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A NOTE ON GENERATING FUNCTIONS AND

SUMMATION FORMULAE FOR

MEIXNER POLYNOMIALS OF SEVERAL VARIABLES

Abstract. The present paper deals with certain generating functions and various
elegant summation formulae for Meixner polynomials of several variables.

1. Introduction

Generalized functions occupy the place of pride in literature on special
functions. Their importance which is mounting everyday stems from the fact
that they generalize well-known one variable special functions namely Her-
mite polynomials, Laguerre polynomials, Legendre polynomials, Gegenbauer
polynomials, Jacobi polynomials, Rice polynomials, generalized Sylvester
polynomials, Meixner polynomials etc. All these polynomials are closely as-
sociated with problems of applied nature. For example, Gegenbauer polyno-
mials are deeply connected with axially symmetric potentials in n dimensions
and contain the Legendre and Chebyshev polynomials as special cases. The
hypergeometric functions of which the Jacobi polynomials are a special case,
are important in many cases of mathematical analysis and its applications.
Further, Bessel functions are closely associated with problems possessing cir-
cular or cylindrical symmetry. For example, they arise in the study of free
vibrations of a circular membrane and in finding the temperature distribu-
tion in a circular cylinder. They also occur in electromagnetic theory and
numerous other areas of physics and engineering.

The following results are required in this paper

Definitions:

Following the work of Riordan [5] (p. 90 et seq.), one denotes by S(n, k) the
Stirling numbers of the second kind, defined by
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(1.1) S(n, k) =
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn

so that

(1.2) S(n, 0) =

{

1 (n = 0),

0 (n ∈ N),

and

S(n, 1) = S(n, n) = 1 and S(n, n− 1) =

(

n

2

)

.

Recently, several authors (see, for example, Gabutti and Lyness [2], Mathis
and Sismondi [8], and Srivastava [3]) considered various families of generating
functions associated with the Stirling numbers S(n, k). We choose to recall
here the following general results on these families of generating functions,
which were given by Srivastava [3].

Theorem 1. ([3], p. 754) Let the sequence {Sn(x)}
∞
n=0 be generated by

∞
∑

n=0

(

n+ k

k

)

Sn+k(x)t
k = f(x, t){g(x, t)}−nSn(h(x, t))(n ∈ N0 := N ∪ {0}),

where f , g and h are suitable functions of x and t.
Then, in terms of the Stirling numbers S(n, k) defined by (1.1), the fol-

lowing family of generating functions holds true:

(1.3)

∞
∑

k=0

knSk(h(x,−z))

(

z

g(x,−z)

)k

= {f(x,−z)}−1
n
∑

k=0

k!S(n, k)Sk(x)z
k (n ∈ N0),

provided that each member of (1.3) exists.

Theorem 2. ([4], p. 403) Let the function F (z) be holomorphic on a

domain D of the complex z-plane, and define

(1.4) fn(z) =
1

n!
Dn

z {(az + b)nF (z)}, Dz =
d

dz
, n = 0, 1, 2, . . . ,

where a and b are complex constants such that |a|+ |b| > 0. Also let {λn} be

any sequence of complex numbers for which

(1.5) R−1 = lim
n→∞

sup |λn|
1/n

is finite or for which

(1.6) R = lim
n→∞

∣

∣

∣

∣

λn

λn+1

∣

∣

∣

∣



Generating functions and summation formulae 53

exists and is positive. Suppose further that

(1.7) An =

[n/N ]
∑

k=0

(

n

Nk

)

λkw
k

for some positive integer N and some complex number w. Then

(1.8)
∞
∑

n=0

Anfn(z)t
n =

1

1− at

∞
∑

k=0

λkfNk

(

z + bt

1− at

)[

wtN

(1− at)N

]k

for some domain in the complex t-plane that includes the origin.

Lagrange’s Expansion Formula. ([4], p. 355) If φ(z) is holomor-

phic at z = z0 and φ(z0) 6= 0, and if

(1.9) z = z0 + wφ(z),

then an analytic function f(z), which is holomorphic at z = z0, can be ex-

panded as a power series in w by the Lagrange formula [Whittaker and Wat-
son (1927), p. 133]

(1.10) f(z) = f(z0) +
∞
∑

n=1

wn

n!
Dn−1

z {f ′(z)[φ(z)]n}) |z=z0 ,

where Dz = d/dz.

