The Binet formula, sums and representations of generalized Fibonacci p-numbers

Emrah Kilic
TOBB ETU University of Economics and Technology, Mathematics Department, 06560 Sogutozu, Ankara, Turkey

Received 10 June 2006; accepted 6 March 2007
Available online 1 April 2007

Abstract

In this paper, we consider the generalized Fibonacci p-numbers and then we give the generalized Binet formula, sums, combinatorial representations and generating function of the generalized Fibonacci p-numbers. Also, using matrix methods, we derive an explicit formula for the sums of the generalized Fibonacci p-numbers.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a generalization of well-known Fibonacci numbers, which are called Fibonacci p-numbers. The Fibonacci p-numbers $F_{p}(n)$ are defined by the following equation for $n>p+1$

$$
\begin{equation*}
F_{p}(n)=F_{p}(n-1)+F_{p}(n-p-1) \tag{1}
\end{equation*}
$$

with initial conditions

$$
F_{p}(1)=F_{p}(2)=\cdots=F_{p}(p)=F_{p}(p+1)=1 .
$$

If we take $p=1$, then the sequence of Fibonacci p-numbers, $\left\{F_{p}(n)\right\}$, is reduced to the well-known Fibonacci sequence $\left\{F_{n}\right\}$.

The Fibonacci p-numbers and their properties have been studied by some authors (for more details see [1,4-6,8,13-26,29]).

[^0]In 1843, Binet gave a formula which is called "Binet formula" for the usual Fibonacci numbers F_{n} by using the roots of the characteristic equation $x^{2}-x-1=0: \alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

where α is called Golden Proportion, $\alpha=\frac{1+\sqrt{5}}{2}$ (for details see [7,30,28]). In [12], Levesque gave a Binet formula for the Fibonacci sequence by using a generating function. In [2], the authors considered an $n \times n$ companion matrix and its nth power, then gave the combinatorial representation of the sequence generated by the nth power the matrix. Further in [25], the authors derived analytical formulas for the Fibonacci p-numbers and then showed these formulas are similar to the Binet formulas for the classical Fibonacci numbers. Also, in [11], the authors gave the generalized Binet formulas and the combinatorial representations for the generalized orderk Fibonacci [3] and Lucas [27] numbers. In [10], the authors defined the generalized order- k Pell numbers and gave the Binet formula for the generalized Pell sequence. For the common generalization of the generalized order- k Fibonacci and Pell numbers, and its generating matrix, sums and combinatorial representation, we refer readers to [9].

In this paper, we consider the generalized Fibonacci p-numbers and give the generalized Binet formula, combinatorial representations and sums of the generalized Fibonacci p-numbers by using the matrix method.

The generating matrix for the generalized Fibonacci p-numbers is given by Stakhov [23] as follows: Let Q_{p} be the following $(p+1) \times(p+1)$ companion matrix :

$$
Q_{p}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 1 \tag{2}\\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \ldots & \ddots & \ldots & \vdots & \vdots \\
0 & \ldots & 0 & 1 & 0 & 0 \\
0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right]
$$

and the nth power of the matrix Q_{p} is

$$
Q_{p}^{n}=\left[\begin{array}{ccccc}
F_{p}(n+1) & F_{p}(n-p+1) & \ldots & F_{p}(n-1) & F_{p}(n) \tag{3}\\
F_{p}(n) & F_{p}(n-p) & \ldots & F_{p}(n-2) & F_{p}(n-1) \\
\vdots & \vdots & & \vdots & \vdots \\
F_{p}(n-p+2) & F_{p}(n-2 p+2) & \ldots & F_{p}(n-p) & F_{p}(n-p+1) \\
F_{p}(n-p+1) & F_{p}(n-2 p+1) & \ldots & F_{p}(n-p-1) & F_{p}(n-p)
\end{array}\right] .
$$

The matrix Q_{p} is said to be a generalized Fibonacci p-matrix.

2. The generalized Binet formula

In this section, we give the generalized Binet formula for the generalized Fibonacci p numbers. We start with the following results.

Lemma 1. Let $a_{p}=\frac{1}{p}\left(\frac{p-1}{p}\right)^{p-1}$. Then $a_{p}>a_{p+1}$ for $p>1$.

