VIETA POLYNOMIALS

A. F. Horadam

The University of New England, Armidale, Australia 2351
(Submitted March 2000-Final Revision September 2000)

1. VIETA ARRAYS AND POLYNOMIALS

Vieta Arrays

Consider the combinatorial forms

$$
\begin{equation*}
B(n, j)=\binom{n-j-1}{j} \quad\left(0 \leq j \leq\left[\frac{n-1}{2}\right]\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
b(n, j)=\frac{n}{n-j}\binom{n-j}{j} \quad\left(0 \leq j \leq\left[\frac{n}{2}\right]\right), \tag{1.2}
\end{equation*}
$$

where $n(\geq 1)$ is the $n^{\text {th }}$ row in an infinite left-adjusted triangular array. Then the entries in these arrays are as exhibited in Tables 1 and 2.

TABLE 1. Array for $\mathcal{B}(n, j)$

1				
1				
1	1			
1	2			
1	3	1		
1	4	3		
1	5	6	1	
1	6	10	4	
1	7	15	10	1
1	8	21	20	5
\vdots	\vdots	\vdots	\vdots	\vdots

TABLE 2. Array for $b(n, j)$
1
12
13
142
155
$\begin{array}{llll}1 & 6 & 9 & 2\end{array}$
$\begin{array}{llll}1 & 7 & 14 & 7\end{array}$
$\begin{array}{lllll}1 & 8 & 20 & 16 & 2\end{array}$
$\begin{array}{lllll}1 & 9 & 27 & 30 & 9\end{array}$
$\begin{array}{cccccc}1 & 10 & 35 & 50 & 25 & 2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\end{array}$

In the notation and nomenclature of this paper, Table 1 will be called the Vieta-Fibonacci array and Table 2 the Vieta-Lucas array. The Table 2 array has already been displayed in [5] where its discovery is attributed to Vieta (or Viète, 1540-1603) [8].

Vieta Polynomials
From (1.1) and Table 1, we define the Vieta-Fibonacci polynomials $V_{n}(x)$ by

$$
\begin{equation*}
V_{n}(x)=\sum_{k=0}^{\left[\frac{n-1}{2}\right]}(-1)^{k}\binom{n-k-1}{k} x^{n-2 k-1}, V_{0}(x)=0 . \tag{1.3}
\end{equation*}
$$

From (1.3), we find:

$$
\left.\begin{array}{l}
V_{1}(x)=1, V_{2}(x)=x, V_{3}(x)=x^{2}-1, V_{4}(x)=x^{3}-2 x \tag{1.4}\\
V_{5}(x)=x^{4}-3 x^{2}+1, V_{6}(x)=x^{3}-4 x^{3}+3 x, V_{7}(x)=x^{6}-5 x^{4}+6 x^{2}-1, \ldots .
\end{array}\right\}
$$

Equation (1.2) and Table 2 then invite the definition of the Vieta-Lucas polynomials $v_{n}(x)$ as

$$
\begin{equation*}
v_{n}(x)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k} x^{n-2 k}, v_{0}(x)=2 \tag{1.5}
\end{equation*}
$$

From (1.5), we get:

$$
\left.\begin{array}{l}
v_{1}(x)=x, v_{2}(x)=x^{2}-2, v_{3}(x)=x^{3}-3 x, v_{4}(x)=x^{4}-4 x^{2}+2, \tag{1.6}\\
v_{5}(x)=x^{5}-5 x^{3}+5 x, v_{6}(x)=x^{6}-6 x^{4}+9 x^{2}-2, \ldots
\end{array}\right\}
$$

Remark: Array Table 2 [8] and polynomials $v_{n}(x)$ were investigated in some detail in [5], while some fruitful pioneer work on $v_{n}(x)$ was accomplished in [3]. Array Table 1 and polynomials $V_{n}(x)$ were introduced in [6]. But see also [1, p. 14] and [4, pp. 312-13].

