The Lehmer matrix and its recursive analogue

EMRAH KILIC1, PANTELIMON STĂNICĂ2

1TOBB Economics and Technology University, Mathematics Department
06560 Sogutozu, Ankara, Turkey; ekilic@etu.edu.tr
2Naval Postgraduate School, Department of Applied Mathematics
833 Dyer Rd., Monterey, CA 93943, USA; pstanica@nps.edu

Abstract

This paper considers the Lehmer matrix and its recursive analogue. The determinant of Lehmer matrix is derived explicitly by both its LU and Cholesky factorizations. We further define a generalized Lehmer matrix with (i, j) entries $g_{ij} = \min\{u_{i+1}, u_{j+1}\}$ where u_n is the nth term of a binary sequence $\{u_n\}$. We derive both the LU and Cholesky factorizations of this analogous matrix and we precisely compute the determinant.

1 Introduction

D.H. Lehmer (see [2]) constructed an $n \times n$ symmetric matrix $A = (a_{ij})_{i,j}$ whose (i, j) entry is

$$a_{ij} = \frac{\min\{i, j\}}{\max\{i, j\}} = \left\{ \begin{array}{ll} i/j & j \geq i, \\ j/i & i > j. \end{array} \right.$$

Define the second order recurrence $\{U_n (p, q)\}$ as follows:

$$U_n (p, q) = pU_{n-1} (p, q) - qU_{n-2} (p, q),$$
This paper considers the Lehmer matrix and its recursive analogue. The determinant of Lehmer matrix is derived explicitly by both its LU and Cholesky factorizations. We further define a generalized Lehmer matrix with \((i; j)\) entries \(g_{ij} = \min f_{i+1}; u_{j+1}\) \(\max f_{i+1}; u_{j+1}\) where \(u_n\) is the \(n\)th term of a binary sequencefung. We derive both the LU and Cholesky factorizations of this analogous matrix and we precisely compute the determinant.
where \(U_0 (p, q) = 0 \) and \(U_1 (p, q) = 1 \) for \(n > 1 \).

As an interesting example, we mention that the set of natural numbers can be obtained from the sequence \(\{ U_n (p, q) \} \) by taking \(p = 2, q = 1 \). Throughout this paper, we consider the case \(q = -1 \) and we denote \(u_n = U_n (p, -1) \).

We now define an \(n \times n \) generalized Lehmer matrix, namely \(F_n = (g_{ij})_{1 \leq i, j \leq n} \) defined below:

\[
g_{ij} = \frac{\min \{ u_{i+1}, j+1 \}}{\max \{ u_{i+1}, u_{j+1} \}} = \begin{cases}
\frac{u_{i+1}}{u_{j+1}} & \text{if } j \geq i, \\
\frac{u_{j+1}}{u_{i+1}} & \text{if } i > j.
\end{cases}
\]

where \(u_n \) is the \(n \)th term of the sequence \(\{ u_n \} \). In this paper, we obtain the general LU factorization and other explicit formulas for both the Lehmer matrix and its recursive analogue.

The Lehmer matrix is part of a family of matrices known as test matrices, which are used to evaluate the accuracy of matrix inversion programs since the exact inverses are known (see [1, 2]). It is hoped that our generalized Lehmer matrix will add to the literature of special matrices with known inverse.

2 The Lehmer Matrix

We start by obtaining the LU factorization of the Lehmer matrix \(A \). Using the inverses of \(L \) and \(U \), we obtain the explicit form for the inverse of \(A \), whose inverse is well-known, thus obtaining another proof of this result.

We define the \(n \times n \) invertible lower triangular matrix \(L = (\ell_{ij}) \) where \(\ell_{ij} = j/i \) for \(i \geq j \) and 0 otherwise. Next, we define the \(n \times n \) invertible upper triangular matrix \(U = (u_{ij}) \) with \(u_{ij} = \frac{2^{i-1}}{ij} \) for
\(i \leq j\) and 0 otherwise. For example, when \(n = 5\), we get

\[
L = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & 0 \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & 1 \\
\end{bmatrix}
\quad \text{and} \quad
U = \begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
0 & \frac{3}{4} & \frac{3}{5} & \frac{3}{6} & \frac{3}{10} \\
0 & 0 & \frac{5}{9} & \frac{5}{12} & \frac{5}{15} \\
0 & 0 & 0 & \frac{7}{16} & \frac{7}{20} \\
0 & 0 & 0 & 0 & \frac{9}{25} \\
\end{bmatrix}.
\]

The following result holds.

