c1f i1x2 − c1f i2x3 − · · · − c1f ik−1x
k − · · · − c1f in−1x

n − · · ·

− ckf i0xk − ckf i1xk+1 − ckf i2xk+2 − · · · − ckf in−kxn − · · ·
= f i0 +

(
f i1 − c1f i0

)
x+

(
f i2 − c1f i1 − c2f i0

)
x2 + · · ·

+
(
f ik−1 − c1f ik−2 − c2f ik−3 − · · · − ck−1f

i
0

)
xk−1

+
(
f ik − c1f ik−1 − c2f ik−2 − · · · − ck−1f

i
0 − ckf i1

)
xk + · · ·

+
(
f in − c1f in−1 − c2f in−2 − · · · − ckf in−k

)
xn + · · · .

Now we compute the coefficients of xn of the equation above. From the definition
of
{
f in
}
, we get

f i1 = c1f
i
0 + c2f

i
−1 + · · ·+ ckf

i
1−k

...

f ik−1 = c1f
i
k−2 + c2f

i
k−3 + · · ·+ ck−1f

i
0 + ckf

i
−1

...

f in = c1f
i
n−1 + c2f

i
n−2 + · · ·+ ckf

i
n−k.

and so

f i1 − c1f i0 = c2f
i
−1 + · · ·+ ckf

i
1−k

f i2 − c1f i1 − c2f i0 = c3f
i
−1 + · · ·+ ckf

i
2−k

...

f ik−1 − c1f ik−2 − c2f ik−3 − · · · − ck−1f
i
0 = ckf

i
−1.

Then for n ≥ k, by the definition of
{
f in
}
, the coefficients of xn are all 0.

For example, for fixed k and 1 ≤ i ≤ k, we take i = 1. Thus

G (1, x) = f1
0x

0 + f1
1x

1 + f1
2x

2 + · · ·+ f1
nx

n + · · · .
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From the definition of
{
f in
}
, the initial conditions of the recurrence

{
f1
n

}
are given

by

f1
n =

{
1 if n = 0,
0 otherwise, for 1− k ≤ n ≤ 0,

which implies

(4.1) G (1, x) =
1

1− c1x− c2x2 − · · · − ckxk
.

More generally, we derive the generating function of recurrence
{
tin
}

, namely
g (i, x) =

∑
k≥0 t

i
kx

k.

Corollary 4.1. For 1 ≤ i ≤ k,

g (i, x) =
ti0 +

∑k−1
m=1

(∑k
v=m+1 cvt

i
m−v

)
xm

1− c1x− c2x2 − · · · − ckxk
.

As an example, if we take k = i = 2, c1 = c2 = 1 and r1 = −1, r2 = 0, then the
sequence

{
t2n
}

is
1, 3, 4, 7, 11, 18, 29, . . .

which is the well-known Lucas sequence {Ln}. Then by Corollary 4.1, we obtain

g (2, x) =
∞∑
n=0

t2nx
n =

∞∑
n=0

Lnx
n =

ti0 −
(
ti−1

)
x1

1− x− x2

where t20 = r2 = 2 and t2−1 = r1 = 1. Thus we have the well known result for the
Lucas numbers:

∞∑
n=0

Lnx
n =

2− x
1− x− x2

.

5. nth powers of a companion and k-superdiagonal determinants

In [8], the author gave a relationship between determinants of certain n × n k-
superdiagonal matrices and the terms of the nth power of matrix A given by (1.2).
In this section, we derive some new relationships between some Hessenberg deter-
minants and the terms of generalized recurrences

{
f in
}

for all 1 ≤ i ≤ k.
Here, we recall a result of [8]. Define an n× n k-superdiagonal matrix Mn in the

following form:

Mn =



c1 c2 . . . ck 0
−1 c1 c2 . . . ck

−1 c1 c2 . . .
. . .

. . . . . .
...

0 −1 c1

 .

Lemma 5.1. For n > 0,
detMn = f1

n.
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Indeed, expanding detMn by the elements of the first row gives us

detMn = c1 detMn−1 + c2 detMn−2 + · · ·+ ck detMn−k,(5.1)

= f1
n = c1f

1
n−1 + c2f

1
n−2 + · · ·+ ckf

1
n−k.(5.2)

Now we extend the above result for the generalized sequences
{
f in
}

for 1 ≤
i ≤ k. For this purpose we introduce some new notations: For 1 ≤ t ≤ k, let
Mn (t, t+ 1, . . . , k; r) = [m̂ij ] denote the matrix obtained from Mn = [mij ] with
m̂ij = 0 for i ≤ j ≤ r, i ∈ {t, t+ 1, . . . , k} and otherwise m̂ij = mij . Clearly
Mn (1, 2, . . . , k; 0) = Mn.