If we differentiate both sides of (1.10) with respect to w, using the rela-
tionship (1.9), and replace f ′(z)φ(z) in the resulting equation by f(z), we
can write (1.10) in the form [cf. Polya and Szego (1972), p. 146, problem
207]:

(1.11)
f(z)

1− wφ′(z)
=

∞
∑

n=0

wn

n!
Dn

z {f(z)[φ(z)]
n} |z=z0,

which is usually more suitable to apply than (1.10).

For φ(z) ≡ 1, both (1.10) and (1.11) evidently yield Taylor,s expansion

(1.12) f(z) =

∞
∑

n=0

(z − z0)
n

n!
f (n)(z0),

where, as usual,

f (n)(z0) = Dn
z {f(z)} |z=z0 .

Theorem 3. (Carlitz’s [6], p. 521) Let A(z), B(z) and z−1C(z) be ar-

bitrary functions which are analytic in the neighborhood of the origin, and

assume that

(1.13) A(0) = B(0) = C(0) = 1.
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Define the sequence of functions {f
(α)
n (x)}∞n=0 by means of

(1.14) A(z)[B(z)]αexp (xC(z)) =
∞
∑

n=0

f (α)
n (x)

zn

n!
,

where α and x are arbitrary complex numbers independent of z. Then, for

arbitrary parameters λ and y independent of z,

(1.15)
∞
∑

n=0

f (α+λn)
n (x+ ny)

tn

n!
=

A(ζ)[B(ζ)]αexp (xC(ζ))

1− ζ{λ[B′(ζ)/B(ζ)] + yC ′(ζ)}

where ζ is a function of t defined by

(1.16) ζ = t[B(ζ)]λexp (yC(ζ)).

2. Meixner polynomials

The Meixner polynomials are denoted by mn(x;β, c) and are defined as
(see [10])

mn(x;β, c) = (β)n 2F1







−n, x;

1− c−1

β;







=

n
∑

k=0

(β)n(−x)k n!

k! (n− k)!(β)k

(

1

c
− 1

)k

(2.1)

where β > 0, 0 < c < 1 and x = 0, 1, 2, . . .

Agarwal and Manocha [1] defined the polynomials mn(x;β, c) by the
generating relations

∞
∑

n=0

mn(x;β, c)
tn

n!
=

(

1−
t

c

)x

(1− t)−x−β, |t| < min(1, |c|),(2.2)

∞
∑

n=0

mn+k(x;β, c)
tn

n!
=

(

1−
t

c

)x

(1− t)−x−β−kmk

(

x;β,
c− t

1− t

)

(2.3)

(n ∈ N0; |t| < min{1, |c|}).

The following generating function is well-known [4], p. 443, problem 5(ii)

(2.4)
∞
∑

n=0

Anmn(x;β, c)
tn

n!

=

(

1−
t

c

)x

(1− t)−x−β
∞
∑

k=0

λk

(Nk)!
mNk

(

x;β,
c− t

1− t

)[

wtN

(1− t)N

]k

.
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By applying Theorem 1, one immediately obtain the following (presumably
new) generating function for the Meixner polynomials defined by (2.1):

(2.5)

∞
∑

k=0

kn

k!
mk

(

x;β,
c+ z

1 + z

)(

z

1 + z

)k

= (1+z)x+β
(

1 +
z

c

)−x
n
∑

k=0

S(n, k)mk(x;β, c)z
k (n ∈ N0; |z| < min{1, |c|})

where S(n, k) and An are given by (1.1) and (1.7) of this paper.

3. Applications of Carlitz’s theorem

Let γ and δ be arbitrary constants. Then the polynomials mn(x;β, c)
defined by (2.2) above satisfy the following generating relations:

(3.1)
∞
∑

n=0

mn(x;β + γn, c)
tn

n!
=

(

1− u
c

)x
(1− u)−x−β

1− uγ(1− u)−1
,

where u is a function of t defined by

u = t(1− u)−γ , u(0) = 0.

Proof of (3.1). We know generating function

(i)
∞
∑

n=0

mn(x;β, c)
tn

n!
=

(

1−
t

c

)x

(1− t)−x−β.

Expanding the function on the R.H.S. of (i) by Taylor’s theorem.

