Mumtaz Ahmad Khan
On some operational representations of q-polynomials

Persistent URL: http://dml.cz/dmlcz/128538

Terms of use:
© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON SOME OPERATIONAL REPRESENTATIONS
OF q-POLYNOMIALS

MUMTAZ AHMAD KHAN, Aligarh

(Received August 9, 1993)

1. INTRODUCTION

In an earlier paper [16] the present author defined the \(T_{k,q,x} \)-operator by the relation

\[
T_{k,q,x} \equiv x(1 - q)\{[k] + q^k x D_{q,x}\},
\]

where \(k \) is a constant, \(|q| < 1\), \([k]\) is a \(q \)-number and \(D_{q,x} \) is the \(q \)-derivative with respect to \(x \).

The present paper gives applications of the \(T_{k,q,x} \)-operator in finding operational representations for certain \(q \)-polynomials. In a separate communication it has been demonstrated how successfully this operator can be used to obtain generating functions and recurrence relations for \(q \)-Laguerre and other polynomials.

Some of the results obtained in this paper are \(q \)-analogues of those obtained by Al-Salam [5], Mittal [19] and Rainville [20] while the rest are believed to be new.

2. DEFINITIONS AND NOTATION

For most of the definitions and the notation needed in this paper, the reader is referred to the papers by Agarwal and Verma [2], Hahn [9], Khan [13–18] and to the books by Exton [8] and Slater [21]. However, definitions of some \(q \)-polynomials are given below:

The \(q \)-Jacobi polynomials are defined by

\[
J_n(q, \gamma, \beta; x) = \frac{(-1)^n(q\gamma)_n q^{\gamma+n(n-1)/2}}{(q^{\beta+n-1})_n} {}_2\phi_1[q^{-n}, q^{\beta+n-1}; q^\gamma; q^{1-\gamma}x]
\]
and
\[
(2) \quad P_{n,q}(\alpha,\beta)(x) = \frac{(q^{1+\alpha})_n}{(q)_n} \varphi_1^2[q^{-n}, q^{1+\alpha+\beta+n}; q^{1+\alpha}; x].
\]

Here the \(q\)-polynomial (2.1) is due to Hahn [10].

The \(q\)-Rice and generalized \(q\)-Rice polynomials are given by the relations
\[
(3) \quad H_{n,q}(\xi, p, x) = 3 \varphi_2[q^{-n}, q^{1+n}, q^\xi; q, q^p; x]
\]
and
\[
(4) \quad H_{n,q}^{(\alpha,\beta)}(\xi, p, x) = \frac{(q^{1+\alpha})_n}{(q)_n} 3 \varphi_2[q^{-n}, q^{1+\alpha+\beta+n}, q^\xi; q^{1+\alpha}, q^p; x].
\]

Further, the \(q\)-polynomial due to Al-Salam and Carlitz [7] is defined by
\[
(5) \quad U_{n}^{(a)}(x) = x^n \left(\frac{1}{x} \right)_n \varphi_1 \left[\frac{q^{-n}}{xq^{1-n}}, -a \right].
\]

For \(a = -1\) this polynomial gives the \(q\)-analogue of the Hermite polynomial.

3. Results used

Some of the results of Khan [16] required in this paper are listed below:

(1) \[
T_{n,q}^k \varphi_s^{(q)}[(a_r); (b_s); x] = x^n(q^k)_n \prod_{j=0}^{n-1} ([k + j] + q^{k+j}xD_q)
\]
(2) \[
T_{n,q}^k = x^n(1 - q)^n \prod_{j=0}^{n-1} x^{-1}(1 - q)^{-1}T_{k+j,q,n}
\]
(3) \[
F(T_{k,q}) \{x^\alpha f(x)\} = x^\alpha F(T_{k+\alpha,q}) f(x),
\]
(4) \[
T_{n,q}^k \{u(x)v(x)\} = \sum_{r=0}^{n} \binom{n}{r} q^{kr} T_{k,q}^{n-r} v(q^r x) T_{0,q}^r u(x).
\]
4. Operational Representations

Here we give certain operational formulae and derive certain results for q-Laguerre polynomials. Besides, certain operational representations of some other q-polynomials will also be obtained.