Recalling that Gn = [gij ] = An, we give the following theorem for the diagonal
elements gjj = f

(j+1)
n−j .

Theorem 5.1. For n > j and 1 ≤ j ≤ k − 1,

detMn (1; j) = f j+1
n−j

where detMn (1; 0) = f1
n.

Proof. First consider the case j = 1. If we expand the detMn (1; 1) by the elements
of the first row, then

detMn (1; 1) = 0 (detMn−1) + c2 detMn−2 + · · ·+ ck detMn−k

= c2 detMn−2 + · · ·+ ck detMn−k.

By (5.1) and (5.2),

detMn (1; 1) = c2f
1
n−2 + c3f

1
n−3 + · · ·+ ckf

1
n−k

= f1
n − c1f1

n−1 = f2
n−1.

Thus the proof is complete for the case j = 1.
Now, we take the general case for 1 ≤ j ≤ k− 1. By expanding detMn (1; j) with

respect to the first row, we get

detMn (1; j) = det
[

0 . . . 0 cj+1 cj+2 . . . ck 0 . . . 0
]
,

which, by (5.1) and (5.2), becomes

detMn (1; j) = cj+1 detMn−j−1 + cj+2 detMn−j−2 + · · ·+ ck detMn−k

= cj+1f
1
n−j−1 + cj+2f

1
n−j−2 + · · ·+ ckf

1
n−k.

From (5.2) and after repeating j times the identity (1.4), we get

detMn (1; j) = cj+1f
1
n−j−1 + cj+2f

1
n−j−2 + · · ·+ ckf

1
n−k

= f1
n − c1f1

n−1 − c2f1
n−2 − · · · − cjf1

n−j

= f2
n−1 − c2f1

n−2 − c3f1
n−3 − · · · − cjf1

n−j

. . .

= f jn−j+1 − cjf
1
n−j = f j+1

n−j ,

and the proof is complete.



64 E. Kiliç and P. Stănică

According to the definition of Mn (t, t+ 1, . . . , k; r) , the matrix Mn (2, 3;n) can
be expressed in the compact form

Mn (2, 3;n) =



c1 c2 . . . ck 0 . . . . . . . . . . . . 0
−1 0 0 . . . 0 0 . . . . . . . . . 0

−1 0 0 . . . 0 0 . . . . . . 0
−1 c1 c2 . . . ck 0 . . . 0

. . . . . . . . . . . .
. . . . . .

...
−1 c1 c2 . . . ck 0

−1 c1 c2 . . . ck
. . . . . . . . .

...
−1 c1 c2

0 −1 c1


.

Theorem 5.2. For n > k + 2,

detMn+1 (2, 3, . . . , k;n) = fkn−k+2.

Proof. First we consider the case of k = 2, and detMn+1 (2;n) . The matrix Mn (2;n)
has the following form:

Mn (2;n) =



c1 c2 . . . ck 0 . . . . . . . . . 0
−1 0 0 . . . 0 0 . . . . . . 0

−1 c1 c2 . . . ck 0 . . . 0
. . . . . . . . . . . .

. . . . . .
...

−1 c1 c2 · · · ck 0
−1 c1 c2 . . . ck

. . . . . . . . .
...

−1 c1 c2
−1 c1


.

Expanding detMn+1 (2;n) with respect to the first row, we obtain

detMn+1 (2;n) = c2 detMn−1 + c3 detMn−2 + · · ·+ ck detMn−k+1.

Since the first principal subdeterminant include a zero row, by Lemma 5.1, we write

detMn+1 (2;n) = c2f
1
n−1 + c3f

1
n−3 + · · ·+ ckf

1
n−k+1

= −c1f1
n + c1f

1
n + c2f

1
n−1 + c3f

1
n−3 + · · ·+ ckf

1
n−k+1

= −c1f1
n + f1

n+1.