Recurrence Relations

Recursive definitions of the Vieta polynomials are

$$
\begin{equation*}
V_{n}(x)=x V_{n-1}(x)-V_{n-2}(x) \tag{1.7}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{0}(x)=0, V_{1}(x)=1 \tag{1.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}(x)=x v_{n-1}(x)-v_{n-2}(x) \tag{1.8}
\end{equation*}
$$

with

$$
\begin{equation*}
v_{0}(x)=2, v_{1}(x)=x \tag{1.8a}
\end{equation*}
$$

Characteristic Equation Roots

Both (1.7) and (1.8) have the characteristic equation

$$
\begin{equation*}
\lambda^{2}-\lambda x+1=0 \tag{1.9}
\end{equation*}
$$

with roots

$$
\begin{equation*}
\alpha=\frac{x+\Delta}{2}, \beta=\frac{x-\Delta}{2}, \Delta=\sqrt{x^{2}-4} \tag{1.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\alpha \beta=1, \alpha+\beta=x \tag{1.11}
\end{equation*}
$$

Purpose of this Paper

It is proposed
(i) to develop salient properties of $V_{n}(x)$ and $v_{n}(x)$, and
(ii) to explore the interplay of relationships among Vieta, Jacobsthal, and Morgan-Voyce polynomials (while observing the known connections with Fibonacci, Lucas, and Chebyshev polynomials).

2. VIETA-FIBONACCI POLYNOMIALS $V_{m}(x)$

Formulas (2.1) and (2.2) below flow from routine processes.

Binet Form

$$
\begin{equation*}
V_{n}(x)=\frac{\alpha^{n}-\beta^{n}}{\Delta} \tag{2.1}
\end{equation*}
$$

Generating Function

$$
\begin{equation*}
\sum_{n=1}^{\infty} V_{n}(x) y^{n-1}=\left[1-x y+y^{2}\right]^{-1} \tag{2.2}
\end{equation*}
$$

Simson's Formula

$$
\begin{equation*}
\left.V_{n+1}(x) V_{n-1}(x)=V_{n}^{2}(x)=-1(\text { by }(2.1))\right] \tag{2.3}
\end{equation*}
$$

Negative Subscript

$$
\begin{equation*}
V_{-n}(x)=-V_{n}(x) \quad(\text { by }(2.1)) \tag{2.4}
\end{equation*}
$$

Differentiation

$$
\begin{equation*}
\frac{d v_{n}(x)}{d x}=n V_{n}(x)(b y(2.1),(3.1)) \tag{2.5}
\end{equation*}
$$

A neat result:

$$
\begin{equation*}
V_{n}(x) V_{n-1}(-x)+V_{n}(-x) V_{n-1}(x)=0(n \geq 2) \tag{2.6}
\end{equation*}
$$

Induction may be used to demonstrate (2.6); see [6].

3. VIETA-IUCAS POLYNOMIALS $v_{n}(x)$

Standard techniques reveal the following basic features of $v_{n}(x)$.
Binet Form

$$
\begin{equation*}
v_{n}(x)=\alpha^{n}+\beta^{n} \tag{3.1}
\end{equation*}
$$

Generating Function

$$
\begin{equation*}
\sum_{n=0}^{\infty} v_{n}(x) y^{n}=(2-x y)\left[1-x y+y^{2}\right]^{-1} \tag{3.2}
\end{equation*}
$$

Simson's Formula

$$
v_{n+1}(x) v_{n-1}(x)-v_{n}^{2}(x)= \begin{cases}-1 & n \text { odd } \tag{3.3}\\ \Delta^{2} & n \text { even }\end{cases}
$$

Negative Subscript

$$
\begin{equation*}
v_{-n}(x)=v_{n}(x) \tag{3.4}
\end{equation*}
$$

Miscellany

$$
\begin{gather*}
v_{n}(x) v_{n-1}(-x)+v_{n}(-x) v_{n-1}(x)=0 \tag{3.5}\\
v_{n}^{2}(x)+v_{n-1}^{2}(x)-x v_{n}(x) v_{n-1}(x)=-\Delta^{2} \tag{3.6}\\
v_{n}\left(x^{2}-2\right)-v_{n}^{2}(x)=-2 \tag{3.7}
\end{gather*}
$$

