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a b s t r a c t

The Fibonomial coefficients are known as interesting generaliza-
tions of binomial coefficients. In this paper, we derive a (k + 1)th
recurrence relation and generating matrix for the Fibonomial coef-
ficients, whichwe call generalized Fibonomial matrix. We find a nice
relationship between the eigenvalues of the Fibonomialmatrix and
the generalized right-adjusted Pascal matrix; that they have the
same eigenvalues. We obtain generating functions, combinatorial
representations, many new interesting identities and properties of
the Fibonomial coefficients. Some applications are also given as ex-
amples.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The well known Fibonacci numbers are defined by
Fn = Fn−1 + Fn−2

with initial conditions F0 = 0 and F1 = 1, for n > 1.
The Fibonomial coefficient is defined by the relation for n ≥ m ≥ 1[ n

m

]
F
=

F1F2 . . . Fn
(F1F2 . . . Fn−m) (F1F2 . . . Fm)

with
[ n
0

]
F =

[ n
n

]
F = 1 where Fn is the nth Fibonacci number. These coefficients satisfy the relation:[ n

m

]
F
= Fm+1

[
n− 1
m

]
F
+ Fn−m−1

[
n− 1
m− 1

]
F
.

Let p be a nonzero integer. Define the generalized Fibonacci and Lucas sequences by the recurrences:
un = pun−1 + un−2
vn = pvn−1 + vn−2

where u0 = 0, u1 = 1 and v0 = 2, v1 = p, respectively, for all n ≥ 2.
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When p = 1 and p = 2, un = Fn (nth Fibonacci number) and un = Pn (nth Pell number),
respectively.
Jarden and Motzkin [13] were the first to study generalized Fibonomial coefficients formed by

terms of sequence {un} as follows: for n ≥ m ≥ 1{ n
m

}
=

u1u2 . . . un
(u1u2 . . . un−m) (u1u2 . . . um)

with
{ n
0

}
=
{ n
n

}
= 1. When p = 1, the generalized Fibonomial coefficient

{ n
m

}
is reduced to the

Fibonomial coefficient
[ n
m

]
F .

The n× n generalized Pascal matrix Pn whose (i, j) entry is given by

(Pn)ij =
(

j− 1
j+ i− n− 1

)
pi+j−n−1.

For example,

P4 =


0 0 0 1
0 0 1 3p
0 1 2p 3p2

1 p p2 p3

 .
Recently there has been increasing interest in both the Fibonomial coefficients and certain generalized
matrix of binomial coefficients, which we call generalized Pascal matrices. Regarding left or right
adjustments, and certain coefficients generalizations, several authors give various names to Pascal
matrices. For example Carlitz [1] considered the right adjusted Pascal matrix and he called it a ‘‘matrix
of binomial coefficients’’. In [5], Edelman and Gilbert considered left adjusted matrix of binomial
coefficients and he called it a ‘‘Pascal matrix’’. In [21], the author considered right adjusted and
coefficient generalized matrix of binomial coefficient and he called it a ‘‘Netted Matrix’’.
Regarding generalization of binomial coefficients, several authors have studied the generalized

Fibonomial coefficients and their properties (formore details see [7,9,13,19,23,24]). Meanwhile, some
authors have considered the spectral properties of the generalized Pascal matrix [1,3,10,20]. Since
some relationships between the generalized Pascal matrix and the Fibonomial coefficients have been
constructed, the Fibonomial coefficients have been considered by some authors. In this paper, we give
more powerful relationships between the Fibonomial coefficients and a right-adjusted generalized
Pascal matrix.
Matrixmethods and generatingmatrices are very useful for solving someproblems stemming from

number theory. In this paper, we define the generalized Fibonomial matrix and derive an (k + 1)th
order linear recurrence relation for the generalized Fibonacci coefficients. Also, we show that the
generalized Fibonomial and Pascal matrices have the same characteristic polynomials and therefore
the same eigenvalues. We obtain some explicit and closed formulas for the coefficients and their
sums bymatrixmethods.We give generating functions, properties and combinatorial representations
for them. Further, we present some relationships between determinants of certain matrices and the
generalized Fibonacci coefficients.

2. Generalized Fibonomial coefficients

This section is mainly devoted to deriving a recurrence relation and generating matrix for the
generalized Fibonomial coefficients. For the sake of compactness, we shall use the following notations,
for fixed k such that 1 ≤ i ≤ k+ 1:

an,i = (−1)(i−1)(i−2)/2
{
n+ k
k− i+ 1

}{
n+ i− 2
i− 1

}
where

{ n
m

}
stands for the generalized Fibonomial coefficients and is defined by

{ n
m

}
=


0 ifm > n and n ≥ 0,
(−1)m(m−1)/2 ifm > n and n < 0,

u1u2 . . . un
(u1u2 . . . um) (u1u2 . . . un−m)

m ≤ n.
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For k = 2, the generalized Fibonomial coefficients and their properties were studied in [15].
For later use, we give the following useful result.

Lemma 1. For n > 0 and 1 ≤ i ≤ k

a1,ian,1 + an,i+1 = an+1,i

where an,i be as before.

Proof. For case i = 1, the proof can be found in [9]. For the other cases, that is, i > 1, if we simplify
the equality a1,ian,1 + an,i+1 = an+1,i, it is reduced to the form:

uk+1un+i + (−1)i−1unuk−i+1 = uiun+k+1.

The last equality can be easily obtained from the Binet formula of {un}. Thus the proof follows. �

For k ≥ 1, define the (k+ 1)× (k+ 1) companion matrix Gk and the matrix Hn,k as follows:

Gk =


a1,1 a1,2 . . . a1,k+1
1

. . .
...