(ii)

∞
∑

n=0

mn(x;β, c)
tn

n!
=

∞
∑

n=0

[

dn

dtn

{(

1−
t

c

)x

(1− t)−x−β

}]

t=0

tn

n!
.

Replacing β by β + γn in (ii) we get

(iii)

∞
∑

n=0

mn(x;β + γn, c)
tn

n!

=
∞
∑

n=0

[ dn

dtn

{(

1−
t

c

)x

(1− t)−x−β[(1− t)−γ ]n
}

]

t=0

tn

n!
.

We know that the Lagrange’s expansion formula:
∞
∑

n=0

[

dn

dtn
{f(t)[φ(t)]n}

]

t=0

un

n!
=

f(t)

1− uφ′(t)
; u =

t

φ(t)
(iv)

∞
∑

n=0

mn(x;β + γn, c)
tn

n!
=

f(u)

1− tφ′(u)
; t =

u

φ(u)
.(v)
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Here

f(u) =
(

1−
u

c

)x
(1−u)−x−β, φ(u) = (1−u)−γ , φ′(u) = γ(1−u)−γ−1.

Therefore we get (3.1)

(3.2)
∞
∑

n=0

mn(x+ γn;β, c)
tn

n!
=

(

1− v
c

)x
(1− v)−x−β

1− vγ[−1
c (1− v

c )
−1 + (1− v)−1]

,

where v is a function of t defined by

v = t
(

1−
v

c

)γ
(1− v)−γ , v(0) = 0.

Proof of (3.2). We know generating function

(i)
∞
∑

n=0

mn(x;β, c)
tn

n!
=

(

1−
t

c

)x

(1− t)−x−β.

Expanding the function on the R.H.S. of (i) by Taylor’s theorem

(ii)
∞
∑

n=0

mn(x;β, c)
tn

n!
=

∞
∑

n=0

[

dn

dtn

{(

1−
t

c

)x

(1− t)−x−β

}]

t=0

tn

n!
.

Replacing x by x+ γn in (ii) we get

(iii)
∞
∑

n=0

mn(x+ γn;β, c)
tn

n!

=
∞
∑

n=0

[

dn

dtn

{(

1−
t

c

)x

(1− t)−x−β

[(

1−
t

c

)γ

(1− t)−γ

]n}]

t=0

tn

n!
.

We know that the Lagrange’s expansion formula:

(iv)

∞
∑

n=0

[

dn

dtn
{f(t)[φ(t)]n}

]

t=0

vn

n!
=

f(t)

1− vφ′(t)
; v =

t

φ(t)
,

(v)
∞
∑

n=0

mn(x+ γn;β, c)
tn

n!
=

f(v)

1− tφ′(v)
; t =

v

φ(v)
.

Here

f(v) =
(

1−
v

c

)x
(1− v)−x−β,

φ(v) =
(

1−
v

c

)γ
(1− v)−γ ,

φ′(v) = φ(v)γ

[

−1

c

(

1−
v

c

)−1
+ (1− v)−1

]

.
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Therefore we get (3.2) and

(3.3)
∞
∑

n=0

mn(x+ γn;β + δn, c)
tn

n!

=

(

1− w
c

)x
(1− w)−x−β

1− w[−γ
c (1− w

c )
−1 + (γ + δ)(1− w)−1]

,

where w is a function of t defined by

w = t
(

1−
w

c

)γ
(1− w)−γ−δ, w(0) = 0.

Proof of (3.3). We know generating function

(i)
∞
∑

n=0

mn(x;β, c)
tn

n!
=

(

1−
t

c

)x

(1− t)−x−β.

Expanding the function on the R.H.S. of (i) by Taylor’s theorem

(ii)
∞
∑

n=0

mn(x;β, c)
tn

n!
=

∞
∑

n=0

[

dn

dtn

{(

1−
t

c

)x

(1− t)−x−β

}]

t=0

tn

n!
.

Replacing x by x+ γn and β by β + δn in (ii) we get

(iii)
∞
∑

n=0

mn(x+ γn;β + δn, c)
tn

n!

=
∞
∑

n=0

[

dn

dtn

{(

1−
t

c

)x

(1− t)−x−β

[(

1−
t

c

)γ

(1− t)−(γ+δ)

]n}]

t=0

tn

n!
.