Remarks:

(i) Results (3.3)-(3.7) may be determined by applying (3.1). To establish (3.5) by an alternative method, follow the approach used in [6] for the analogous equation for $V_{n}(x)$.
(ii) Both (3.6) and (3.7) occur, in effect, in [3].
(iii) There are no results for $V_{n}(x)$ corresponding to (3.6) and (3.7) for $v_{n}(x)$.
(iv) Observe that; for $v_{n}\left(x^{2}-2\right)$, the expressions corresponding to α, β, and Δ in (1.10) become $\alpha^{*}=\alpha^{2}, \beta^{*}=\beta^{2}, \Delta^{*}=x \Delta$.

Permutability

Theorem 1 (Jacobsthal [3]): $v_{m}\left(v_{n}(x)\right)=v_{n}\left(v_{m}(x)\right)=v_{m n}(x)$.
Proof: Adapting Jacobsthal's neat treatment of this elegant result, we notice the key nexus

$$
\begin{equation*}
v_{n}(x)=v_{n}\left(\alpha+\frac{1}{\alpha}\right)=\alpha^{n}+\alpha^{-n}(\text { by (1.11), (3.1)) } \tag{3.8}
\end{equation*}
$$

whence

$$
\begin{array}{rlr}
v_{m n}(x) & =\alpha^{n m}+\alpha^{-n m} \quad(\text { by }(3.1)) \\
& =v_{n}\left(\alpha^{m}+\alpha^{-m}\right) \quad(\text { by (3.8)) } \\
& =v_{n}\left(v_{m}(x)\right) \quad(\text { by }(3.1)) \\
& =v_{m}\left(v_{n}(x)\right) \quad \text { also. }
\end{array}
$$

Remark: There is no result for $V_{n}(x)$ corresponding to Theorem 1 (Jacobsthal's theorem) for $v_{n}(x)$, i.e., the $V_{n}(x)$ are nonpermutable [cf. (9.3), (9.4)].

4. PROPERTIES OF $V_{\boldsymbol{n}}(x), v_{\boldsymbol{n}}(x)$

Elementary methods, mostly involving Binet forms (2.1) and (3.1), disclose the following quintessential relations connecting $V_{n}(x)$ and $v_{n}(x)$.

$$
\begin{gather*}
V_{n}(x) v_{n}(x)=V_{2 n}(x) \tag{4.1}\\
V_{n+1}(x)-V_{n-1}(x)=v_{n}(x) \tag{4.2}\\
v_{n+1}(x)-v_{n-1}(x)=\Delta^{2} V_{n}(x) \tag{4.3}\\
v_{n}(x)=2 V_{n+1}(x)-x V_{n}(x) \tag{4.4}\\
\Delta^{2} V_{n}(x)=2 v_{n+1}(x)-x v_{n}(x) \tag{4.5}
\end{gather*}
$$

Notice that (4.4) is a direct consequence of the generating function definitions (2.2) and (3.2).
Summation

$$
\begin{align*}
\Delta^{2} \sum_{n=1}^{m} V_{n}(x) & =v_{m+1}(x)+v_{m}(x)-x-2 \quad(\text { by }(4.3)) \tag{4.6}\\
\sum_{n=1}^{m} v_{n}(x) & =V_{m+1}(x)+V_{m}(x)-1 \quad(\text { by }(4.2)) \tag{4.7}
\end{align*}
$$