Theorem 1. For \(n > 0\), the LU factorization of Lehmer matrix is given by

\[A = LU\]

where \(L\) and \(U\) were defined previously.

Proof. We split the proof into three cases.

Case 1: \(i = j\). By \(\sum_{k=1}^{i} (2k - 1) = i^2\), then

\[
a_{ii} = \sum_{k=1}^{n} \ell_{ik}u_{ki} = \sum_{k=1}^{i} \ell_{ik}u_{ki} = \sum_{k=1}^{i} \frac{k}{i} (2k - 1) = \sum_{k=1}^{i} \frac{2k - 1}{i^2} = 1.
\]

Case 2: \(i > j\). Thus

\[
a_{ij} = \sum_{k=1}^{n} \ell_{ik}u_{kj} = \sum_{k=1}^{j} \ell_{ik}u_{kj} = \sum_{k=1}^{j} \frac{k}{ij} (2k - 1) = \frac{1}{ij} \sum_{k=1}^{j} 2k - 1 = \frac{j}{i}.
\]

Case 3: \(j > i\). Then

\[
a_{ij} = \sum_{k=1}^{n} \ell_{ik}u_{kj} = \sum_{k=1}^{i} \ell_{ik}u_{kj} = \sum_{k=1}^{i} \frac{k}{ij} (2k - 1)
\]

\[= \frac{1}{ij} \sum_{k=1}^{i} 2k - 1 = \frac{i}{j}.
\]
which completes the proof. \qed

We display an example below:

\[
\begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{2} & 1 & \frac{2}{3} & \frac{2}{4} & \frac{2}{5} \\
\frac{1}{3} & \frac{2}{3} & 1 & \frac{3}{4} & \frac{3}{5} \\
\frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 & \frac{4}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & 0 & 0 \\
\frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 & 0 \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} & 1
\end{bmatrix}
\begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{3}{4} & \frac{3}{6} & \frac{3}{8} & \frac{3}{10} \\
\frac{5}{9} & \frac{5}{12} & \frac{5}{15} \\
\frac{7}{15} & \frac{7}{20} \\
\frac{9}{25}
\end{bmatrix}.
\]

As a consequence of Theorem 1, we obtain an explicit value of the determinant of the Lehmer matrix in the following corollary.

Corollary 1. For \(n > 0 \),

\[
\det A = \frac{(2n)!}{2^n (n!)^3}
\]

Proof. The proof follows from the LU factorization of matrix \(A \) by considering \(\det A = \det U = \prod_{i=1}^{n} \frac{2i-1}{i^2} \).

The \(n \)th Catalan number is given in terms of binomial coefficients by

\[
C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}
\]

Thus we may note that

\[
\det A = \frac{(n+1)}{2^n n!} C_n.
\]

We continue our analysis by determining the \(L_1L_1^T \) (named after Cholesky) factorization of the Lehmer matrix, where \(L_1 \) is a lower triangular matrix. The Cholesky factorization was obtained for a different kind of matrix defined using binary sequences by the second author in [3].
Theorem 2. The Cholesky factorization of the Lehmer matrix is given by
\[A = L_1 L_1^T \]
where \(L_1 = \{f_{ij}\} \) is a lower triangular matrix with \(f_{ij} = \frac{\sqrt{2i-1}}{i} \) for all \(i \geq j \).

Proof. If \(i > j \), then
\[
a_{ij} = \sum_{r=1}^{n} f_{ir} f_{jr} = \sum_{r=1}^{j} f_{ir} f_{jr} = \sum_{r=1}^{j} \frac{\sqrt{2r-1}}{i} \frac{\sqrt{2r-1}}{j} = \frac{ij}{ij} \sum_{r=1}^{j} (2r - 1) = \frac{j}{i}.
\]

If \(i = j \), then
\[
a_{ii} = \sum_{r=1}^{n} f_{ir}^2 = \sum_{r=1}^{i} f_{ir}^2 = \sum_{r=1}^{i} \left(\frac{\sqrt{2r-1}}{i} \right)^2 = \frac{i^2}{i^2} = 1.
\]

Finally, if \(i < j \), then
\[
a_{ij} = \sum_{r=1}^{n} f_{ir} f_{jr} = \sum_{r=1}^{i} f_{ir} f_{jr} = \frac{1}{ij} \sum_{r=1}^{i} (2r - 1) = \frac{i}{j},
\]
which proves the theorem.