We know that the Lagrange’s expansion formula:
∞
∑

n=0

[

dn

dtn
{f(t)[φ(t)]n}

]

t=0

wn

n!
=

f(t)

1− wφ′(t)
; w =

t

φ(t)
(iv)

∞
∑

n=0

mn(x+ γn;β + δn, c)
tn

n!
=

f(w)

1− tφ′(w)
; t =

w

φ(w)
.(v)

Here

f(w) =
(

1−
w

c

)x
(1− w)−x−β ,

φ(w) =
(

1−
w

c

)γ
(1− w)−(γ+δ),

φ′(w) = φ(w)

[

−γ

c

(

1−
w

c

)−1
+ (γ + δ)(1− w)−1

]

.

Therefore we get (3.3).
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Formulas (3.1), (3.2), and (3.3) are applications of Carlitz’s Theorem (3)
for Meixner Polynomials.

Particular cases:

(i) Taking δ = γ in (3.3) we get

(3.4)
∞
∑

n=0

mn(x+ γn;β + γn, c)
tn

n!

=

(

1− w
c

)x
(1− w)−x−β

1− w[−γ
c (1− w

c )
−1 + 2γ(1− w)−1]

, w = t
(

1−
w

c

)γ
(1− w)−2γ .

(ii) Taking δ = 0 and w is replace by v in (3.3) we get

(3.5)

∞
∑

n=0

mn(x+ γn;β, c)
tn

n!

=

(

1− v
c

)x
(1− v)−x−β

1− vγ[−1
c (1− v

c )
−1 + (1− v)−1]

, v = t
(

1−
v

c

)γ
(1− v)−γ .

(iii) Taking γ = 0, and w is replace by u in (3.3) we get

(3.6)
∞
∑

n=0

mn(x;β + δn, c)
tn

n!

=

(

1− u
c

)x
(1− u)−x−β

1− uδ(1− u)−1
, u = t(1− u)−δ.

(iv) Taking γ = 0, δ = 0 and w = t in (3.3) we get

(3.7)
∞
∑

n=0

mn(x;β, c)
tn

n!
=

(

1−
t

c

)x

(1− t)−x−β.

4. Summation formulae for Meixner polynomials

The following summation formulae are easily derivable from known re-
sults in view of the relationship (2.2):

mn(x;β, c) =

n
∑

r=0

(

n

r

)

(β − γ)rmn−r(x; γ, c),(4.1)

mn(x1 + x2;β1 + β2, c) =
n
∑

r=0

(

n

r

)

mn−r(x1;β1, c) mr(x2;β2, c),(4.2)

mn(x;β1 + β2, c) =
n
∑

r=0

(

n

r

)

(β2)rmn−r(x;β1, c),(4.3)
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mn(x1 + x2; 2(β1 + β2), c)(4.4)

=
n
∑

r=0

(

n

r

)

mn−r(x1;β1 + β2, c) mr(x2;β1 + β2, c),

mn+1(x;β, c) =

n
∑

r=0

(

n

r

)

n! mn−r(x;β, c)
{

(x+ β)−
x

cr+1

}

,(4.5)

mn(x;βγ, c) =
n
∑

r=0

(

n

r

)

(β(γ − 1))n−rmr(x;β, c).(4.6)

Proof of (4.1).

∞
∑

n=0

n
∑

r=0

(β − γ)rmn−r(x; γ, c)

r! (n− r)!
tn

=
∞
∑

n=0

∞
∑

r=0

(β − γ)rmn(x; γ, c)

r! n!
tn+r =

∞
∑

r=0

(β − γ)r
tr

r!

∞
∑

n=0

mn(x; γ, c)
tn

n!

= (1− t)−β+γ(1− t)−x−γ

(

1−
t

c

)x

= (1− t)−x−β

(

1−
t

c

)x

=

∞
∑

n=0

mn(x;β, c)
tn

n!
.

Equating the coefficient of tn we get (4.1)

mn(x;β, c) =
n
∑

r=0

(

n

r

)

(β − γ)rmn−r(x; γ, c).

Similarly we can prove (4.2), (4.3), (4.4), (4.5) and (4.6).