Using (3.2) the following equivalent forms are obtained.

(1) \[\{x(1 - q^\alpha) + q^\alpha T_{k,q}\}^n f(x) = T^n_{k+\alpha,q} f(x) \]
\[= x^n(1 - q)^n \prod_{j=0}^{n-1} x^{-1}(1 - q)^{-1} T_{k+\alpha+j,q} f(x), \]

(2) \[\{q^n(1 + x)T_{k,q} + x(1 - q^\alpha) - x^2 q^\alpha\}^n f(x) \]
\[= x^n(1 - q)^n \prod_{j=0}^{n-1} \left\{x(1 + x)q^{k+\alpha+j} D_q - \frac{xq^{k+\alpha+j}}{1 - q} + [k + \alpha + j]\right\} f(x), \]

and

(3) \[\prod_{j=0}^{n-1} \left\{q^\alpha T_{k,q} + x(1 - q^\alpha) - \frac{x^2 q^j}{1 - q}\right\} f(x) \]
\[= x^n(1 - q)^n \prod_{j=0}^{n-1} \left\{xq^{k+\alpha+j} D_q - \frac{xq^j}{1 - q} + [k + \alpha + j]\right\} f(x). \]

Formulae (4.2) and (4.3) are obtained by applying (4.1) to $e_q(-x)f(x)$ and $E_q(x)f(x)$, respectively.

Now the left hand side of (4.2) can also be written as

\[E_q(-x)T^n_{k+\alpha,q}\{e_q(-x)f(x)\} = x^{-\alpha} E_q(-x)T^n_{k,q}\{x^\alpha e_q(-x)f(x)\}. \]

Thus, we get the identity

(4) \[T^n_{k,q}\{x^\alpha e_q(-x)f(x)\} \]
\[= x^{\alpha+n}(q)_n e_q(-x) \sum_{r=0}^{n} \frac{(1 + x)_r}{(q)_r x^r} qL^{(\alpha+r)}_{n-r+1}(xq^{\alpha+k-1},1) T^n_{0,q} f(x). \]

Similarly, we have

(5) \[T^n_{k,q}\{x^\alpha E_q(x)f(x)\} \]
\[= x^{\alpha+n}(q)_n E_q(xq^n) \sum_{r=0}^{n} q^{r(k+r)}(q)_r x^r qL^{(\alpha+k-1)}_{n-r}(xq^{\alpha}) T^n_{0,q} f(x). \]
Next, considering the operator \(\varphi_1[-, q^{\alpha+k}; -tT_{k,q}] \), we obtain

\[
0 \varphi_1[-, q^{\alpha+k}; -tT_{k,q}]x^{\alpha+n} = x^{\alpha+n} \varphi_1[q^{k+\alpha+n}, q^{k+\alpha}; -xt].
\]

One can also easily obtain the operational formulae

\[
0 \varphi_1[-; q^{\alpha+k}; T_{k,q}] \left\{ \frac{x^\alpha}{(1-xt)_{k+\alpha}} \right\} = \frac{x^\alpha}{(1-xt)_{k+\alpha}} e_q \left(\frac{x}{1-xtq^{k+\alpha}} \right)
\]

and

\[
0 \varphi_1 \left[q^{\alpha+k}; T_{k,q} \right] \left\{ \frac{x^\alpha}{(1-xt)_{k+\alpha}} \right\} = \frac{x^\alpha}{(1-xt)_{k+\alpha}} E_q \left(\frac{-xq}{1-xtq^{k+\alpha}} \right).
\]

As this stage we consider the following \(q \)-polynomials:

(A) \(q \)-Laguerre Polynomials. We shall obtain certain formulae and operational representations of \(q \)-Laguerre polynomials. Putting \(f(x) = 1 \) in (4.4) and (4.5) and taking different values of \(\alpha \) and \(k \), we get a number of operational representations for the \(q \)-Laguerre polynomials \(qL_n^{(\alpha)}(x, 1) \) and \(qL_n^{(\alpha)}(x) \), e.g.,

\[
T_{k,q}^n \left\{ x^\alpha e_q(-x) \right\} = x^{\alpha+n} q e_q(-x) qL_n^{(\alpha+k-1)}(xq^{n+\alpha+k-1}, 1),
\]

\[
T_{k,q}^n \left\{ x^\alpha E_q(x) \right\} = x^{\alpha+n} q e_q(xq^n) qL_n^{(\alpha+k-1)}(xq^n)
\]

are obtained by taking \(f(x) = 1 \) in (4.4) and (4.5).

By a simple change of variable, we also note that

\[
T_{k,q}^n \left\{ x^\alpha e_q(-\lambda x) \right\} = x^{\alpha+n} q e_q(-\lambda x) qL_n^{(\alpha+k-1)}(\lambda xq^{n+\alpha+k-1}, 1)
\]

and

\[
T_{k,q}^n \left\{ x^\alpha E_q(\lambda x) \right\} = x^{\alpha+n} q e_q(\lambda xq^n) qL_n^{(\alpha+k-1)}(\lambda xq^n).
\]

Now (4.11) and (4.12) can also be written as

\[
\{ q^\alpha (1+\lambda x) T_{k,q} + x(1-q^\alpha) - \lambda x^2 q^\alpha \} \cdot 1 = x^n(q) qL_n^{(\alpha+k-1)}(\lambda xq^{n+\alpha+k-1}, 1)
\]

and

\[
\{ q^\alpha T_{k,q} + x(1-q^\alpha) - \lambda x^2 \} \cdot 1 = x^n(q) qL_n^{(\alpha+k-1)}(\lambda xq^n).
\]

Further, (4.9) gives

\[
T_{k,q}^m \left\{ x^{\alpha+n} e_q(-x) qL_n^{(\alpha+k-1)}(xq^{n+\alpha+k-1}, 1) \right\} = T_{k,q}^m \left[\frac{1}{(q)_{n}} T_{k,q}^n \left\{ x^\alpha e_q(-x) \right\} \right].
\]
Hence

\[(15) \quad T_{k,q}^m \left\{ x^{\alpha+n}e_q(-x)qL_n^{(\alpha+k-1)}(xq^{n+\alpha+k-1}, 1) \right\} = \frac{(q)_{m+n}}{(q)_n} x^{\alpha+m+n}e_q(-x)qL_n^{(\alpha+k-1)}(xq^{m+n+\alpha+k-1}, 1). \]

Similarly, (4.10) gives

\[(16) \quad T_{k,q}^m \left\{ x^{\alpha+n}E_q(xq^n)qL_n^{(\alpha+k-1)}(xq^n) \right\} = \frac{(q)_{m+n}}{(q)_n} x^{\alpha+m+n}E_q(xq^{m+n})qL_n^{(\alpha+k-1)}(xq^{m+n}). \]

Using the \(q\)-analogue of Kummer’s transform (4.6) yields

\[0\varphi_1[-; q^{\alpha+k}; -tT_{k,q}]x^{\alpha+n} = x^{\alpha+n}e_q(-xt)1\varphi_1 \left[\frac{q^{-n};}{q^{k+\alpha}; q} \right], \]

which can alternatively be written as

\[(17) \quad 0\varphi_1[-; q^{\alpha+k}; -tT_{k,q}]x^{\alpha+n} = \frac{(q)_n}{(q^{k+\alpha})_n} x^{\alpha+n}e_q(-xt)qL_n^{(\alpha+k-1)}(xtq^{n+\alpha+k-1}, 1). \]