0 1 0

 and Hn,k =


an,1 an,2 . . . an,k+1
an−1,1 an−1,2 . . . an−1,k+1
...

...
. . .

...
an−k,1 an−k,2 . . . an−k,k+1

 . (1)

The matrix Gk is said to be generalized Fibonomial matrix.
Now we give our main result as follows;

Theorem 2. For all n > 0,

Gnk = Hn,k.

Proof. By the definitions of matrix Hn,k and Fibonomial coefficients, the proof is obvious for n = 1.
Suppose that the equation holds for n ≥ 1. Now we show that the equation holds for n+ 1. Thus we
write

Gn+1k = GkGnk = GkHn,k.

From Lemma 1 and the property of matrix multiplication, we get

Gn+1k = GkHn,k = Hn+1,k.

Thus the proof of the theorem is complete. �

It is valuable to note that when p = 1 and k = 1,we obtain the well-known fact:

G1 =
[
1 1
1 0

]
and Hn,1 =

[
Fn+1 Fn
Fn Fn−1

]
.

Now we give a linear recurrence relation for the generalized Fibonomial coefficients.

Corollary 3. For n, k > 0, the generalized Fibonomial coefficients satisfy the following order-(k + 1)
linear recurrence relation

an+1,1 =
k+1∑
i=1

a1,ian−i+1,1

or clearly{
n+ k+ 1
k

}
=

{
k+ 1
k

}{
n+ k
k

}
+

{
k+ 1
k− 1

}{
n+ k− 1
k

}
+ · · ·

+ (−1)(k−1)(k−2)/2
{
k+ 1
1

}{
n+ 1
k

}
+ (−1)k(k−1)/2

{n
k

}
.
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Proof. Since an,1 =
{
n+k
k

}
and frommatrix multiplication, by equating (1, 1) entries in the equation

H1,kHn,k = Hn+1,k, the proof is easily seen. �

Considering the generalized Fibonomial matrix, we obtain following corollary.

Corollary 4. For n > 0, the following identities hold;

an−1,1 = (−1)k(k−1)/2an,k+1,

am+n+1−i,j =
k+1∑
t=1

an+1−i,tam+1−t,j for all m > 0,

an+t+1−i,j =
k+1∑
m=1

an+r+1−i,mat−r+1−i,j for t > 0 and t > r,

an+1,1 = a1,1an,1 + an,2,
an+1,k+1 = an,1a1,k+1,
an+1,i = a1,ian,1 + an,i+1 for 2 ≤ i ≤ k.

Proof. Above identities can be proved by considering a property of matrix multiplication in Hn+1,k =
Hn,kH1,k, Hn+m,k = Hn,kHm,k and Hn+t,k = Hn+r,kHt−r,k for n,m > 0 and t > r. �

3. The eigenvalues of matrix Gk

In this section, we determine the eigenvalues of matrix Gk. Since the matrix Gk is a companion
matrix, its characteristic polynomial can be easily derived.
Let fn,k (x) be a polynomial of degree (k+ 1) related with the matrix Hn,k whose coefficients are

consist of the first row entries of Hn,k as follows: for n, k > 0,

fn,k (x) =
k+1∑
t=0

(−1)t(t+1)/2
{
n+ k
k− t + 1

}{
n+ t − 2
t − 1

}
xk+1−t .

Then we have the following Corollary.

Corollary 5. For k > 0, the characteristic polynomial of Gk is given by

f1,k (x) =
k+1∑
i=0

(−1)i(i+1)/2
{
k+ 1
i

}
xk−i+1.

Here we should note that in [12,8,9,4], the authors gave the characteristic equation of the matrix for
generalized Fibonomial coefficients as

Cn(x) =
n∑
h=0

(−1)h(h+1)/2
{n
h

}
xn−h,

where
{ n
h

}
is defined as before.

Moreover in [4], the authors proved the conjecture of Horadam and Mahon, and they gave a very
nice relationship between the characteristic polynomials of the matrix for generalized Fibonomial
coefficients and the generalized Pascal matrix Pn. Let Rn(x) be the characteristic polynomial of matrix
Pn. From [4], we have that

Cn(x) = Rn(x).
Therefore we derive a nice relationship between the characteristic polynomials of matrix Gk and the
polynomial of Pn as follows:

f1,n−1(x) = Cn(x) = Rn(x).
We have the following result.
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Corollary 6 ([4]). Let α, β =
(
p±

√
p2 + 4

)
/2. The characteristic roots of Cm+1(x) = f1,m(x) are:{

(−1)jαm−2j, (−1)jβm−2j
}
j=0,1,...k−1 if m = 2k− 1,{

(−1)k, (−1)jαm−2j, (−1)jβm−2j
}
j=0,1,...k−1 if m = 2k.

As an example, when k = 5, after some simplifications, we write

G5 =


a1 b1 −c1 −d1 e1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 and

Hn,5 =


an bn −cn −dn en an−1
an−1 bn−1 −cn−1 −dn−1 en−1 an−2
an−2 bn−2 −cn−2 −dn−2 en−2 an−3
an−3 bn−3 −cn−3 −dn−3 en−3 an−4
an−4 bn−4 −cn−4 −dn−4 en−4 an−5
an−5 bn−5 −cn−5 −dn−5 en−5 an−6


where an =

{
n+5
5

}
, bn =

{
n+5
4

} { n
1

}
, cn =

{
n+5
3

} {
n+1
2

}
, dn =

{
n+5
2

} {
n+2
3

}
, en =

{
n+5
1

} {
n+3
4

}
.