As an example, for \(n = 5 \) and \(p = 1 \) (the Fibonacci sequence case), we have
\[
\begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{2} & 1 & \frac{2}{3} & \frac{2}{4} & \frac{2}{5} \\
\frac{1}{3} & \frac{2}{3} & 1 & \frac{3}{4} & \frac{3}{5} \\
\frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 & \frac{4}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \\
\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & 0 & 0 & 0 \\
\frac{\sqrt{4}}{4} & \frac{\sqrt{4}}{4} & \frac{\sqrt{4}}{4} & 0 & 0 \\
\frac{\sqrt{5}}{5} & \frac{\sqrt{5}}{5} & \frac{\sqrt{5}}{5} & \frac{\sqrt{5}}{5} & 0
\end{bmatrix}
= \begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{2} & 1 & \frac{2}{3} & \frac{2}{4} & \frac{2}{5} \\
\frac{1}{3} & \frac{2}{3} & 1 & \frac{3}{4} & \frac{3}{5} \\
\frac{1}{4} & \frac{2}{4} & \frac{3}{4} & 1 & \frac{4}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} & 1
\end{bmatrix}
= \begin{bmatrix}
1 & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{4}}{4} & \frac{\sqrt{5}}{5} \\
0 & \frac{\sqrt{3}}{3} & \frac{\sqrt{4}}{4} & \frac{\sqrt{5}}{5} & \frac{\sqrt{6}}{6} \\
0 & 0 & \frac{\sqrt{5}}{5} & \frac{\sqrt{6}}{6} & \frac{\sqrt{7}}{7} \\
0 & 0 & 0 & \frac{\sqrt{7}}{7} & \frac{\sqrt{8}}{8} \\
0 & 0 & 0 & 0 & \frac{\sqrt{8}}{8}
\end{bmatrix}.
\]
By Theorem 2, we find that, since $A = L_1 L_1^T$, we have that \(\det(A) = \prod_{i=1}^{n} f_{ii}^2 = \prod_{i=1}^{n} (\frac{2i-1}{i^2}) = \frac{(2n)!}{2^n (n!)^2} \), that is, Corollary 1.

3 The Inverse of the Lehmer Matrix

Now we find an explicit formula for the inverse of the Lehmer matrix. For this purpose, we use its LU factorization as $A^{-1} = U^{-1} L^{-1}$. We first derive the inverses of the matrices L and U.

Lemma 1. Let $L^{-1} = (t_{ij})$ denote the inverse of L. Then

\[
t_{ij} = \begin{cases}
 1 & \text{if } i = j, \\
 -\frac{i}{2} & \text{if } i = j + 1, \\
 0 & \text{otherwise},
\end{cases}
\]

Proof. The proof can be easily checked from the product $L^{-1} L$. \(\square \)

Lemma 2. Let $U^{-1} = (w_{ij})$ denote the inverse of U. Then

\[
w_{ij} = \begin{cases}
 \frac{i^2}{2i-1} & \text{if } i = j \\
 -\frac{i(i+1)}{2i+1} & \text{if } i + 1 = j, \\
 0 & \text{otherwise},
\end{cases}
\]

Proof. The proof follows from the product $U^{-1} U$. \(\square \)

The inverse of the Lehmer matrix is found in the following theorem.

Theorem 3. For $n > 0$, let $A^{-1} = (b_{ij})$, then

\[
b_{ij} = \begin{cases}
 \frac{4i^3}{4n^2 - 1} & \text{if } i = j < n \\
 \frac{2i - 1}{2n - 1} & \text{if } i = j = n, \\
 -\frac{i(i+1)}{2i+1} & \text{if } |i - j| = 1, \\
 0 & \text{otherwise},
\end{cases}
\]
Proof. Since $A^{-1} = U^{-1}L^{-1}$, using the previous two lemmas, we obtain for $1 \leq i \leq n-1$,

$$b_{ii} = \sum_{k=1}^{n} w_{ik} t_{ki} = w_{ii} + w_{i,i+1} t_{i,i+1},$$

$$= \frac{i^2}{2i-1} + \frac{i(i+1)}{2i+1} \frac{i}{(i+1)} = \frac{i^2}{2i-1} + \frac{i^2}{2i+1} = \frac{4i^3}{4i^2 - 1}.$$

When $i = j = n$, it is easy to see that $b_{nn} = w_{nn} = \frac{n^2}{2n-1}$. If $i = j + 1$, then

$$b_{i+1,i} = \sum_{k=1}^{n} w_{i+1,k} t_{ki} = w_{i+1,i+1} t_{i+1,i},$$

$$= \frac{(i+1)^2}{2i+1} \left(\frac{-i}{i+1} \right) = -\frac{i(i+1)}{2i+1}.$$

The last case $j = i + 1$ can be similarly done, and the proof is complete.