Proof. Since $2 p^{3}-2 p-1>0$ and $p>1,\left(p^{2}+2 p+1\right)\left(p^{2}-1\right)>p^{4}$. Thus, $\left(\frac{p^{2}-1}{p^{2}}\right)>$ $\left(\frac{p}{p+1}\right)^{2}$. Therefore, for $p>1,\left(\frac{p^{2}-1}{p^{2}}\right)^{p-1}>\left(\frac{p}{p+1}\right)^{2}$ and $\operatorname{so}\left(\left(\frac{p-1}{p^{2}}\right) \times\left(\frac{p+1}{p}\right)\right)^{p-1}>$ $\left(\frac{p}{p+1}\right)^{2}$. Then we have $\left(\frac{p-1}{p^{2}}\right)^{p-1}>\left(\frac{p}{p+1}\right)^{p+1}$. So the proof is easily seen.

Lemma 2. The characteristic equation of the Fibonacci p-numbers $x^{p}-x^{p-1}-1=0$ does not have multiple roots for $p>1$.

Proof. Let $f(z)=z^{p}-z^{p-1}-1$. Suppose that α is a multiple root of $f(z)=0$. Note that $\alpha \neq 0$ and $\alpha \neq 1$. Since α is a multiple root, $f(\alpha)=\alpha^{p}-\alpha^{p-1}-1=0$ and $f^{\prime}(\alpha)=p \alpha^{p-1}-(p-1) \alpha^{p-2}=0$. Then

$$
f^{\prime}(\alpha)=\alpha^{p-2}(p \alpha-(p-1))=0 .
$$

Thus $\alpha=\frac{p-1}{p}$, and hence

$$
\begin{aligned}
0 & =f(\alpha)=-\alpha^{p}+\alpha^{p-1}+1=\alpha^{p-1}(1-\alpha)+1 \\
& =\left(\frac{p-1}{p}\right)^{p-1}\left(1-\frac{p-1}{p}\right)+1=\frac{1}{p}\left(\frac{p-1}{p}\right)^{p-1}+1 \\
& =a_{p}+1
\end{aligned}
$$

Since, by Lemma $1, a_{2}=\frac{1}{4}<1$ and $a_{p}>a_{p+1}$ for $p>1, a_{p} \neq 1$, which is a contradiction. Therefore, the equation $f(z)=0$ does not have multiple roots.

We suppose that $f(\lambda)$ is the characteristic polynomial of the generalized Fibonacci p-matrix Q_{p}. Then, $f(\lambda)=\lambda^{p+1}-\lambda^{p}-1$, which is a well-known fact from the companion matrices. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}$ be the eigenvalues of the matrix Q_{p}. Then, by Lemma 2, we know that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}$ are distinct. Let Λ be a $(p+1) \times(p+1)$ Vandermonde matrix as follows:

$$
\Lambda=\left[\begin{array}{ccccc}
\lambda_{1}^{p} & \lambda_{1}^{p-1} & \ldots & \lambda_{1} & 1 \\
\lambda_{2}^{p} & \lambda_{2}^{p-1} & \ldots & \lambda_{2} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{p+1}^{p} & \lambda_{p+1}^{p-1} & \ldots & \lambda_{p+1} & 1
\end{array}\right]
$$

We denote Λ^{T} by V. Let

$$
d_{k}^{i}=\left[\begin{array}{c}
\lambda_{1}^{n+p+1-i} \\
\lambda_{2}^{n+p+1-i} \\
\vdots \\
\lambda_{p+1}^{n+1-i}
\end{array}\right]
$$

and $V_{j}^{(i)}$ be a $(p+1) \times(p+1)$ matrix obtained from V by replacing the j th column of V by d_{k}^{i}.
Then we can give the generalized Binet formula for the generalized Fibonacci p-numbers with the following theorem.

Theorem 3. Let $F_{p}(n)$ be the nth generalized Fibonacci p-number; then

$$
q_{i j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)}
$$

where $Q_{p}^{n}=\left[q_{i j}\right]$ and $q_{i j}=F_{p}(n+j-i-p)$ for $j \geq 2$ and $q_{i, 1}=F_{p}(n+2-i)$ for $j=1$.