Sums (Differences) of Products

$$
\begin{align*}
& V_{m}(x) v_{n}(x)+V_{n}(x) v_{m}(x)=2 V_{m+n}(x) \tag{4.8}\\
& V_{m}(x) v_{n}(x)-V_{n}(x) v_{m}(x)=2 V_{m-n}(x) \tag{4.9}\\
& v_{m}(x) v_{n}(x)+\Delta^{2} V_{m}(x) V_{n}(x)=2 v_{m+n}(x) \tag{4.10}\\
& v_{m}(x) v_{n}(x)-\Delta^{2} V_{m}(x) V_{n}(x)=2 v_{m-n}(x) \tag{4.11}
\end{align*}
$$

Special cases $m=n$: In turn, the reductions are (4.1), $0=0$ (1.7a), and

$$
\begin{gather*}
v_{n}^{2}(x)+\Delta^{2} V_{n}^{2}(x)=2 v_{2 n}(x) \quad(\text { by }(4.10)) \tag{4.12}\\
v_{n}^{2}(x)-\Delta^{2} V_{n}^{2}(x)=4(\text { by }(4.11)) \tag{4.13}
\end{gather*}
$$

Associated Sequences

Definitions: The $k^{\text {th }}$ associated sequences $\left\{V_{n}^{(k)}(x)\right\}$ and $\left\{v_{n}^{(k)}(x)\right\}$ of $\left\{V_{n}(x)\right\}$ and $\left\{v_{n}(x)\right\}$ are defined by, respectively $(k \geq 1)$,

$$
\begin{align*}
V_{n}^{(k)}(x) & =V_{n+1}^{(k-1)}(x)-V_{n-1}^{(k-1)}(x), \tag{4.14}\\
v_{n}^{(k)}(x) & =v_{n+1}^{(k-1)}(x)-v_{n-1}^{(k-1)}(x), \tag{4.15}
\end{align*}
$$

where $V_{n}^{(0)}(x)=V_{n}(x)$ and $v_{n}^{(0)}(x)=v_{n}(x)$.

What are the ramifications of these ideas?
Immediately,

$$
\begin{align*}
& V_{n}^{(1)}(x)=v_{n}(x) \quad(\text { from }(4.2)), \tag{4.16}\\
& v_{n}^{(1)}(x)=\Delta^{2} V_{n}(x)(\text { from }(4.3)) \tag{4.17}
\end{align*}
$$

are the generic members of the first associated sequences $\left\{V_{n}^{(1)}(x)\right\}$ and $\left\{v_{n}^{(1)}(x)\right\}$.
Repeated application of the above formulas eventually reveals the succinct results:

$$
\begin{align*}
& V^{2 m}(x)=v_{n}^{(2 m-1)}(x)=\Delta^{2 m} V_{n}(x) \tag{4.18}\\
& V_{n}^{(2 m+1)}(x)=v_{n}^{2 m}(x)=\Delta^{2 m} \cdot v_{n}(x) \tag{4.19}
\end{align*}
$$

5. THE ARGUMENT $-x^{2}$: VIETA AND MORGAN-VOYCE

Attractively simple formulas can be found to relate the Vieta polynomials to Morgan-Voyce polynomials having argument $-x^{2}$. Valuable space is preserved in this paper by asking the reader to consult [2] and [6] for the relevant combinatorial definitions of the Morgan-Voyce polynomials $B_{n}(x), b_{n}(x), C_{n}(x)$, and $c_{n}(x)$.

Alternative proofs are provided specifically to heighten insights into the structure of the polynomials. Equalities in some proofs require a reverse order of terms.