Similarly,

\[(18) \quad 0\varphi_1 \left[\frac{q^{k+\alpha};}{q} \right] x^{\alpha+n} = \frac{(q)_n x^{\alpha+n}}{(q^{k+\alpha})_n} E_q(xtq^{1+n})qL_n^{(\alpha+k-1)}(xtq^{1+n}). \]

Also, we have

\[(19) \quad \left(1 + \frac{t}{T_{k,q}}\right) x^{-\alpha-k} = \frac{x^{-\alpha-k}(q)_n}{(q^{1+\alpha})_n} qL_n^{(\alpha)}(tq^{\alpha+n}/x, 1). \]

As an immediate consequence of the Leibniz formula (3.4) and the formula (4.9) we get

\[(20) \quad qL_n^{(\alpha+\beta+k)}(xq^{n+\alpha+\beta+k}, 1) = \sum_{r=0}^{n} \binom{\beta+r}{r} q^{r(k+\alpha)}(1+x)_r qL_{n-r}^{(\alpha+k-1)}(xq^{n+\alpha+k-1}, 1), \]

and using (3.4) and (4.10) we obtain

\[(21) \quad qL_n^{(\alpha+\beta+k)}(xq^n) = \sum_{r=0}^{n} \binom{\beta+r}{r} q^{r(k+\alpha)} qL_{n-r}^{(\alpha+k-1)}(xq^n). \]
Formula (4.20) is obtained by putting $u = x^{1+\beta}$ and $v = x^\alpha e_q(-x)$ in (3.4), while (4.21) is obtained by putting $u = x^{1+\beta}$ and $v = x^\alpha E_q(x)$ in (3.4). On the other hand, if we put $u = x^\beta E_q(\mu, x)$, $v = x^\alpha e_q(-\lambda x)$ in (3.4) and then employ (4.11) and (4.12), we get the following addition-like theorem, involving the q-Laguerre polynomials $qL_n^{(\alpha)}(x, 1)$ and $qL_n^{(\alpha)}(x)$:

\[
(22) \quad qL_n^{(\alpha+k-1)}((\lambda + \mu)xq^{n+\alpha+k-1}, 1) = \sum_{r=0}^{n} \frac{q^{r(k+\alpha)(1+\lambda x)}_r}{(1-\mu x)_r} qL_{n-r}^{(\alpha+k-1)}(\lambda xq^{n+\alpha+k-1}, 1)qL_r^{(\beta-1)}(\mu xq^r).
\]

From (4.13) and the shift rule (3.3) we have the following formula:

\[
(23) \quad \frac{(q)_{m+n}}{(q^{k+\alpha})_n(q)_m} qL_{m+n}^{(\alpha+k-1)}(xq^{n+\alpha+k-1}, 1) = \sum_{r=0}^{n} \binom{n}{r}_q (-x)_q^{r(\alpha+k-1)} qL_{m+r+s+k-1}^{(\alpha+k-1)}(xq^{m+n+r+s+k-1}, 1).
\]

Similarly, we obtain

\[
(24) \quad \frac{(q)_{m+n}}{(q)_m(q^{k+\alpha})_n} qL_{m+n}^{(\alpha+k-1)}(xq^{m+n}) = \sum_{r=0}^{n} \frac{(q^{-n})_r x^r q^{r-n}}{(q)_r(q^{k+\alpha})_r} qL_{m+r+s+k-1}^{(\alpha+k-1)}(xq^m).
\]

(B) q-Bessel Polynomials. Here we shall give three operational representations for q-Bessel Polynomials. One can obtain many others

\[
(25) \quad T_{c+n,q}^n e_q(q^{n+1}/x) = \frac{(q)_n}{(q^c)_n} (-1)^n q^{\frac{1}{2}c(n+1)} e_q(q/x) J(q; c, n; x).
\]

To obtain (4.25), $e_q(q^{n+1}/x)$ is replaced by its equivalent infinite series and $T_{c+n,q}^n$ is operated on the variable x of the series. We then use the q-analogue of Kummer's transform and finally the resulting finite $1\varphi_1$ series is written in reverse order.