The characteristic polynomial and its roots of G5 are given by

f1,5(x) =
6∑
i=0

(−1)i(i+1)/2
{
6
i

}
x6−i

and λ6 = α5, λ5 = β5, λ4 = −α3, λ3 = −β3, λ2 = α, λ1 = β where α, β =
(
p±

√
p2 + 4

)
/2.

Thus we have the following result.

Corollary 7. For k > 0,

k+1∏
i=1

(x− λi) =
k+1∑
i=0

(−1)i(i+1)/2
{
k+ 1
i

}
xk+1−i.

Considering the results of Corollary 6, we derive the following facts:

f1,4m+4(x) = (x4 − c4mx3 − d4mx2 − c4mx+ 1)f1,4m,

f1,4m+5(x) = (x4 − c4m+1x3 − d4m+1x2 + c4m+1x+ 1)f1,4m+1,

f1,4m+6(x) = (x4 − c4m+2x3 − d4m+2x2 − c4m+2x+ 1)f1,4m+2,

f1,4m+7(x) = (x4 − c4m+3x3 − d4m+3x2 + c4m+3x+ 1)f1,4m+3.

In general, we obtain the following identity:

f1,t+4(x) = (x4 − ctx3 − dtx2 + (−1)t+1ctx+ 1)f1,t (2)

where ct = vt+4 − vt+2 and dt = vt+4vt+2 + (−1)t+12.
Rearranging the right-hand-side of (2) and equating the corresponding coefficients of xn, gives the

following new result:
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Corollary 8. For all t ≥ j,{
t + 5
i

}
=

{
t + 1
i

}
+ (−1)i+1ct

{
t + 1
i− 1

}
+ dt

{
t + 1
i− 2

}
+ (−1)i+t ct

{
t + 1
i− 3

}
+

{
t + 1
i− 4

}
where ct and dt are defined as before.

Proof. From (2), we write

f1,t+4(x) = (x4 − ctx3 − dtx2 + (−1)t+4ctx+ 1)f1,t

= xt+5 − xt+4
({
t + 1
1

}
+ ct

{
t + 1
0

})
− xt+3

({
t + 1
2

}
− ct

{
t + 1
1

}
+ dt

{
t + 1
0

})
+ xt+2

({
t + 1
3

}
+ ct

{
t + 1
2

}
+ dt

{
t + 1
1

}
− ct

{
t + 1
0

})
+ xt+1

({
t + 1
4

}
− ct

{
t + 1
3

}
+ dt

{
t + 1
2

}
+ ct

{
t + 1
1

}
+

{
t + 1
0

})
− xt

({
t + 1
5

}
+ ct

{
t + 1
4

}
+ dt

{
t + 1
3

}
− ct

{
t + 1
2

}
+

{
t + 1
1

})
· · ·

+ (−1)i(i+1)/2xt+5−i
({
t + 1
i

}
+ (−1)i+1ct

{
t + 1
i− 1

}
+ dt

{
t + 1
i− 2

}
+ (−1)i+tct

{
t + 1
i− 3

}
+

{
t + 1
i− 4

})
+ · · · + 1.

Comparing the coefficients of xi for 1 ≤ i ≤ n above and the polynomial f1,t+4, the proof is
complete. �

In [3], the authors show that

tr (Pn) =
u(k+1)n
un

,

where Pn is the generalized Pascal matrix.
Since the matrices Hn,k and Pn have the same eigenvalues, alternatively we also have that

tr(Hn,k) =
u(k+1)n
un

.

By Corollary 6, we can give the following result for both the generalized Fibonomial and Pascal
matrices.

Theorem 9. For n > 0,

tr(Hn,k) =
bk−1/2c∑
i=0

(−1)inv(k−2i)n +
1
2

(
1+ (−1)k

)
.

4. Diagonalization of Gk and the generalized Binet formula

In this section, we consider diagonalization of the matrix Gk and then give the generalized Binet
formula for the generalized Fibonomial coefficients. FromCorollary 6,weknow that ifλ1, λ2, . . . , λk+1
are the eigenvalues of matrix Gk, then they are all distinct. Thus we can diagonalize the matrix Gk.
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Define the (k+1)×(k+1)VandermondematrixV anddiagonalmatrixD = diag (λ1, λ2, . . . , λk+1)
as shown:

V =


λk1 λk2 . . . λkk+1
...

...
...

λ21 λ22 . . . λ2k+1
λ1 λ2 . . . λk+1
1 1 1 1

 and D =


λ1

λ2
. . .

λk+1

 .
Since λi 6= λj for 1 ≤ i, j ≤ k+ 1, det V 6= 0.
Let V (i)j is the (k + 1) × (k + 1) matrix obtained from V

T by replacing the jth column of V by wi
where

wi =
[
λn−i+k+11 λn−i+k+12 . . . λn−i+k+1k+1

]T
.

Recalling an,i = (−1)(i−1)(i−2)/2
{
n+k
k−i+1

} {
n+i−2
i−1

}
, we give the generalized Binet formulas for the

generalized Fibonomial coefficients by the following theorem.

Theorem 10. For n, k > 0,

an−i+1,j =
det

(
V (i)j

)
det(V )

.

Proof. One can check that GkV = VD. Since V is the invertible matrix and Gnk = Hn,k, we write
GnkV = Hn,kV = VD

n. Clearly we get the following linear equation system:

hi1λk1 + hi2λ
k−1
1 + · · · + hi,k−1λ

2
1 + hi,kλ1 + hi,k+1 = λ

n−i+k+1
1

hi1λk2 + hi2λ
k−1
2 + · · · + hi,k−1λ

2
2 + hi,kλ2 + hi,k+1 = λ

n−i+k+1
2

...

hi1λkk+1 + hi2λ
k−1
k+1 + · · · + hi,k−1λ

2
k+1 + hi,kλk+1 + hi,k+1 = λ

n−i+k+1
k+1 .