Therefore we recover the known fact that the inverse of the Lehmer matrix is a symmetric tridiagonal matrix.

We give the following example as a consequence of the above theorem: for $n = 4$,

$$A^{-1} = \begin{bmatrix}
\frac{4}{3} & -\frac{2}{3} & 0 & 0 \\
-\frac{2}{3} & \frac{32}{15} & -\frac{6}{5} & 0 \\
0 & -\frac{6}{5} & \frac{108}{35} & -\frac{12}{7} \\
0 & 0 & -\frac{12}{7} & \frac{16}{7}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{4}{3} & -\frac{6}{5} & 0 \\
0 & 0 & \frac{9}{5} & -\frac{12}{7} \\
0 & 0 & 0 & \frac{16}{7}
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
0 & -\frac{1}{2} & 1 & 0 \\
0 & -\frac{2}{3} & 1 & 0 \\
0 & 0 & -\frac{3}{4} & 1
\end{bmatrix}.$$
We also give a relation between the terms of inverse of the Lehmer matrix and triangular numbers. Recall that the nth triangular number T_n is defined as the sum of the first n natural numbers, that is, $T_n = 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$. We can re-write $A^{-1} = (b_{ij})$ as $b_{ij} = -\frac{2T_i}{2i+1}$ for $|i - j| = 1$, and $b_{ii} = \frac{4i^3}{4i^2-1}$.

4 Recursive Analogue of the Lehmer Matrix

In this section we investigate the same questions for our generalized recursive analogue of the Lehmer matrix F_n defined in the first section, namely, $F_n = (g_{ij})$:

$$g_{ij} = \frac{\min \{u_{i+1}, u_{j+1}\}}{\max \{u_{i+1}, u_{j+1}\}} = \begin{cases} \frac{u_{i+1}}{u_{j+1}} & \text{if } j \geq i, \\ \frac{u_{j+1}}{u_{i+1}} & \text{if } i > j. \end{cases}$$

where u_n is the nth term of the sequence $\{u_n\}$.

For example, when $n = 5$ and $p = 1$, the matrix F_5 takes the following form:

$$F_5 = \begin{pmatrix}
1 & \frac{u_2}{u_3} & \frac{u_2}{u_4} & \frac{u_2}{u_5} & \frac{u_2}{u_6} \\
\frac{u_2}{u_3} & 1 & \frac{u_3}{u_4} & \frac{u_3}{u_5} & \frac{u_3}{u_6} \\
\frac{u_2}{u_4} & \frac{u_3}{u_4} & 1 & \frac{u_4}{u_5} & \frac{u_4}{u_6} \\
\frac{u_2}{u_5} & \frac{u_3}{u_5} & \frac{u_4}{u_5} & 1 & \frac{u_5}{u_6} \\
\frac{u_2}{u_6} & \frac{u_3}{u_6} & \frac{u_4}{u_6} & \frac{u_5}{u_6} & 1
\end{pmatrix}.$$

In order to give the LU factorization of the matrix F_n, we define two triangular matrices.

Define the $n \times n$ unit lower triangular matrix $L_2 = (c_{ij})$ with $c_{ij} = \frac{u_{i+1}}{u_{i+1}}$ for all $i \geq j$ and $u_{ij} = 0$ for all $i < j$.

For example, when \(n = 5 \), the matrix takes the form:

\[
L_2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{u_2}{u_3} & 1 & 0 & 0 & 0 \\
\frac{u_2}{u_4} & \frac{u_3}{u_4} & 1 & 0 & 0 \\
\frac{u_2}{u_5} & \frac{u_3}{u_5} & \frac{u_4}{u_5} & 1 & 0 \\
\frac{u_2}{u_6} & \frac{u_3}{u_6} & \frac{u_4}{u_6} & \frac{u_5}{u_6} & 1
\end{bmatrix}.
\]

Before defining an upper triangular matrix for the LU factorization of the matrix \(F_n \), we need to introduce a new sequence \(\{t_n\} \) by the following relation:

\[
t_n = (p - 1) u_n + u_{n-1}, \text{ that is, } t_n = u_{n+1} - u_n, \ n > 1,
\]

where \(u_n \) is defined as before.