5. Meixner polynomials of two variables

The Meixner polynomials of two variables is denoted by mn(x, y;β, c, d)
and are defined in terms of Kampe de Feriet double hypergeometric functions
as (see [4]) follows:

(5.1) mn(x, y;β, c, d) = (β)n F







−n : x;−y;

1− c−1, 1− d−1

β : −;−;







=

n
∑

r=0

n−r
∑

s=0

(β)n(−n)r+s(−x)r(−y)s(1− c−1)r(1− d−1)s

(β)r+sr! s!

where β > 0, 0 < c < 1, 0 < d < 1, x = 0, 1, 2, . . . and y = 0, 1, 2, . . . .
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The following generating functions holds true for the Meixner polynomi-
als defined by (5.1)

(5.2)
∞
∑

n=0

mn(x, y;β, c, d)
tn

n!

= (1− t)−β−x−y

(

1−
t

c

)x(

1−
t

d

)y

, |t| < min(1, |c|, |d|),

(5.3)

∞
∑

n=0

mn+k(x, y;β, c, d)
tn

n!

= (1− t)−β−k−x−y

(

1−
t

c

)x(

1−
t

d

)y

mk

(

x, y;β,
c− t

1− t
,
d− t

1− t

)

,

(5.4)
∞
∑

n=0

Anmn(x, y;β, c, d)
tn

n!

=

(

1−
t

c

)x(

1−
t

d

)y

(1− t)−x−y−β

·
∞
∑

k=0

λk

(Nk)!
mNk

(

x, y;β,
c− t

1− t
,
d− t

1− t

)[

wtN

(1− t)N

]k

,

(5.5)

∞
∑

k=0

kn

k!
mk

(

x, y;β,
c+ z

1 + z
,
d+ z

1 + z

)(

z

1 + z

)k

= (1 + z)x+y+β
(

1 +
z

c

)−x (

1 +
z

d

)−y
n
∑

k=0

S(n, k)mk(x, y;β, c, d)z
k

(n ∈ N0; |z| < min{1, |c|, |d|}).

6. Summation formulae for Meixner polynomials of two variables

The following summation formulae holds for (5.2):

(6.1) mn(x, y;β, c, d) =
n
∑

r=0

(

n

r

)

(β − γ)rmn−r(x, y; γ, c, d,

(6.2) mn(x1 + x2, y1 + y2;β1 + β2, c, d)

=
n
∑

r=0

(

n

r

)

mn−r(x1, y1;β1, c, d) mr(x2, y2;β2, c, d),
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(6.3) mn(x, y;β1 + β2, c, d) =
n
∑

r=0

(

n

r

)

(β2)rmn−r(x, y;β1, c, d),

(6.4) mn(x1 + x2, y1 + y2; 2(β1 + β2), c, d)

=
n
∑

r=0

(

n

r

)

mn−r(x1, y1;β1 + β2, c, d) mr(x2, y2;β1 + β2, c, d),

(6.5) mn+1(x, y;β, c, d)

=

n
∑

r=0

(

n

r

)

n! mn−r(x, y;β, c, d)
{

(x+ y + β)−
x

cr+1
−

y

dr+1

}

,

(6.6) mn(x, y;βγ, c, d) =
n
∑

r=0

(

n

r

)

(β(γ − 1))n−rmr(x, y;β, c, d).

Proof of (6.2).

∞
∑

n=0

mn(x1 + x2, y1 + y2;β1 + β2, c, d)
tn

n!

=

(

1−
t

c

)(x1+x2)(

1−
t

d

)(y1+y2)

(1− t)−{(x1+x2)+(y1+y2)}−(β1+β2)

=

(

1−
t

c

)x1
(

1−
t

d

)y1

(1− t)−x1−y1−β1

(

1−
t

c

)x2

·

(

1−
t

c

)y2

(1− t)−x2−y2−β2

=
∞
∑

n=0

mn(x1, y1;β1, c, d)
tn

n!

∞
∑

r=0

mr(x2, y2;β2, c, d)
tr

r!

=
∞
∑

n=0

∞
∑

r=0

mn(x1, y1;β1, c, d) mr(x2, y2;β2, c, d)
tn+r

n! r!

=
∞
∑

n=0

n
∑

r=0

mn−r(x1, y1;β1, c, d) mr(x2, y2;β2, c, d)
tn

(n− r)! r!
.

Equating the coefficient of tn we get (6.2).
Similarly we can prove (6.1), (6.3), (6.4), (6.5) and (6.6).