Similarly, we also have

\[
(26) \quad T_{c,q}^n e_q(\frac{1}{x}) = \frac{(q)_n}{(xq)_n(q^1-c)_n} q^{\frac{1}{2}n(n+1)-nc} e_q(\frac{1}{x}) J(q; c-n, n; xq^{n+1})
\]

and

\[
(27) \quad T_{c-n,q}^n e_q(\frac{1}{x}) = \frac{(q)_n}{(xq)_n(q^{1-c})_n} q^{\frac{1}{2}n(3n+1)-nc} e_q(\frac{1}{x}) J(q; c-2n, n; xq^{n+1}).
\]
(C) \textit{q-Jacobi Polynomials.} We give here the following operational representations for the \(q \)-Jacobi polynomials \(J_n(q, \alpha, \beta; x) \) due to Hahn [10] and the \(q \)-Jacobi polynomials \(P_{n,q}^{(\alpha,\beta)}(x) \):

\[
T_{a,q}^n (1 - x q^{1-a-n})_{n+b-a-1} = \frac{(x q^{1-a})_\infty (q^{b+n-1})_n (-x)^n}{(x q^{b-2a})_\infty q^{(1/2)n(n-1)+na}} J_n(q, a, b; x)
\]

and

\[
T_{a+1,q}^n (1 - x q^{-n})_{b+n} = x^n (1 - x) \frac{(q)_n (1 - x q^n)_\infty x^n}{(1 - x q^b)_\infty} P_{n,q}^{(a, b-1)}(x).
\]

Also, we have

\[
T_{a+1,q}^n (1 - x)_b = \frac{(q)_n (1 - x q^n)_\infty x^n}{(1 - x q^b)_\infty} P_{n,q}^{(a, b-n)}(x q^n)
\]

and

\[
T_{1+a-n, q}^n (1 - x)_b = \frac{(q)_n (1 - x q^n)_\infty x^n}{(1 - x q^b)_\infty} P_{n,q}^{(a+n, -b)}(x q^n).
\]

Relations (4.30) and (4.31) can alternatively be written as follows:

\[
T_{a,q}^n (1 - x)_b = \frac{(-1)^n T_1 (q^{-n}, q^c; q^p; x)}{G_n(x,q)} U_n^{(a, \beta)}(x).
\]

(D) \textit{Generalized q-Rice Polynomials.} Using (3.1) we have the following operational representation for the generalized \(q \)-Rice polynomials \(H_{n,q}^{(\alpha,\beta)}(\xi, p, x) \):

\[
T_{1+\alpha, q}^{n+\beta} 2\varphi_1[q^{-n}, q^c; q^p; x] = x^{n+\beta} (q^{1+\alpha+n})_\beta(q)_n H_{n,q}^{(\alpha,\beta)}(\xi, p, x).
\]

If we put \(\alpha = 0 = \beta \), (4.34) reduces to

\[
T_{1,q}^{n+\beta} 2\varphi_1[q^{-n}, q^c; q^p; x] = x^n (q)_n H_{n,q}(\xi, p, x).
\]

(E) \textit{A q-polynomial of Al-Salam and Carlitz.} One can easily obtain the following operational representation for \(U_n^{(a)}(x) \):

\[
(1 - x) (-1)^n q^{n(n-1)/2} e_q \left(\frac{1}{a} T_{1-n, q, x_0} \right) G_n(a q^{-1}, q) = U_n^{(a)}(x)
\]

where \(G_n(x, q) \) is the Szegö polynomial defined by

\[
G_n(x, q) = \sum_{r=0}^{n} \binom{n}{r}_q q^{r(r-n)} x^r.
\]
References

Author’s address: Department of Applied Mathematics, Z.H. College of Engg. and Technology, Faculty of Engineering, A.M.U., Aligarh-202002, U.P., India.