Proof. Since the eigenvalues of the matrix Q_{p} are distinct, the matrix Q_{p} is diagonalizable. It is easy to show that $Q_{p} V=V D$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+1}\right)$. Since the Vandermonde matrix V is invertible, $V^{-1} Q_{p} V=D$. Hence, the matrix Q_{p} is similar to the diagonal matrix D. So we have the matrix equation $Q_{p}^{n} V=V D^{n}$. Since $Q_{p}^{n}=\left[q_{i j}\right]$, we have the following linear system of equations:

$$
\begin{aligned}
& q_{i 1} \lambda_{1}^{p}+q_{i 2} \lambda_{1}^{p-1}+\cdots+q_{i, p+1}=\lambda_{1}^{p+n+1-i} \\
& q_{i 1} \lambda_{2}^{p}+q_{i 2} \lambda_{2}^{p-1}+\cdots+q_{i, p+1}=\lambda_{2}^{p+n+1-i} \\
& \vdots \\
& q_{i 1} \lambda_{p+1}^{p}+q_{i 2} \lambda_{p+1}^{p-1}+\cdots+q_{i, p+1}=\lambda_{p+1}^{p+n+1-i}
\end{aligned}
$$

Thus, for each $j=1,2, \ldots, p+1$, we obtain

$$
q_{i j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)}
$$

So the proof is complete.
Thus, we give the Binet formula for the nth Fibonacci p-number $F_{p}(n)$ by the following corollary.

Corollary 4. Let $F_{p}(n)$ be the nth Fibonacci p-number. Then

$$
F_{p}(n)=\frac{\operatorname{det}\left(V_{1}^{(2)}\right)}{\operatorname{det}(V)}=\frac{\operatorname{det}\left(V_{p+1}^{(1)}\right)}{\operatorname{det}(V)} .
$$

Proof. The conclusion is immediate result of Theorem 3 by taking $i=2, j=1$ or $i=1, j=$ $p+1$.

The following lemma can be obtained from [2].
Lemma 5. Let the matrix $Q_{p}^{n}=\left[q_{i j}\right]$ be as in (3). Then

$$
q_{i j}=\sum_{\left(m_{1}, \ldots, m_{p+1}\right)} \frac{m_{j}+m_{j+1}+\cdots+m_{p+1}}{m_{1}+m_{2}+\cdots+m_{p+1}} \times\binom{ m_{1}+m_{2}+\cdots+m_{p+1}}{m_{1}, m_{2}, \ldots, m_{p+1}}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+(p+1) m_{p+1}=$ $n-i+j$, and defined to be 1 if $n=i-j$.

Then we have the following corollaries.

Corollary 6. Let $F_{p}(n)$ be the generalized Fibonacci p-number. Then

$$
F_{p}(n)=\sum_{\left(m_{1}, \ldots, m_{p+1}\right)} \frac{m_{p+1}}{m_{1}+m_{2}+\cdots+m_{p+1}} \times\binom{ m_{1}+m_{2}+\cdots+m_{p+1}}{m_{1}, m_{2}, \ldots, m_{p+1}}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+(p+1) m_{p+1}=$ $n+p$.

Proof. In Lemma 5, when $i=1$ and $j=p+1$, then the conclusion can be directly seen from (3).

Corollary 7. Let $F_{p}(n)$ be the generalized Fibonacci p-number. Then

$$
F_{p}(n)=\sum_{\left(m_{1}, \ldots, m_{p+1}\right)}\binom{m_{1}+m_{2}+\cdots+m_{p+1}}{m_{1}, m_{2}, \ldots, m_{p+1}}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+\cdots+(p+1) m_{p+1}=$ $n-1$.

Proof. In Lemma 5, if we take $i=2$ and $j=1$, then we have the corollary from (3).
We consider the generating function of the generalized Fibonacci p-numbers. We give the following lemma.