Theorem 2:

(a) $V_{2 n}(x)=(-1)^{n-1} x B_{n}\left(-x^{2}\right)$.
(b) $V_{2 n-1}(x)=(-1)^{n-1} b_{n}\left(-x^{2}\right)$.
(a)

Proof 1:

$$
\begin{aligned}
(-1)^{n-1} x B_{n}\left(-x^{2}\right) & =\sum_{k=0}^{n-1}(-1)^{k+n-1}\binom{n+k}{2 k+1} x^{2 k+1} \quad(\text { by }[6, \text { (2.20)]) } \\
& =V_{2 n}(x)(\text { by }(1.3)) .
\end{aligned}
$$

Proof 2:

$$
\begin{aligned}
V_{2 n}(x) & =(-1)^{n-1} x\left[b_{n}\left(-x^{2}\right)+B_{n-1}\left(-x^{2}\right)\right] \text { (by [6] adjusted) } \\
& =(-1)^{n-1} x B_{n}\left(-x^{2}\right)(\text { by }[2,(2.13)]) .
\end{aligned}
$$

(b)

Proof 1:

$$
\begin{aligned}
(-1)^{n-1} b_{n}\left(-x^{2}\right) & =\sum_{k=0}^{n-1}(-1)^{k+n-1}\binom{n+k-1}{2 k} x^{2 k}(\text { by }[2,(2.21)]) \\
& =V_{2 n-1}(x)(\text { by }(1.13)) .
\end{aligned}
$$

Proof 2:

$$
\begin{aligned}
V_{2 n-1}(x) & =(-1)^{n}\left(x^{2} B_{n}\left(-x^{2}\right)-b_{n-1}\left(-x^{2}\right)\right) \text { (by [6] adjusted) } \\
& \left.=(-1)^{n}\left(-b_{n}\left(-x^{2}\right)\right) \text { (by }[2,(2.15)]\right) \\
& =(-1)^{n-1} b_{n}\left(-x^{2}\right)
\end{aligned}
$$

Corollary 1: $V_{2 n-1}(i x)=(-1)^{n-1} b_{n}\left(x^{2}\right)\left(i^{2}=-1\right)$.

Theorem 3:

(a) $v_{2 n}(x)=(-1)^{n} C_{n}\left(-x^{2}\right)$.
(b) $v_{2 n-1}(x)=(-1)^{n-1} x c_{n}\left(-x^{2}\right)$.
(a)

Proof:

$$
\begin{aligned}
(-1)^{n} C_{n}\left(-x^{2}\right) & =(-1)^{n}\left\{\sum_{k=0}^{n-1}(-1)^{k} \frac{2 n}{n-k}\binom{n-1+k}{n-1-k} x^{2 k}+(-1)^{n} x^{2 n}\right\}(\text { by }[6,(2.2)]) \\
& =v_{2 n}(x)(\text { by }(1.5)) \\
{[} & \left.=(-1)^{n}\left(C_{n-1}\left(-x^{2}\right)-x^{2} c_{n}\left(-x^{2}\right)\right)(\text { by }(3.21)]\right) .
\end{aligned}
$$

(b)

Proof:

$$
\begin{aligned}
(-1)^{n-1} x c_{n}\left(-x^{2}\right) & =\sum_{k=1}^{n}(-1)^{k+n} \frac{2 n-1}{2 k-1}\binom{n+k-2}{n-k} x^{2 k-1}(\text { by }[2,(3.23)]) \\
& =v_{2 n-1}(x)(\text { by }(1.5)) \\
{[} & \left.=(-1)^{n-1} x\left(C_{n-1}\left(-x^{2}\right)+c_{n-1}\left(-x^{2}\right)\right)(\text { by }[2,(3.11)]]\right) .
\end{aligned}
$$

Corollary 2: $v_{2 n}(i x)=(-1)^{n} C_{n}\left(x^{2}\right)\left(i^{2}=-1\right)$.

6. THE ARGUMENT $-\frac{1}{\boldsymbol{x}^{\mathbf{2}}}$: VIETA AND JACOBSTHAL

Here, we discover connections between the Vieta and Jacobsthal polynomials.