Thus by Cramer’s Rule, we have the conclusion. �

After some calculations, we present some identities as examples of Theorem 10.

Case I When k = 3, det(V ) = −u22u3∆
3 and for n > 0 we have that{

n+ 2
3

}
=
(
u3n+3 + (−1)n+1u3un+1

)
/u2u3∆,{

n+ 3
2

}{n
1

}
=
(
u3n+5 + (−1)n+1 (u2un + un+5)

)
/u2∆,{

n+ 3
1

}{
n+ 1
2

}
=
(
u3u3n+4 + (−1)n+1

[
u22 (un+4 + un)− un−4

])
/u2u3∆

where∆ = p2 + 4.

Especially when p = 1, un = Fn (nth Fibonacci number) and so

FnFn+1Fn+2 =
(
F3n+3 + 2(−1)n+1Fn+1

)
/5,

FnFn+2Fn+3 =
[
F3n+5 + (−1)n+1 (Fn+5 + Fn)

]
/5,

FnFn+1Fn+3 =
[
2F3n+4 + (−1)n+1 (Fn+4 + Ln−2)

]
/10.
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Case II When k = 4, det(V ) = u42v2u
2
3∆
5 and for n ≥ 0{

n+ 3
4

}
=
v4n+6 − v4 + v

2
1 + (−1)

n+1v1v2v2n+3

u22v2u3∆2
,{

n+ 4
3

}{n
1

}
=
v4n+9 + v5 − v3 + v1 + (−1)n (v1v2n+2 − v2n+5 − v2n+9)

u1u2u3∆2
,{

n+ 4
2

}{
n+ 1
2

}
=
v4n+8 − v6 − v2 + v0 + (−1)n (v1v2n+1 + v2n+6 − v2n+8)

u22∆2
,{

n+ 4
1

}{
n+ 2
3

}
=
v4n+7 − v5 + v3 − v1 + (−1)n (v1v2n+4 − v2n+7 − v2n−1)

u2u3∆2
.

Case III When k = 5, det(V ) = u42u
3
3u
2
4u5∆

15
2 and for n ≥ 0{

n+ 4
5

}
=
u5n+10 + (−1)n+1 (u2u3n+9 + u3u3n+4)−

(
u3 (un+6 + un−2)+ u22un+2

)
u2u3u4u5∆2

,{
n+ 5
4

}{n
1

}
=
u5n+14 + (−1)n+1 (u3n+14 + u3n+10 − u3u3n+6)+ (u4un+7 − u3(un+2 + un−2))

u2u3u4∆2
,{

n+ 5
3

}{
n+ 1
2

}
=
u5n+13 + (−1)n+1 (u2u3n+12 − u3u3n+5)− un+11 − u2u3un+4 − u3un−3

u22u3∆2
,{

n+ 5
2

}{
n+ 2
3

}
=
u5n+12 + (−1)n+1 (u3u3n+10 + u2u3n+3)− u4un+7 − 2u2un+1 − un−2 − un−6

u22u3∆2
,{

n+ 5
1

}{
n+ 3
4

}
=
u5n+11 + (−1)n+1 (u2 (u3n+10 + u3n+6)− u3n+1)− u3un+7 − u3un+3 − u4un−2

u2u3u4∆2
.

Let V (ei)j be a (k+ 1)× (k+ 1)matrix obtained from the Vandermonde matrix V by replacing the
jth column of V by ei where V is defined as before and ei is the ith element of the natural basis for Rn
and

V (ei)j =



λk1 . . . λkj−1 0 λkj+1 . . . λkk+1
...

...
...

...
...

λk−i+11 . . . λk−i+1j−1 0 λk−i+1j+1 . . . λk−i+1k+1
λk−i1 . . . λk−ij−1 1 λk−ij+1 . . . λk−ik+1
λk−i−11 . . . λk−i−1j−1 0 λk−i−1j+1 . . . λk−i−1k+1
...

...
...

...
...

λ1 . . . λj−1 0 λj+1 . . . λk+1
1 . . . 1 0 1 . . . 1


↓

ei

.
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Let q(i)j =

∣∣∣∣V (ei)j

∣∣∣∣
|V | where the (k+ 1)× (k+ 1)matrices V

(ei)
j and V are defined as before.

Then we give the following theorem.

Theorem 11. Let λ1, λ2, . . . , λk+1 be the distinct roots of xk+1−a1,1xk−a1,2xk−1−· · ·−a1,kx−a1,k+1 =
0. For any integer n and 1 ≤ i ≤ k+ 1,

an,i =
k+1∑
j=1

q(i)j λ
n+k
j .

Proof. We consider the following system of k linear equations with k unknowns x1, x2, . . . , xk: for
1 ≤ i ≤ k

λk1x1 + λ
k
2x2 + · · · + λ

k
k+1xk+1 = 0

...

λk−i+11 x1 + λk−i+12 x2 + · · · + λk−i+1k+1 xk+1 = 0

λk−i1 x1 + λ
k−i
2 x2 + · · · + λ

k−i
k+1xk+1 = 1

λk−i−11 x1 + λk−i−12 x2 + · · · + λk−i−1k+1 xk+1 = 0

...

λ1x1 + λ2x2 + · · · + λk+1xk+1 = 0

x1 + x2 + · · · + xk+1 = 0.