Define the \(n \times n \) upper triangular matrix \(U_2 = (d_{ij}) \) with \(d_{1j} = \frac{u_2}{u_{j+1}} \) for \(1 \leq j \leq n \), \(d_{ij} = \frac{(u_i + u_{i+1})}{u_{i+1}u_{j+1}} t_i \) for \(1 < i \leq j \leq n \).

From the definition of the sequence \(\{t_n\} \), we rewrite the matrix \(U_2 \) with \(d_{1j} = \frac{u_2}{u_{j+1}} \) for \(1 \leq j \leq n \), \(d_{ij} = \frac{u_{i+1} - u_i}{u_{i+1}u_{j+1}} \) for \(1 < i \leq j \leq n \).

For example, when \(n = 4 \), the matrix takes the form:

\[
U_2 = \begin{bmatrix}
1 & \frac{u_2}{u_3} & \frac{u_2}{u_4} & \frac{u_2}{u_5} & \frac{u_2}{u_6} \\
0 & \frac{u_2^2-u_3^2}{u_3^2} & \frac{u_2^2-u_3^2}{u_3u_4} & \frac{u_2^2-u_3^2}{u_3u_5} & \frac{u_2^2-u_3^2}{u_3u_6} \\
0 & 0 & \frac{u_2^2-u_3^2}{u_4^2} & \frac{u_2^2-u_3^2}{u_4u_5} & \frac{u_2^2-u_3^2}{u_4u_6} \\
0 & 0 & 0 & \frac{u_2^2-u_3^2}{u_5^2} & \frac{u_2^2-u_3^2}{u_5u_6} \\
0 & 0 & 0 & 0 & \frac{u_2^2-u_3^2}{u_6^2}
\end{bmatrix}.
\]

Theorem 4. For \(n > 0 \), the factorization of matrix \(F_n = (g_{ij}) \) is given by

\[
F_n = L_2 U_2.
\]
where U_2 and L_2 were defined previously.

Proof. Let $L_2U_2 = (h_{ij})$. We consider two cases, $i > j$ and $i \leq j$. For the first case, we write

$$h_{ij} = \sum_{m=1}^{n} c_{im}d_{mj} = \sum_{m=1}^{j} c_{im}d_{mj}$$

$$= c_{i1}d_{1j} + \sum_{m=2}^{j} \left(\frac{u_{m+1} \left(u_{m+1}^2 - u_m^2 \right)}{u_{i+1}u_{m+1}u_{j+1}} \right)$$

$$= \frac{u_2^2}{u_{i+1}u_{j+1}} + \frac{1}{u_{i+1}u_{j+1}} \sum_{m=2}^{j} \left(u_{m+1}^2 - u_m^2 \right)$$

$$= \frac{u_2^2}{u_{i+1}u_{j+1}} + \frac{1}{u_{i+1}u_{j+1}} \left(u_{j+1}^2 - u_i^2 \right) = \frac{u_{j+1}}{u_{i+1}} = g_{ij}.$$

If $i \leq j$, then similarly

$$h_{ij} = \sum_{m=1}^{n} c_{im}d_{mj} = \sum_{m=1}^{i} c_{im}d_{mj}$$

$$= c_{i1}d_{1j} + \sum_{m=2}^{i} \left(\frac{u_{m+1} \left(u_{m+1}^2 - u_m^2 \right)}{u_{i+1}u_{m+1}u_{j+1}} \right)$$

$$= \frac{u_2^2}{u_{i+1}u_{j+1}} + \frac{1}{u_{i+1}u_{j+1}} \sum_{m=2}^{i} \left(u_{m+1}^2 - u_m^2 \right)$$

$$= \frac{u_{i+1}}{u_{j+1}} = g_{ij},$$

and the claim is shown. \qed

Now we can find the value of $\det(F_n)$ by considering its LU factorization.

Corollary 2. For $n > 0$,

$$\det(F_n) = \prod_{i=2}^{n} \left(\frac{u_{i+1}^2 - u_i^2}{u_i^2} \right).$$
As a special cases of the matrix F_n, we take the matrix F^0_n obtained using the Fibonacci sequence, that is, $F_{n+1} = F_n + F_{n-1}$, $F_0 = 0$, $F_1 = 1$. The determinant of this matrix becomes

$$
\det (F^0_n) = \frac{F_{n-1}!F_{n+2}!}{2(F_{n+1}!)^2},
$$

where $F_n!$ is the Fibonomial factorial, that is, $F_n! = F_1F_2\cdots F_n$.