Theorem 4:

(a) $V_{n}(x)=x^{n-1} J_{n}\left(-\frac{1}{x^{2}}\right)$.
(b) $v_{n}(x)=x^{n} j_{n}\left(-\frac{1}{x^{2}}\right)$ (by $\left.[6,(2.7)]\right)$.
(a)

Proof:

$$
\left.\begin{array}{rl}
V_{n}(x) & =x^{n-1} \sum_{j=0}^{\left[\frac{n-1}{2}\right]}\binom{n-j-1}{j}\left(-\frac{1}{x^{2}}\right)^{j}(\text { by }(1.3)) \\
& =x^{n-1} J_{n}\left(-\frac{1}{x^{2}}\right)(\text { by }[6,(2.3)]) \\
{[} & =x^{n-1}\left[J_{n-1}\left(-\frac{1}{x^{2}}\right)+\left(-\frac{1}{x^{2}}\right) J_{n-2}\left(-\frac{1}{x^{2}}\right)\right] \text { by definition of } J_{n}(x) \\
& =x^{n-1} J_{n-1}\left(-\frac{1}{x^{2}}\right)-x^{n-3} J_{n-2}\left(-\frac{1}{x^{2}}\right) \text { as in [6] adjusted }
\end{array}\right] .
$$

(b)

Proof:

$$
\left.\begin{array}{rl}
x^{n} j_{n}\left(-\frac{1}{x^{2}}\right) & =\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k} x^{n-2 k}(\text { by }[6,(2.6)]) \\
& =v_{n}(x)(\text { by }(1.5) \text { or }[5,(1.9)]) \\
{[} & \left.=x^{n}\left[j_{n-1}\left(-\frac{1}{x^{2}}\right)+\left(-\frac{1}{x^{2}}\right) j_{n-2}\left(-\frac{1}{x^{2}}\right)\right] \text { by definition of } j_{n}(x)\right] \\
& =x^{n} j_{n-1}\left(-\frac{1}{x^{2}}\right)-x^{n-2} j_{n-2}\left(-\frac{1}{x^{2}}\right)
\end{array}\right] .
$$

7. THE ARGUMENT $\frac{1}{x}$: JACOBSTHAL AND MORGAN-VOYCE

Next, we detect some attractive simple links between Jacobsthal and Morgan-Voyce polynomials involving reciprocal arguments $x, \frac{1}{x}$.

Theorem 5:

(al) $B_{n}(x)=x^{n-1} J_{2 n}\left(\frac{1}{x}\right)$.
(b) $C_{n}(x)=x^{n} j_{2 n}\left(\frac{1}{x}\right)$.
(a) This is stated and proved in [6, (2.8)].
(b)

Proof:

$$
\begin{aligned}
x^{n} j_{2 n}\left(\frac{1}{x}\right) & =\sum_{k=0}^{n} \frac{2 n}{2 n-k}\binom{2 n-k}{k} x^{n-k} \quad(b y[6,(2.6)]) \\
& =\sum_{k=0}^{n-1} \frac{2 n}{2 n-k}\binom{2 n-k}{k} x^{n-k}+2 \\
& =C_{n}(x)(b y[6,(2.2)]) .
\end{aligned}
$$

Upon making the transformation $x \rightarrow \frac{1}{x}$ in Theorem 5(a) and (b), we obtain their Mutuality Properties in Corollary 3(a) and (b).

Corollary 3 (Mutuality):
(a) $J_{2 n}(x)=x^{n-1} B_{n}\left(\frac{1}{x}\right)$.
(b) $j_{2 n}(x)=x^{n} C_{n}\left(\frac{1}{x}\right)$.

Combining Theorems 2(a) and 4(a), we get

$$
x^{2 n-1} J_{2 n}\left(-\frac{1}{x^{2}}\right)=V_{2 n}(x)=(-1)^{n-1} x B_{n}\left(-x^{2}\right)
$$

leading to

$$
B_{n}\left(-x^{2}\right)=\left(-x^{2}\right)^{n-1} J_{2 n}\left(-\frac{1}{x^{2}}\right),
$$

thus confirming Theorem 5(a) when $x \rightarrow-x^{2}$. Conclusions of a similar nature link $j_{2 n}\left(-\frac{1}{x^{2}}\right)$, $v_{2 n}(x)$, and $b_{n}\left(-x^{2}\right)$ in Theorems 3(a), 4(b), and 5(b).