By the solution of Vandermonde’s determinants and Cramer rule, we get

q(i)j =

∣∣∣V (ei)j ∣∣∣
|V |

(i = 1, 2, . . . , k+ 1) .

Thus for n, k > 0 and 1 ≤ i ≤ k+ 1,

an,i =
k+1∑
j=1

q(i)j λ
n+k
j ,

which completes the proof. �

For example, if we take k = 2, then γ1 = α2, γ2 = β2, γ3 = −1 are the roots of x3 − a1,1x2 −
a1,2x− a1,3 = 0. After some computations, we get

q(1)1 =
1

(γ1 − γ3) (γ1 − γ2)
, q(1)2 =

1
(γ2 − γ3) (γ2 − γ1)

, q(1)3 =
1

(γ2 − γ3) (γ1 − γ3)
,

q(2)1 = −
γ2 + γ3

(γ1 − γ2) (γ1 − γ3)
, q(2)2 =

γ1 + γ3

(γ2 − γ3) (γ1 − γ2)
,

q(2)3 = −
γ1 + γ2

(γ2 − γ3) (γ1 − γ3)
,

q(3)1 =
γ2γ3

(γ1 − γ3) (γ1 − γ2)
, q(3)2 = −

γ1γ3

(γ1 − γ2) (γ2 − γ3)
,

q(3)3 =
γ1γ2

(γ2 − γ3) (γ1 − γ3)
.
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Therefore, by Theorem 11, we get

an,1 =
{
n+ 2
2

}
=

γ n+21

(γ1 − γ3) (γ1 − γ2)
+

γ n+22

(γ2 − γ3) (γ2 − γ1)
+

γ n+23

(γ2 − γ3) (γ1 − γ3)
,

an,2 =
{
n+ 2
1

}{n
1

}
= −

(γ2 + γ3) γ
n+2
1

(γ1 − γ2) (γ1 − γ3)
+

(γ1 + γ3) γ
n+2
2

(γ2 − γ3) (γ1 − γ2)
−

(γ1 + γ2) γ
n+2
3

(γ2 − γ3) (γ1 − γ3)

and since γ1γ2γ3 = −1,

an,3 = −
{
n+ 1
2

}
=

γ2γ3γ
n+2
1

(γ1 − γ3) (γ1 − γ2)
+

γ1γ3γ
n+2
2

(γ2 − γ1) (γ2 − γ3)
+

γ1γ2γ
n+2
3

(γ2 − γ3) (γ1 − γ3)
,

= −

(
γ n+11

(γ1 − γ3) (γ1 − γ2)
+

γ n+12

(γ2 − γ1) (γ2 − γ3)
+

γ n+13

(γ2 − γ3) (γ1 − γ3)

)
= −an−1,1.

Note that also by using the definition of an,i for k = 2, the equality an,3 = −an−1,1 can be obtained.

5. On sums of the generalized Fibonomial coefficients

In this section, we consider the sumof the generalized Fibonomial coefficients. In order to compute
this sum, we shall define a new generating matrix by extending Gk which is given in (1).
Define the (k+ 2)× (k+ 2)matrices Tk andWn,k as follows:

Tk =


1 0 . . . 0
1
0 Gk
...
0

 and Wn,k =


1 0 . . . 0
Sn
... Hn,k
Sn−k


where the matrices Gk and Hn,k are as before and also Sn is given by

Sn =
n−1∑
i=0

ai,1 =
n−1∑
i=0

{
k+ i
k

}
.

Then we have the following result.

Theorem 12. For n, k > 0,

T nk = Wn,k.

Proof. Since Sn+1 = an,1 + Sn and by Theorem 2, we write the matrix recurrence relation Wn,k =
Wn−1,kTk. By the inductionmethod, wewriteWn,k = W1,kT n−1k . From the definition ofWn,k,we obtain
W1,k = T 1k and soWn,k = T

n
k . Thus we have the conclusion. �

Here we should note that from Corollary 6, we know that the polynomial f1,k has the root 1 for
k ≡ 0 (mod 4) . Expanding the det (λIk+2 − Tk) with respect to the first row, it is easily seen that
the matrix Tk also has the eigenvalue 1. Thus we see that the matrix Tk has a double eigenvalue for
k ≡ 0 (mod 4) . For k 6≡ 0 (mod 4) , we can diagonalize the matrix Tk and so we derive an explicit
formula for this sum.
Define the (k+ 2)× (k+ 2)matrixM as shown:

M =


1 0 . . . 0
δ
... V
δ


where δ =

(
1−

∑k+1
i=1 a1,i

)−1
and the Vandermonde matrix V is defined as before.
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We can check that TkM = MD1 where Tk is as before and D1 is a diagonal matrix such that
D1 = diag (1, λ1, λ2, . . . , λk+1). Considering the matrix V , we compute detM with respect to the
first row and then we find detM = det V .
Then we give the following theorem.

Theorem 13. For n, k > 0 and k 6≡ 0 (mod 4) ,

Sn =
an,1 + an,2 + · · · + an,k+1 − 1

k+1∑
i=1
a1,i − 1

.

Proof. Since the matrix M is invertible, we write M−1TkM = D1. Thus the matrix Tk is similar to
the matrix D1. Then we write T nkM = MD

n
1. By Theorem 12, Wn,kM = MD

n
1. Equating the (2, 1) th

elements ofWn,kM = MDn1 and from a matrix multiplication, we obtain

Sn + δ
(
an,1 + an,2 + · · · + an,k+1

)
= δ.