By (1.4), we obtain detMn+1 (2;n) = −c1f1
n+f1

n+1 = f2
n. Thus, the proof is complete

for k = 2.
Continuing this expanding process with respect to the first row for the detMn+1

(2, 3, . . . , k;n), for j ≥ 2, we get

detMn+1 (2, 3, . . . , j;n) = cj detMn−j+1 + cj+1 detMn−j + · · ·+ ck detMn−k+1

which, by Lemma 5.1, gives
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detMn+1 (2, 3, . . . , j;n) = cjf
1
n−j+1 + c3f

1
n−j + · · ·+ ckf

1
n−k+1

=
(
c1f

1
n + c2f

1
n−1 + · · ·+ cj−1f

1
n−j+2

)
−
(
c1f

1
n + c2f

1
n−1 + · · ·+ cj−1f

1
n−j+2

)
+ cjf

1
n−j+1 + c3f

1
n−j + · · ·+ ckf

1
n−k+1

= f1
n+1 −

(
c1f

1
n + c2f

1
n−1 + · · ·+ cj−1f

1
n−j+2

)
.

By (1.4), we obtain

detMn+1 (2, 3, . . . , j;n) = f1
n+1 − c1f1

n − c2f1
n−1 − · · · − cj−1f

1
n−j+2

= f2
n − c2f1

n−1 − · · · − cj−1f
1
n−j+2

...

= f j−1
n−j+3 − cj−1f

1
n−j+2 = f jn−j+2,

and the proof is complete.

Now we present further relations including other entries of Gn and the determi-
nant of certain matrices.

Define the n× n matrix Mn (ci,k) in the compact form:

Mn (ci,k) =


ci ci+1 . . . ck 0 · · · 0
−1
0 Mn−1

...
0


where Mn is defined as before.

For 2 ≤ t ≤ r, let Mn (ci,k, t, t+ 1, . . . , r) = [m̌ij ] denote the n×n matrix obtained
from Mn (ci,k) = [m̃ij ] with taking m̌ij = 0 for i ≤ j ≤ r, i ∈ {t, t+ 1, . . . , n} and
otherwise m̌ij = m̃ij .

For example, M7 (c2,4, 3, 4) takes the form:

M7 (c2,4, 3, 4) =



c2 c3 c4 0 0 0 0
−1 c1 c2 c3 c3 c4 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 c1 c2 c3
0 0 0 0 −1 c1 c2
0 0 0 0 0 −1 c1


.

Theorem 5.3. For n > j − 1, 2 ≤ r ≤ k − 1 and 2 ≤ j ≤ k

detMn (cr,k, 2, 3, . . . , j) = gj−1,j+r−1 = f j+r−1
n−j+1

where Gn = [gij ] .
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Proof. First we prove the case r = 2 and 2 ≤ j ≤ k. If we expand detMn (c2,k, 2, 3, . . . , j)
by the Laplace expansion of determinant, then we obtain the following equation by
combining (5.1) and (5.2)

detMn (c2,k, 2, 3, . . . , j)
= cj+1 detMn−j + cj+2 detMn−j−1 + · · ·+ ck detMn−k+1

= cj+1f
1
n−j + cj+2f

1
n−j−1 + · · ·+ ckf

1
n−k+1.

By adding and subtracting c1f1
n+ c2f

1
n−1 + · · ·+ cjf

1
n−j+1 to both sides of the above

equation, we get

detMn (c2,k, 2, 3, . . . , j)

=
(
c1f

1
n + · · ·+ cjf

1
n−j+1

)
+ cj+1f

1
n−j + · · ·+ ckf

1
n−k+1

−
(
c1f

1
n + c2f

1
n−1 + · · ·+ cjf

1
n−j+1

)
= f1

n+1 − c1f1
n − c2f1

n−1 − · · · − cjf1
n−j+1.

By (1.4), we get

detMn (c2,k, 2, 3, . . . , j) = f2
n − c2f1

n−1 − c3f1
n−2 − · · · − cjf1

n−j+1

= f3
n−1 − c3f1

n−2 − · · · − cjf1
n−j+1

...

= f jn−j+2 − cjf
1
n−j+1 = f j+1

n−j+1.

Thus the proof is complete for r = 2.
Now we consider the case r > 2. If j is greater than k − 2, then the matrix

Mn (cr,k, 2, 3, . . . , j) has a zero row and so we ignore this case. For r > 2 and
j ≤ k − 2, we obtain, by (1.4), (5.1) and (5.2)

detMn (cr,k, 2, 3, . . . , j)
= cr+j−1 detMn−j + · · ·+ ck detMn−k+1

= cr+j−1f
1
n−j + cr+jf

1
n−j−1 + · · ·+ ckf

1
n−k+1

= f1
n+1 − c1f1

n − c2f1
n−1 − · · · − cr+j−2f

1
n−j+1

= f2
n − c2f1

n−1 − · · · − cr+j−2f
1
n−j+1

...

= fr+j−2
n−j+2 − cr+j−2f

1
n−j+1 = fr+j−1

n−j+1,

which completes the proof for all cases.
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