Lemma 8. Let $F_{p}(n)$ be the nth generalized Fibonacci number, then for $n>1$

$$
x^{n}=F_{p}(n-p+1) x^{p}+\sum_{j=1}^{p} F_{p}(n-p+1-j) x^{j-1} .
$$

Proof. We suppose that $n=p+1$; then by the definition of the Fibonacci p-numbers

$$
x^{p+1}=F_{p}(2) x^{p}+F_{p}(1)=x^{p}+1 .
$$

Now we suppose that the equation holds for any integer $n, n>p+1$. Then we show that the equation holds for $n+1$. Thus, from our assumption and the characteristic equation the Fibonacci p-numbers,

$$
\begin{align*}
x^{n+1}= & x^{n} x=\left(F_{p}(n-p+1) x^{p}+\sum_{j=1}^{p} F_{p}(n-p+1-j) x^{j-1}\right) x \\
= & F_{p}(n-p+1)\left(x^{p}+1\right)+\sum_{j=1}^{p} F_{p}(n-p+1-j) x^{j} \\
= & F_{p}(n-p+1) x^{p}+F_{p}(n-p+1)+F_{p}(n-2 p+1) x^{p} \\
& +F_{p}(n-2 p+2) x^{p-1}+\cdots+F_{p}(n-2 p+1) x^{2}+F_{p}(n-p) x \\
= & {\left[F_{p}(n-p+1)+F_{p}(n-2 p+1)\right] x^{p}+F_{p}(n-2 p+2) x^{p-1} } \\
& +F_{p}(n-2 p+3) x^{p-2}+\cdots+F_{p}(n-p) x+F_{p}(n-p+1) \tag{4}
\end{align*}
$$

Using the definition of the generalized Fibonacci p-numbers, we have

$$
F_{p}(n-p+1)+F_{p}(n-2 p+1)=F_{p}(n-p+2) .
$$

Therefore, we can write the Eq. (4) as follows

$$
\begin{align*}
x^{n+1}= & F_{p}(n-p+2) x^{p}+F_{p}(n-2 p+2) x^{p-1} \\
& +F_{p}(n-2 p+3) x^{p-2}+\cdots+F_{p}(n-p) x+F_{p}(n-p+1) \\
= & F_{p}(n-p+2) x^{p}+\sum_{j=1}^{p} F_{p}(n-p+2-j) x^{j-1} \tag{5}
\end{align*}
$$

which is what was desired.
Now we give the generating function of the generalized Fibonacci p-numbers:
Let

$$
G_{p}(x)=F_{p}(1)+F_{p}(2) x+F_{p}(3) x^{2}+\cdots+F_{p}(n+1) x^{n}+\cdots .
$$

Then

$$
G_{p}(x)-x G_{p}(x)-x^{p+1} G_{p}(x)=\left(1-x-x^{p+1}\right) G_{p}(x)
$$

By the Eq. (5), we have $\left(1-x-x^{p+1}\right) G_{p}(x)=F_{p}(1)=1$. Thus

$$
G_{p}(x)=\left(1-x-x^{p+1}\right)^{-1}
$$

for $0 \leq x+x^{p+1}<1$.
Let $f_{p}(x)=x+x^{p+1}$. Then, for $0 \leq f_{p}(x)<1$, we have the following lemma.
Lemma 9. For positive integers t and n, the coefficient of x^{n} in $\left(f_{p}(x)\right)^{t}$ is

$$
\sum_{j=0}^{t}\binom{t}{j}, \quad \frac{n}{p+1} \leq t \leq n
$$

where the integers j satisfy $p j+t=n$.
Proof. From the above results, we write

$$
\left(f_{p}(x)\right)^{t}=\left(x+x^{p+1}\right)^{t}=x^{t}\left(1+x^{p}\right)^{t}=x^{t} \sum_{j=0}^{t}\binom{t}{j} x^{p j}
$$

In the above equation, we consider the coefficient of x^{n}. For positive integers t and j such that $p j+t=n$ and $j \leq t$, the coefficients of x^{n} are

$$
\sum_{j=0}^{t}\binom{t}{j}, \quad \frac{n}{p+1} \leq t \leq n
$$

So we have the required conclusion.
Now we can give a representation for the generalized Fibonacci p-numbers by the following theorem.

Theorem 10. Let $F_{p}(n)$ be the nth generalized Fibonacci p-number. Then, for positive integers t and n,

$$
F_{p}(n+1)=\sum_{\frac{n}{p+1} \leq t \leq n} \sum_{j=0}^{t}\binom{t}{j}
$$

where the integers j satisfy $p j+t=n$.
Proof. Since

$$
\begin{aligned}
G_{p}(x) & =F_{p}(1)+F_{p}(2) x+F_{p}(3) x^{2}+\cdots+F_{p}(n+1) x^{n}+\cdots \\
& =\frac{1}{1-x-x^{p+1}}
\end{aligned}
$$