Theorem 6:

(a) $b_{n}(x)=x^{n-1} J_{2 n-1}\left(\frac{1}{x}\right)$.
(b) $c_{n}(x)=x^{n-1} j_{2 n-1}\left(\frac{1}{x}\right)$.

Proof: Similar to that for Theorem 5.
Corollary 4 (Mutuality):
(a) $J_{2 n-1}(x)=x^{n-1} b_{n}\left(\frac{1}{x}\right)$.
(b) $j_{2 n-1}(x)=x^{n-1} c_{n}\left(\frac{1}{x}\right)$.

8. $\mathbb{Z E R O S}$ OF $V_{n}(x), v_{n}(x)$

Known zeros of the Morgan-Voyce polynomials [2, (4.20)-(4.23)] may be employed to detect the zeros of the Vieta and the Jacobsthal polynomials. Some elementary trigonometry is required.
(a) $V_{n}(x)=0$

By [2, (4.20)] and Theorem 2(a) with $x \rightarrow-x^{2}$, the $2 n-1$ zeros of $V_{2 n}(x)$ are 0 and the $2(n-1)$ zeros of $B_{n}\left(-x^{2}\right)$, namely $(r=1,2, \ldots, n-1)$,

$$
\begin{align*}
x & = \pm 2 \sin \left(\frac{r}{n} \frac{\pi}{2}\right)= \pm 2 \cos \left(\frac{n-r}{2 n} \pi\right) \tag{8.1}\\
& =2 \cos \frac{r}{m} \pi(m=2 n, \text { i. e., } m \text { even }) .
\end{align*}
$$

Similarly, by [2, (4.21)] and Theorem 2(b) with $x \rightarrow-x^{2}$, the $2 n-2$ zeros of $V_{2 n-1}(x)$ are the $2(n-1)$ zeros of $b_{n}\left(-x^{2}\right)$, namely $(r=1,2, \ldots, n-1)$,

$$
\begin{align*}
x & = \pm 2 \sin \left(\frac{2 r-1}{2 n-1} \frac{\pi}{2}\right)= \pm 2 \cos \left(\frac{n-r}{2 n-1} \pi\right) \tag{8.2}\\
& =2 \cos \frac{r}{m} \pi(m=2 n-1, \text { i.e., } m \text { odd }) .
\end{align*}
$$

Zeros $2 \cos \frac{r}{m} \pi$ given in (8.1) and (8.2) are precisely those given in [7, (2.25)] for $y=-1$ (for $\left.V_{m}(x)\right)$ when m is even or odd. See also [7, (2.23)].
(b) $v_{n}(x)=0$

Invoking Theorems 3(a) and 3(b) next in conjunction with [2, (4.22), (4.23)] for $C_{n}(x)$ and $c_{n}(x)$ and making the transformation $x \rightarrow-x^{2}$, we discover the n zeros of $v_{n}(x)$ are $(r=1, \ldots, n)$

$$
x=2 \cos \left(\frac{2 r-1}{2 n} \pi\right)
$$

which is in accord with [7, (2.26)]. See also [7, (2.24)].
Alternative approach to (a) and (b) above: Use the known roots for Chebyshev polynomials (9.3) and (9.4).
(c) Zeros of $J_{n}(x), j_{n}(x)$

From Theorems 4(a), 4(b), it follows that the zeros of $J_{n}(x), j_{n}(x)$ are given by $-\frac{1}{x^{2}} \rightarrow x$. This leads in (8.1)-(8.3) to the zeros of $J_{n}(x), j_{n}(x)$ as

$$
-\frac{1}{4 \cos ^{2} \frac{r \pi}{n}},-\frac{1}{4 \cos ^{2}\left(\frac{2 r-1}{2 n} \pi\right)},
$$

that is, for
(c) $J_{n}(x)=0: x=-\frac{1}{4} \sec ^{2} \frac{r \pi}{n}$,
(d) $\dot{J}_{n}(x)=0: \quad x=-\frac{1}{4} \sec ^{2}\left(\frac{2 r-1}{2 n} \pi\right)$.