7. Meixner polynomials of three variables

The Meixner polynomials of three variables mn(x, y, z;β, c, d, e, ) are de-
fined in terms of Kampe de Feriet triple hypergeometric functions as (see
[4]) follows:
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(7.1) mn(x, y, z;β, c, d, e, )

= (β)nF







−n :: −;−;− : − x;−y;−z;

1− c−1, 1− d−1, 1− e−1

β :: −;−;− : −;−;−;







=

n
∑

r=0

n−r
∑

s=0

n−r−s
∑

k=0

(β)n(−n)r+s+k(−x)r(−y)s(−z)k(1− c−1)r(1− d−1)s(1− e−1)k

(β)r+s+kr!s!k!
,

where β > 0, 0 < c < 1, 0 < d < 1, 0 < e < 1, x = 0, 1, 2, . . . , y = 0, 1, 2, . . .
and z = 0, 1, 2, . . . .

The following generating functions holds for (7.1)

(7.2)

∞
∑

n=0

mn(x, y, z;β, c, d, e)
tn

n!

= (1− t)−β−x−y−z

(

1−
t

c

)x(

1−
t

d

)y (

1−
t

e

)z

, |t| < min(1, |c|, |d|, |e|),

(7.3)
∞
∑

n=0

mn+k(x, y, z;β, c, d, e)
tn

n!

= (1− t)−β−k−x−y−z

(

1−
t

c

)x(

1−
t

d

)y (

1−
t

e

)z

·mk

(

x, y, z;β,
c− t

1− t
,
d− t

1− t
,
e− t

1− t

)

,

(7.4)
∞
∑

n=0

Anmn(x, y, z;β, c, d, e)
tn

n!

=

(

1−
t

c

)x(

1−
t

d

)y (

1−
t

e

)z

(1− t)−x−y−z−β

·
∞
∑

k=0

λk

(Nk)!
mNk

(

x, y, z;β,
c− t

1− t
,
d− t

1− t
,
e− t

1− t

)[

wtN

(1− t)N

]k

,

(7.5)

∞
∑

k=0

kn

k!
mk

(

x1, x2, x3;β,
c+ z

1 + z
,
d+ z

1 + z
,
e+ z

1 + z

)(

z

1 + z

)k

= (1 + z)x1+x2+x3+β
(

1 +
z

c

)−x1
(

1 +
z

d

)−x2
(

1 +
z

e

)−x3

·
n
∑

k=0

S(n, k)mk(x1, x2, x3;β, c, d, e)z
k (n ∈ N0; |z| < min{1, |c|, |d|, |e|}).
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8. Summation formulae for Meixner polynomials of three variables

The following summation formulae holds for the generating functions
(7.2):

(8.1) mn(x, y, z;β, c, d, e) =
n
∑

r=0

(

n

r

)

(β − γ)rmn−r(x, y, z; γ, c, d, e),

(8.2) mn(x1 + x2, y1 + y2, z1 + z2;β1 + β2, c, d, e)

=

n
∑

r=0

(

n

r

)

mn−r(x1, y1, z1;β1, c, d, e) mr(x2, y2, z2;β2, c, d, e),

(8.3) mn(x, y, z;β1 + β2, c, d, e) =

n
∑

r=0

(

n

r

)

(β2)rmn−r(x, y, z;β1, c, d, e),

(8.4) mn(x1 + x2, y1 + y2, z1 + z2; 2(β1 + β2), c, d, e)

=
n
∑

r=0

(

n

r

)

mn−r(x1, y1, z1;β1 + β2, c, d, e) mr(x2, y2, z2;β1 + β2, c, d, e),

(8.5) mn+1(x, y, z;β, c, d, e) =
n
∑

r=0

(

n

r

)

n! mn−r(x, y, z;β, c, d, e)

{

(x+ y + z + β)−
x

cr+1
−

y

dr+1
−

z

er+1

}

,

(8.6) mn(x, y, z;βγ, c, d, e) =

n
∑

r=0

(

n

r

)

(β(γ − 1))n−rmr(x, y, z;β, c, d, e).

9. Meixner polynomials of s-variables

The Meixner polynomials of s-variables are defined as follows (see [7]):

(9.1) mn(x1, x2, . . . , xs;β, c1, c2, . . . , cs)

=

n
∑

r1=0

n−r1
∑

r2=0

· · ·

n−r1−r2−..−rs
∑

rs=0

(β)n(−n)r1+r2+..+rs

s
∏

j=1
(−xj)rj

s
∏

j=1
(1− c−1

j )rj

(β)r1+r2+..+rs

s
∏

j=1
(rj)!