and $f_{p}(x)=x+x^{p+1}$, the coefficient of x^{n} is the $(n+1)$ th generalized Fibonacci p-number, $F_{p}(n+1)$ in $G_{p}(x)$. Thus

$$
\begin{aligned}
G_{p}(x) & =\frac{1}{1-x-x^{p+1}} \\
& =\frac{1}{1-f_{p}(x)} \\
& =1+f_{p}(x)+\left(f_{p}(x)\right)^{2}+\cdots+\left(f_{p}(x)\right)^{n}+\cdots \\
& =1+x\left(1+x^{p}\right)+x^{2} \sum_{j=0}^{2}\binom{2}{j} x^{p j}+\cdots+x^{n} \sum_{j=0}^{n}\binom{n}{j} x^{p j}+\cdots .
\end{aligned}
$$

As we need the coefficient of x^{n}, we only consider the first $n+1$ terms on the right-side. Thus by Lemma 9, the proof is complete.

Now we give an exponential representation for the generalized Fibonacci p-numbers.

$$
\begin{aligned}
\ln G_{p}(x) & =\ln \left[1-\left(x+x^{p+1}\right)\right]^{-1} \\
& =-\ln \left[1-\left(x+x^{p+1}\right)\right] \\
& =-\left[-\left(x+x^{p+1}\right)-\frac{1}{2}\left(x+x^{p+1}\right)^{2}-\cdots-\frac{1}{n}\left(x+x^{p+1}\right)^{n}-\cdots\right] \\
& =x\left[\left(1+x^{p}\right)+\frac{1}{2}\left(1+x^{p}\right)^{2}+\cdots+\frac{1}{n}\left(1+x^{p}\right)^{n}+\cdots\right] \\
& =x \sum_{n=0}^{\infty} \frac{1}{n}\left(1+x^{p}\right)^{n} .
\end{aligned}
$$

Thus,

$$
G_{p}(x)=\exp \left(x \sum_{n=0}^{\infty} \frac{1}{n}\left(1+x^{p}\right)^{n}\right)
$$

3. Sums of the generalized Fibonacci \boldsymbol{p}-numbers by matrix methods

In this section, we define a $(p+2) \times(p+2)$ matrix T, and then we show that the sums of the generalized Fibonacci p-numbers can be obtained from the nth power of the matrix T.

Definition 11. For $p \geq 1$, let $T=\left(t_{i j}\right)$ denote the $(p+2) \times(p+2)$ matrix by $t_{11}=t_{21}=$ $t_{22}=t_{2, p+2}=1, t_{i+1, i}=1$ for $2 \leq i \leq p+1$ and 0 otherwise.

Clearly, by the definition of the matrix Q_{p},

$$
T=\left[\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \tag{6}\\
1 & 1 & 0 & \ldots & 0 & 1 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
0 & 0 & & 0 & 1 & 0
\end{array}\right] \quad \text { or } \quad T=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
1 & & & \\
0 & & Q_{p} & \\
\vdots & & & \\
0 & & &
\end{array}\right]
$$

where the $(p+1) \times(p+1)$ matrix Q_{p} given by (2).
Let S_{n} denote the sums of the generalized Fibonacci p-numbers from 1 to n, that is:

$$
\begin{equation*}
S_{n}=\sum_{i=1}^{n} F_{p}(i) . \tag{7}
\end{equation*}
$$

Now we define a $(p+2) \times(p+2)$ matrix C_{n} as follows

$$
C_{n}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \tag{8}\\
S_{n} & & & \\
S_{n-1} & & Q_{p}^{n} & \\
\vdots & & & \\
S_{n-p} & & &
\end{array}\right]
$$

where Q_{p}^{n} given by (3).
Then we have the following theorem.
Theorem 12. Let the $(p+2) \times(p+2)$ matrices T and C_{n} be as in (6) and (8), respectively. Then, for $n \geq 1$:

$$
C_{n}=T^{n}
$$

Proof. We will use the induction method to prove that $C_{n}=T^{n}$. If $n=1$, then, by the definition of the matrix C_{n} and generalized Fibonacci p-numbers, we have

$$
C_{1}=T
$$

Now we suppose that the equation holds for n. Then we show that the equation holds for $n+1$. Thus,