Thus the proof is complete. �

As an application of Theorem 13, we give the following case without computations. When k = 3,
we obtain that for n ≥ 0

n∑
i=0

{
3+ i
3

}
= u2u3 (unun+2un+4 + un+1un+3un+5 − u3) /v3.

6. Generating functions

In this section, we give generating functions of the generalized Fibonomial coefficients.
We define k sequences

{
f in
}
of kth order linear recurrence relation, for n > 0 and 1 ≤ i ≤ k, as

f in = c1f
i
n−1 + c2f

i
n−2 + · · · + ckf

i
n−k (3)

with initial conditions

f in =
{
1 if i = 1− n,
0 otherwise, for 1− k ≤ n ≤ 0

where cj, 1 ≤ j ≤ k, are constant coefficients, and f in is the nth term of the ith sequence.
Using the approach of Kalman in [14], Er showed in [6] that

Mn = An

where the matrices A and Qn are

A =


c1 c2 . . . ck−1 ck
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


k×k

and Qn =


f 1n f 2n . . . f kn
f 1n−1 f 2n−1 . . . f kn−1
...

...
...

f 1n−k+1 f 2n−k+1 . . . f kn−k+1


k×k

. (4)

By defining G(i, x) = f i0x
0
+ f i1x

1
+ f i2x

2
+ · · · + f inx

n
+ · · · ,we give the following theorem.

For the reader’s convenience, we give the following result with proof.

Theorem 14. For k > 0 and 1 ≤ i ≤ k,

G(i, x) =
f i0 +

k∑
m=1

k∑
v=m+1

cv f im−vx
m

1− c1x− c2x2 − · · · − ckxk
.



204 E. Kiliç / European Journal of Combinatorics 31 (2010) 193–209

Proof. Using definition of G(i, x),(
1− c1x− c2x2 − · · · − ckxk

)
G(i, x) = f i0 + f

i
1x+ f

i
2x
2
+ · · · + f ikx

k
+ · · · + f inx

n
+ · · ·

− c1f i0x− c1f
i
1x
2
− c1f i2x

3
− · · · − c1f ik−1x

k
− · · · − c1f in−1x

n
− · · ·

− ckf i0x
k
− ckf i1x

k+1
− ckf i2x

k+2
− · · · − ckf in−kx

n
− · · · .

After some arrangements, we write(
1− c1x− c2x2 − · · · − ckxk

)
G(i, x) = f i0 +

(
f i1 − c1f

i
0

)
x+

(
f i2 − c1f

i
1 − c2f

i
0

)
x2 + · · ·

+
(
f ik−1 − c1f

i
k−2 − c2f

i
k−3 − · · · − ck−1f

i
0

)
xk−1

+
(
f ik − c1f

i
k−1 − c2f

i
k−2 − · · · − ck−1f

i
0 − ckf

i
1

)
xk + · · ·

+
(
f in − c1f

i
n−1 − c2f

i
n−2 − · · · − ckf

i
n−k

)
xn + · · · .

Now we compute the coefficients of xn of the equation above. From the definition of
{
f in
}
,

f i1 − c1f
i
0 = c2f

i
−1 + · · · + ckf

i
1−k

f i2 − c1f
i
1 − c2f

i
0 = c3f

i
−1 + · · · + ckf

i
2−k

...

f ik−1 − c1f
i
k−2 − c2f

i
k−3 − · · · − ck−1f

i
0 = ckf

i
−1.

For n ≥ k and from the definition of
{
f in
}
, the coefficients of xn’s are all zero. Thus the proof is

complete. �

Now letting g(i, x) = a0,i+ a1,ix+ a2,ix2+ a3,ix3+ · · · + an,ixn+,we have the following corollary.
Then we have the following Corollary.

Corollary 15. For 1 ≤ i ≤ k+ 1,

g(i, x) =
a0,i −

k∑
m=1

k+1∑
v=m+1

a1,vam−v,ixm

1− a1,1x− a1,2x2 − · · · − a1,k+1xk+1

where an,i is defined as before.

For example, when i = 1 in Corollary 15, we get
∞∑
n=0

{
n+ k
k

}
xn =

1

1−
{
k+1
k

}
x−

{
k+1
k−1

}
x2 +

{
k+1
k−2

}
x3 + · · · − (−1)k(k−1)/2xk+1

.

For k = 3 (i = 1, 2, 3 subsequently)we obtain
∞∑
n=0

{
n+ 3
3

}
xn =

1

1−
{
4
3

}
x−

{
4
2

}
x2 +

{
4
1

}
x3 + x4

,

∞∑
n=0

{n
1

}{n+ 3
2

}
xn =

u3u4/u2x− v1v2x2 − x3

1−
{
4
3

}
x−

{
4
2

}
x2 +

{
4
1

}
x3 + x4

and
∞∑
n=0

{
n+ 1
2

}{
n+ 3
1

}
xn =

v1v2x+ x2

1−
{
4
3

}
x−

{
4
2

}
x2 +

{
4
1

}
x3 + x4

.
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For example, the following generating function for the triple product of consecutive Fibonacci
numbers can be found in [16]:

∞∑
n=0

FnFn+1Fn+2xn =
2x

1− 3x− 6x2 + 3x3 + x4
.

Indeed the above generating function can also be rewritten via the Fibonomial coefficients
{ n
3

}
F as;

∞∑
n=0

{
n+ 2
3

}
F
xn =

x
1− 3x− 6x2 + 3x3 + x4

.