,

where β > 0, 0 < ci < 1, i = 1, 2, . . . , s, xj = 0, 1, 2, . . . , and j = 1, 2, . . . , s.

The following generating functions holds true for the Meixner polynomi-
als defined by (9.1)
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(9.2)
∞
∑

n=0

mn(x1, x2, . . . , xs;β, c1, c2, . . . , cs)
tn

n!

= (1− t)−β−x1−x1−···−xs

s
∏

j=1

(

1−
t

cj

)xj

, |t| < min(1, |c1|, |c1|, . . . , |cs|),

(9.3)
∞
∑

n=0

mn+k(x1, x2, . . . , xs;β, c1, c2, . . . , cs)
tn

n!

= (1− t)−β−k−x1−x1−···−xs

s
∏

j=1

(

1−
t

cj

)xj

·mk

(

x1, x2, . . . , xs;β,
c1 − t

1− t
,
c2 − t

1− t
, . . . ,

cs − t

1− t

)

,

(9.4)
∞
∑

n=0

Anmn(x1, x2, . . . , xs;β, c1, c2, . . . , cs)
tn

n!

= (1− t)−β−x1−x1−···−xs

s
∏

j=1

(

1−
t

cj

)xj

·
∞
∑

k=0

λk

(Nk)!
mNk

(

x1, x2, . . . , xs;β,
c1 − t

1− t
,
c2 − t

1− t
, . . . ,

cs − t

1− t

)[

wtN

(1− t)N

]k

,

(9.5)
∞
∑

k=0

kn

k!
mk

(

x1, x2, . . . , xs;β,
c1 + z

1 + z
,
c2 + z

1 + z
, . . . ,

cs + z

1 + z

)(

z

1 + z

)k

= (1 + z)x1+x2+..+xs+β
s
∏

j=1

(

1 +
z

cj

)−xj

·
n
∑

k=0

S(n, k)mk(x1, x2, . . . , xs;β, c1, c2, . . . , cs)z
k

(n ∈ N0; |z| < min{1, |c1|, |c1|, . . . , |cs|}).

10. Summation formulae for Meixner polynomials of s-variables

The following summation formulae holds for the generating functions
(9.2):

(10.1) mn(x1, x2, . . . , xs;β, c1, c2, . . . , cs)

=
n
∑

r=0

(

n

r

)

(β − γ)rmn−r(x1, x2, . . . , xs; γ, c1, c2, . . . , cs),
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(10.2) mn(x1 + x2, x1 + x2, ..x1 + x2;β1 + β2, c1, c2, . . . , cs)

=
n
∑

r=0

(

n

r

)

mn−r(x1, x1, ..x1;β1, c1, c2, . . . , cs)mr(x2, x2, . . . , x2; β2, c1, c2, . . . , cs),

(10.3) mn(x1, x2, . . . , xs;β1 + β2, c1, c2, . . . , cs)

=
n
∑

r=0

(

n

r

)

(β2)rmn−r(x1, x2, . . . , xs;β1, c1, c2, . . . , cs),

(10.4) mn(x1 + x2, x1 + x2, . . . , x1 + x2; 2(β1 + β2), c1, c2, . . . , cs)

=
n
∑

r=0

(

n

r

)

mn−r(x1, x1, . . . , x1;β1 + β2, c1, c2, . . . , cs) mr(x2, x2, ..x2; β1 + β2, c1, c2, . . . , cs),

(10.5) mn+1(x1, x2, . . . , xs;β, c1, c2, . . . , cs)

=
n
∑

r=0

(

n

r

)

n! mn−r(x1, x2, . . . , xs;β, c1, c2, . . . , cs)

·

{

(x1 + x2 + ..+ xs + β)−
x1

cr+1
1

−
x2

cr+1
2

− · · · −
xs

cr+1
s

}

,

(10.6) mn(x1, x2, . . . , xs;βγ, c1, c2, . . . , cs)

=
n
∑

r=0

(

n

r

)

(β(γ − 1))n−rmr(x1, x2, . . . , xs;β, c1, c2, . . . , cs).

For more results on Meixner’s polynomials of several variables one is also
referred to [9] and [11].
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