$$
T^{n+1}=T^{n} \cdot T
$$

and by our assumption,

$$
T^{n+1}=C_{n} T
$$

Since $S_{n+1}=S_{n}+F_{p}(n+1)$ and using the definition of the generalized Fibonacci numbers, we can derive the following matrix recurrence relation

$$
C_{n} T=C_{n+1} .
$$

So the proof is complete.
We define two $(p+2) \times(p+2)$ matrices. First, we define the matrix R as follows:

$$
R=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{9}\\
-1 & \lambda_{1}^{p} & \lambda_{2}^{p} & \ldots & \lambda_{p+1}^{p} \\
-1 & \lambda_{1}^{p-1} & \lambda_{2}^{p-1} & \ldots & \lambda_{p+1}^{p-1} \\
\vdots & \vdots & \vdots & & \vdots \\
-1 & \lambda_{1} & \lambda_{2} & \ldots & \lambda_{p+1} \\
-1 & 1 & 1 & \ldots & 1
\end{array}\right]
$$

and the diagonal matrix D_{1} as follows:

$$
D_{1}=\left[\begin{array}{llll}
1 & & & \tag{10}\\
& \lambda_{1} & & \\
& & \ddots & \\
& & & \lambda_{p+1}
\end{array}\right]
$$

where the λ_{i} 's are the eigenvalues of the matrix Q_{p} for $1 \leq i \leq p+1$.
We give the following theorem for the computing the sums of the generalized Fibonacci p numbers 1 from to n by using a matrix method.

Theorem 13. Let the sums of the generalized Fibonacci numbers S_{n} be as in (7). Then

$$
S_{n}=F_{p}(n+p+1)-1
$$

Proof. If we compute the det R by the Laplace expansion of determinant with respect to the first row, then we obtain that $\operatorname{det} R=\operatorname{det} V$, where the Vandermonde matrix V is as in Theorem 3. Therefore, we can easily find the eigenvalues of the matrix R. Since the characteristic equation of the matrix R is $\left(x^{p}-x^{p-1}-1\right) \times(x-1)$ and by Lemma 2 , the eigenvalues of the matrix R are $1, \lambda_{1}, \ldots, \lambda_{p+1}$ and distinct. So the matrix R is diagonalizable. We can easily prove that $T R=R D_{1}$, where the matrices T, R and D_{1} are as in (6), (9) and (10), respectively. Then we have

$$
\begin{equation*}
T^{n} R=R D_{1}^{n} \tag{11}
\end{equation*}
$$

Since $T^{n}=C_{n}$, we write that $C_{n} R=R D_{1}^{n}$. We know that $S_{n}=\left(C_{n}\right)_{2,1}$. By a matrix multiplication,

$$
\begin{equation*}
S_{n}-\left(\sum_{i=0}^{p} F_{p}(n+1-i)\right)=-1 \tag{12}
\end{equation*}
$$

By the definition of the generalized Fibonacci p-numbers, we know that $\sum_{i=0}^{p} F_{p}(n+1-i)=$ $F_{p}(n+p+1)$. Then we write the Eq. (12) as follows:

$$
S_{n}-F_{p}(n+p+1)=-1
$$

Fig. 1.
Thus,

$$
S_{n}=\sum_{i=1}^{n} F_{p}(i)=F_{p}(n+p+1)-1 .
$$

So the proof is complete.
In [30], the author presents an enumeration problem for the paths from A to c_{n}, and then shows that the number of paths from A to c_{n} are equal to the nth usual Fibonacci number. Now, we are interested in a problem of paths. The problem is as in Fig. 1.

It is seen that the number of path from A to $c_{1}, c_{2}, \ldots c_{p+1}$ is 1 . Also, we know that the initial conditions of the generalized Fibonacci p-numbers, that is, $F_{p}(1), F_{p}(2), \ldots, F_{p}(p+1)$, are 1. Now we consider the case $n>p+1$. The number of the path from A to c_{p+2} is 2 . By the induction method, one can see that the number of the path from A to c_{n} is the nth generalized Fibonacci p-number.