For the generating function of the powers of Fibonacci numbers, we can refer to [24,11].
For k = 4,we get

∞∑
n=0

{
n+ 4
4

}
xn =

1

1−
{
5
4

}
x−

{
5
3

}
x2 +

{
5
2

}
x3 +

{
5
1

}
x4 − x5

,

∞∑
n=0

{n
1

}{n+ 4
3

}
xn =

v2u5x− v2u5x2 − u5x3 + x4

1−
{
5
4

}
x−

{
5
3

}
x2 +

{
5
2

}
x3 +

{
5
1

}
x4 − x5

,

∞∑
n=0

{
n+ 1
2

}{
n+ 4
2

}
xn =

v2u5x+ u5x2 − x3

1−
{
5
4

}
x−

{
5
3

}
x2 +

{
5
2

}
x3 +

{
5
1

}
x4 − x5

,

∞∑
n=0

{
n+ 2
3

}{
n+ 4
1

}
xn =

u5x− x2

1−
{
5
4

}
x−

{
5
3

}
x2 +

{
5
2

}
x3 +

{
5
1

}
x4 − x5

.

For k = 5,we get
∞∑
n=0

{
n+ 5
5

}
xn =

1

1−
{
6
5

}
x−

{
6
4

}
x2 +

{
6
3

}
x3 +

{
6
2

}
x4 −

{
6
1

}
x5 − x6

,

∞∑
n=0

{n
1

}{n+ 5
4

}
xn =

(u5u6/u2) x− v2v3u5x2 − (u5u6/u2) x3 + u6x4 + x5

1−
{
6
5

}
x−

{
6
4

}
x2 +

{
6
3

}
x3 +

{
6
2

}
x4 −

{
6
1

}
x5 − x6

,

∞∑
n=0

{
n+ 1
2

}{
n+ 5
3

}
xn =

v2v3u5x+ (u5u6/u2) x2 − u6x3 − x4

1−
{
6
5

}
x−

{
6
4

}
x2 +

{
6
3

}
x3 +

{
6
2

}
x4 −

{
6
1

}
x5 − x6

,

∞∑
n=0

{
n+ 2
3

}{
n+ 5
2

}
xn =

(u5u6/u2) x− u6x2 − x3

1−
{
6
5

}
x−

{
6
4

}
x2 +

{
6
3

}
x3 +

{
6
2

}
x4 −

{
6
1

}
x5 − x6

,

∞∑
n=0

{
n+ 3
4

}{
n+ 5
1

}
xn =

(u5u6/u4) x+ x2

1−
{
6
5

}
x−

{
6
4

}
x2 +

{
6
3

}
x3 +

{
6
2

}
x4 −

{
6
1

}
x5 − x6

.

7. Combinatorial representations

In this section, we give combinatorial representations for the generalized Fibonomial coefficients.
In [2], the authors considered the k × k companion matrix A that we give in (4) and its nth power to
derive an explicit formula for the elements in the nth power of the matrix A. Let us recall this result,
as follows.



206 E. Kiliç / European Journal of Combinatorics 31 (2010) 193–209

Theorem 16 ([2]). Let the matrix A = (aij) be as in (4). The (i, j) entry a
(n)
ij in the matrix A

n
k is given by

the following formula:

a(n)ij (c1, c2, . . . , ck) =
∑

(t1,t2,...tk)

tj + tj+1 + · · · + tk
t1 + t2 + · · · + tk

×

(
t1 + t2 + · · · + tk
t1, t2, . . . , tk

)
ct11 . . . c

tk
k (5)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + ktk = n − i + j, and the
coefficients are defined as 1 for n = i− j.

Thus we give the following results.

Corollary 17. Let an,i denote the generalized Fibonomial coefficients. Then

an−i+1,j =
∑

(t1,t2,...,tk+1)

tj + tj+1 + · · · + tk+1
t1 + t2 + · · · + tk+1

×

(
t1 + t2 + · · · + tk+1
t1, t2, . . . , tk+1

)
at11,1 . . . a

tk+1
1,k+1

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + (k+ 1)tk+1 = n− i+ j.

Proof. Considering the matrices Gk and A, the proof is obvious from the result of Theorem 16. �

Corollary 18. For n ≥ 0,{
n+ k
k

}
=

∑
(t1,t2,...,tk+1)

(
t1 + t2 + · · · + tk+1
t1, t2, . . . , tk+1

)
at11,1 . . . a

tk+1
1,k+1

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + (k+ 1)tk+1 = n.

Proof. In Corollary 17, if we take i = j = 1, then an,1 =
{
n+k
k

}
, so the proof of Corollary 17

follows. �

For example, one can obtain{n
1

}{n+ 3
2

}
=

∑
(r1,r2,r3,r4)

r2 + r3 + r4
r1 + r2 + r3 + r4

(
r1 + r2 + r3 + r4
r1, r2, r3, r4

)
(−1)r3+r4

{
4
3

}r1+r3{4
2

}r2
where the summation is over nonnegative integers satisfying r1 + 2r2 + 3r3 + 4r4 = n+ 1 and{

n+ 1
2

}{
n+ 3
1

}
=

∑
(r1,r2,r3,r4)

r3 + r4
r1 + r2 + r3 + r4

×

(
r1 + r2 + r3 + r4
r1, r2, r3, r4

)
(−1)r3+r4+1

{
4
3

}r1+r3{4
2

}r2
where the summation is over nonnegative integers satisfying r1 + 2r2 + 3r3 + 4r4 = n+ 2.