Next we give the Cholesky factorization of the generalized Lehmer matrix F_n. For this purpose we define a lower triangular matrix L_3 with $m_{i,1} = \frac{u_2}{u_{i+1}}$ for $1 \leq i \leq n$, $m_{ij} = \frac{1}{u_{i+1}}\sqrt{u_{j+1}^2 - u_j^2}$ for $1 < j \leq i \leq n$ and 0 otherwise.

When $n = 4$, the matrix L_3 takes the form:

$$
L_3 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\frac{u_2}{u_3} & \frac{1}{u_4}\sqrt{u_3^2 - u_2^2} & 0 & 0 \\
\frac{u_2}{u_4} & \frac{1}{u_5}\sqrt{u_4^2 - u_3^2} & \frac{1}{u_6}\sqrt{u_5^2 - u_4^2} & 0 \\
\frac{u_2}{u_5} & \frac{1}{u_6}\sqrt{u_5^2 - u_4^2} & \frac{1}{u_7}\sqrt{u_6^2 - u_5^2} & \frac{1}{u_8}\sqrt{u_7^2 - u_6^2}
\end{bmatrix}.
$$

The proof of the next theorem is analogous to the proof of Theorem 4, so it will be omitted.

Theorem 5. The Cholesky factorization of the recursive analogue of the Lehmer matrix is given by

$$
F_n = L_3L_3^T
$$

where L_3 is the lower triangular matrix defined previously.

5 The Inverse of the Generalized Lehmer Matrix

Here we give the inverse of the recursive analogue of the Lehmer matrix F^{-1}_n by considering its LU factorization. Before this, we give the inverses of the matrices L_2 and U_2 in the following lemmas, stated without proofs, as they are immediate.
Lemma 3. Let $U_2^{-1} = (\hat{w}_{ij})$ denote the inverse of U_2. Then

$$
\hat{w}_{ij} = \begin{cases}
1 & \text{if } i = j = 1 \\
-\frac{u_i^2}{u_i^2 - u_{i+1}^2} & \text{if } 1 < i = j, \\
\frac{u_{i+1}^2}{u_{i+1}^2 - u_{i+2}^2} & \text{if } i + 1 = j, \\
0 & \text{otherwise,}
\end{cases}
$$

Lemma 4. Let $L_2^{-1} = (\hat{t}_{ij})$ denote the inverse of L. Then

$$
\hat{t}_{ij} = \begin{cases}
1 & \text{if } i = j, \\
-\frac{u_i}{u_{i+1}} & \text{if } i = j + 1, \\
0 & \text{otherwise,}
\end{cases}
$$

Thus the inverse of the matrix F_n is found in the following theorem.

Theorem 6. For $n > 0$, let $F_n^{-1} = (q_{ij})$, then $q_{11} = \frac{u_2}{u_3 - u_2}$, $q_{nn} = \frac{u_{n+1}^2}{u_{n+1}^2 - u_n^2}$, $q_{i,i+1} = q_{i+1,i} = \frac{u_{i+1}^2}{u_{i+1}^2 - u_{i+2}^2}$ for $1 \leq i \leq n - 1$, $q_{ii} = \frac{u_{i+1}^2}{(u_{i+1}^2 - u_i^2)(u_{i+2}^2 - u_{i+1}^2)}$ for $2 \leq i \leq n - 1$ and 0 otherwise.

Proof. Since $F_n^{-1} = U_2^{-1}L_2^{-1}$, the proof follows from the previous two lemmas and from matrix multiplication. \(\square\)

For example, for $n = 4$,

$$
F_5^{-1} = \begin{pmatrix}
\frac{u_1^2}{u_2^2 - u_1^2} & \frac{u_2u_3}{u_2^2 - u_1^2} & 0 & 0 \\
\frac{u_2u_3}{u_1^2 - u_4^2} & \frac{u_3^2}{u_1^2 - u_4^2} & \frac{u_1u_4}{u_2^2 - u_4^2} & 0 \\
0 & \frac{u_1u_4}{u_3^2 - u_4^2} & \frac{u_3u_4}{u_3^2 - u_4^2} & \frac{u_2u_4}{u_3^2 - u_4^2} \\
0 & 0 & \frac{u_2u_4}{u_3^2 - u_4^2} & \frac{u_3u_4}{u_3^2 - u_4^2}
\end{pmatrix}.
$$

6 Further comment

With a bit more care, one can certainly remove the constraint $q = -1$ on the sequence U_n, and prove similar results like in the present paper for the corresponding generalized Lehmer matrix.
Acknowledgments. The authors would like to thank the referee for the very careful and constructive comments.

References