References

[1] B.A. Bondarenko, Generalized Pascal's Triangles and Pyramids: Their fractals, Graphs, and Applications, Fibonacci Association, 1993.
[2] W.Y.C. Chen, J.D. Louck, The combinatorial power of the companion matrix, Linear Algebra Appl. 232 (1996) 261-278.
[3] M.C. Er, Sums of Fibonacci numbers by matrix methods, Fibonacci Quart. 22 (3) (1984) 204-207.
[4] S. Falcon, A. Plaza, The k-Fibonacci hyperbolic functions, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.11.019.
[5] S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-Triangle, Chaos Solitons Fractals 33 (1) (2007) 38-49.
[6] M.J.G. Gazale, From Pharaons to Fractals, Princeton University Press, Princeton, New Jersey, 1999 (Russian translation, 2002).
[7] V.E. Hoggat, Fibonacci and Lucas Numbers, Houghton-Mifflin, PaloAlto, California, 1969.
[8] J. Kappraff, Connections. The Geometric Bridge Between Art and Science, second ed., World Scientific, Singapore, New Jersey, London, Hong Kong, 2001.
[9] E. Kilic, The generalized order- k Fibonacci-Pell sequence by matrix methods, doi:10.1016/j.cam.2006.10.071.
[10] E. Kilic, D. Tasci, The generalized Binet formula, representation and sums of the generalized order- k Pell numbers, Taiwanese J. Math. 10 (6) (2006) 1661-1670.
[11] E. Kilic, D. Tasci, On the generalized order-k Fibonacci and Lucas numbers, Rocky Mountain J. Math. 36 (6) (2006) 1915-1926.
[12] C. Levesque, On m th-order linear recurrences, Fibonacci Quart. 23 (4) (1985) 290-293.
[13] B. Rozin, The Golden Section: A morphological law of living matter, Avaible from www.goldensection.net.
[14] N.A. Soljanichenko, B.N. Rozin, Mystery of Golden Section, Theses of the Conference Fenid-90: Non-traditional ideas about Nature and its phenomena, (3) Homel, 1990.
[15] C.P. Spears, M. Bicknell-Johnson, Asymmetric Cell Dision: Binomial Identities for Age Analysis of Mortal vs. Immortal Trees, in: Applications of Fibonacci Numbers, vol. 7, 1998, pp. 377-391.
[16] A.P. Stakhov, Introduction into Algorithmic Measurement Theory, Soviet Radio, Moscow, 1977.
[17] A.P. Stakhov, B. Rozin, The golden shofar, Chaos Solitions Fractals 26 (3) (2005) 677-684.
[18] A.P. Stakhov, Algorithmic measurement theory, in: Mathematics \& Cybernetics, vol. 6, Moscow, 1979.
[19] A.P. Stakhov, Codes of the golden proportion, Radio Commun. (1984).
[20] A.P. Stakhov, The golden section in the measurement theory, Comput. Math. Appl. 17 (4-6) (1989) 613-638.
[21] A.P. Stakhov, I.S. Tkachenko, Hyperbolic fibonacci trigonometry, Rep. Ukrainian Acad. Sci. 208 (7) (1993) 9-14.
[22] A.P. Stakhov, The Golden Section and Modern Harmony Mathematics, in: Applications of Fibonacci numbers, vol. 7, Kluwer Academic Publisher, 1998, pp. 393-399.
[23] A.P. Stakhov, A generalization of the Fibonacci Q-matrix, Rep. Natl. Acad. Sci. Ukraine 9 (1999) 46-49.
[24] A.P. Stakhov, B. Rozin, The continuous functions for the Fibonacci and Lucas p-numbers, Chaos Solitions Fractals 28 (2006) 1014-1025.
[25] A.P. Stakhov, B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos Solitions Fractals 27 (2006) 1162-1177.
[26] A.P. Stakhov, A.A. Sluchenkova, V. Massingua, Introduction into Fibonacci Coding and Cryptography, Osnova, Kharkov, 1999.
[27] D. Tasci, E. Kilic, On the order-k generalized Lucas numbers, Appl. Math. Comput. 155 (3) (2004) 637-641.
[28] S. Vajda, Fibonacci and Lucas numbers, and the Golden Section, Theory and applications, John Wiley \& Sons, New York, 1989.
[29] V.W. de Spinadel, From the golden mean to chaos, in: Nueva Libreria, 1998. second edition Nobuko, 2004.
[30] N.N. Vorob'ev, Fibonacci Numbers, Nauka, Moscow, 1978.

[^0]: E-mail address: ekilic@etu.edu.tr.