8. Determinantal representations

In this section, we determine some relationships between determinants of certain matrices and
the generalized Fibonomial coefficients. Similar relationships have been derived by some authors (see
for more detail [17,18,22]). In particular, Lind [17] gave the first result for the relationship between
the determinant of certain Hessenberg matrices and the generalized Fibonomial coefficients. For
convenience, we give the result of Lind [17].
Let Dn,k denote the recurrent n× n determinant |ars|, where

ars = −(−1)(s+r+1)(s−r+2)/2
{
k+ 1
s− r + 1

}
F

for r, s = 1, 2, . . . , n.



E. Kiliç / European Journal of Combinatorics 31 (2010) 193–209 207

Then the author showed that Dn,k =
{
n+k
k

}
F
where

{ n
i

}
F is the Fibonomial coefficient. The

analogous result holdswhen the Fibonacci sequence is replaced by an ordinary second-order recurring
sequence.
Now, by constructing superdiagonal matrices, we give some new results that are given by Lind

in [17].

Definition 19. For n > k > 0, let Mn =
[
mij
]
denote the k-superdiagonal matrix of order n with

mii = a1,1 for 1 ≤ i ≤ n,mi,i+1 = a1,2 for 1 ≤ i ≤ n− 1, . . . ,mi,i+k = a1,k+1 for 1 ≤ i ≤ n− k.

Clearly the matrixMn is in the form

Mn =



a1,1 a1,2 . . . a1,k+1 0
−1 a1,1 a1,2 . . . a1,k+1

. . .
. . .

. . . . . .
. . .

a1,1 a1,2 . . . a1,k+1

−1 a1,1 . . .
...

−1 a1,1 a1,2
0 −1 a1,1


. (6)

Theorem 20. For n > 0,

|Mn| = an,1.

Proof (Induction on n). If n = 2, then we have

|M2| =
∣∣∣∣a1,1 a1,2
−1 a1,1

∣∣∣∣ = a1,1a1,1 + a1,2 = a2,1.
Suppose this equation holds for n. Then we show that the equality is true for n+ 1. Expanding |Mn+1|
by the Laplace expansion of determinant according to the last column and by the definition ofMn, we
get

|Mn+1| = a1,1 |Mn| + a1,2 |Mn−1| + a1,3 |Mn−2| + · · · + a1,k+1 |Mn−k| .

By our assumption and the recurrence relation of
{
an,1

}
, we write

|Mn+1| = a1,1an,1 + a1,2an−1,1 + a1,3an−2,1 + · · · + a1,k+1an−k,1
= an+1,1.

Thus the theorem is proven. �

For example, if we take p = 1, then un = Fn (nth Fibonacci number) and by Theorem 20, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 6 −3 −1 0

−1 3 6 −3
. . .

−1 3 6
. . . −1

. . .
. . .

. . . −3
−1 3 6

0 −1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=

[
n+ 3
3

]
F
.

Let Mn (k) denote the matrix obtained by the matrix Mn =
[
mij
]
taking m1,j = 0 for 1 ≤ j ≤ k. For

example

M4 (2) =

 0 0 a1,3 a1,4
−1 a1,1 a1,2 a1,3
0 −1 a1,1 a1,2
0 0 −1 a1,1

 .
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Now we determine some relationships between the sequences
{
an,i
}
for 1 < i ≤ k and the

consecutive determinants of matrixMn(k) for some specific number k.

Theorem 21. For n > k ≥ i ≥ 1,

|Mn(i)| = an−i,i+1.

Proof. Expanding |Mn(i)| with respect to the first row and using the definitions ofMn(i) andMn, we
get

|Mn(i)| = a1,i+1 |Mn−i−1| + a1,i+2 |Mn−i−2| + · · · + a1,k+1 |Mn−k−1| .

Similarly expanding the |Mn|with respect to the first row and using the definitions ofMn and |Mn(i)| ,
we may write, after some simplifications,

|Mn(i)| = |Mn| − a1,1 |Mn−1| − a1,2 |Mn−2| − a1,3 |Mn−3| − · · · − a1,i |Mn−i|

which, by our assumption and Lemma 1, satisfies

|Mn(i)| = an,1 − a1,1an−1,1 − a1,2an−2,1 − a1,3an−3,1 − · · · − a1,ian−i,1
= an−1,2 − a1,2an−2,1 − a1,3an−3,1 − · · · − a1,ian−i,1
...

= an−i+1,i − a1,ian−i,1
= an−i,i+1.

Thus the proof is complete.
We now define an n× n upper Hessenberg matrix Dn as in the following compact form:

Dn =


1 1 . . . 1
−1
0 Mn−1

0

 (7)

whereMn is defined as before. �

Theorem 22. For n > 1,

|Dn| = Sn

where Sn is defined as before.

Proof. By Theorem 20, the proof follows from by induction. �

To derive other similar relationships between determinants of certain matrices and the sums of
the other products, we define (n+ 1)× (n+ 1)matrix Tn,i for 1 ≤ i ≤ k as follows:

Tn,i =



0
...

Mn(i) 0
1
...

0 . . . 0 −1 1


ith row

where the matrixMn(i) is defined as before.
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Expanding
∣∣Tn,i∣∣ according to the last row, we have the following Theorem.

Theorem 23. For n ≥ k ≥ i ≥ 1,∣∣Tn,i∣∣ = n−i−1∑
i=0

ai,1.

9. Conclusion

In this paper, we consider the recurrence {un} and its generalized Fibonomial coefficients. Using
results in this paper, one can obtain many applications to the recurrence {un} or its special cases,
that is, Fibonacci or Pell sequences. Moreover, one can obtain many analogues for the recurrence {Un}
defined by Un = pUn−1 − qUn−2 with U0 = 0 and U1 = 1. However one should be aware that, in case
of recurrence {Un}, we cannot obtain a generator matrix by using just the matrix itself.
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