These zero values concur with those given in [7, (2.28(, (2.29)] if we remember that $2 x$ in the definitions for $J_{n}(x), j_{n}(x)$ in [7] has to be replaced by x in this paper (as in [6]). Refer also to Corollaries 3(a) and 3(b).

9. MEDLEY

Lastly, we append some Vieta-related features of familiar polynomials.
Fibonacci and Lucas Polynomials $\boldsymbol{F}_{\boldsymbol{n}}(x), \mathbb{L}_{n}(x)$

$$
\begin{gather*}
V_{n}(i x)=i^{n-1} F_{n}(x) \quad\left(i^{2}=-1\right) . \tag{9.1}\\
v_{n}(i x)=i^{n} L_{n}(x) \quad([5]) . \tag{9.2}
\end{gather*}
$$

Chebyshev Polynomials $\mathbb{T}_{n}(x), \mathbb{U}_{n}(x)$

$$
\begin{gather*}
V_{n}(x)=U_{n}\left(\frac{1}{2} x\right) . \tag{9.3}\\
v_{n}(x)=2 T_{n}\left(\frac{1}{2} x\right) \quad([3],[5]) . \tag{9.4}
\end{gather*}
$$

Suggested Topics for Further Development

1. Irreducibility, divisibility: Detailed analysis for $v_{n}(x)$ as in [5] is, for $V_{n}(x)$, left to the aficionados (having regard to Tables 1 and 2);
2. Rising and falling diagonalls for Vieta polynomials (which has already been done for the Chebyshev polynomials and which has been almost completed for Vieta polynomials);
3. Convolutions for $V_{n}(x)$ and $v_{n}(x)$ (in which much progress has been achieved);
4. Numerical values: Consider various integer values of x in $V_{n}(x)$ and $v_{n}(x)$ to obtain sets of Vieta numbers. Some nice results ensue. Guidance may be sought in [2, pp. 172-73].

Conclusion

Apparently the $v_{n}(x)$ offer a slightly richer field of exploration than do the $V_{n}(x)$. However, many opportunities for discovery present themselves. Hopefully, this paper may whet the appetite of some readers to undertake further experiences.

ACKNOWLEDGMENT

My appreciation of the care taken, and interest shown, by the referee in assessing this research work is hereby recorded with pleasure.

REFERENCES

1. A. F. Horadam. "Tschebyscheff and Other Functions Associated with the Sequence $\left\{W_{n}(a\right.$, $b ; p, q)\}$." The Fibonacci Quarterly 7.1 (1969):14-22.
2. A. F. Horadam. "New Aspects of Morgan-Voyce Polynomials." In Applications of Fibonacci Numbers 7:161-76. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1998.
3. E. Jacobsthal. "Ueber Vertauschbare Polynome." Math. Zeits. 63 (1955):244-76.
4. E. Lucas. Théorie des Nombres. Paris: Blanchard, 1961.
5. N. Robbins. "Vieta's Triangular Array and a Related Family of Polynomials." Internat. J. Math. \& Math. Sci. 14.2 (1991):239-44.
6. A. G. Shannon \& A. F. Horadam. "Some Relationships among Vieta, Morgan-Voyce, and Jacobsthal Polynomials." In Applications of Fibonacci Numbers 8:307-23. Ed. F. Howard. Dordrecht: Kluwer, 1999.
7. M. N. S. Swamy. "Generalized Fibonacci and Lucas Polynomials and Their Associated Diagonal Polynomials." The Fibonacci Quarterly 37.3 (1999):213-22.
8. F. Vieta. Opera Mathematica: Ad Angulus Sectiones. (Theorema VI). Paris, 1615. (Quoted in [5].)
AMS Classification Number: 11B39
