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Abstract

In the paper, the authors concisely review some explicit formulas and establish a new explicit formula for the
Bernoulli and Genocchi numbers in terms of the Stirling numbers of the second kind.
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1. Introduction and main results

It is well known that the Bernoulli numbers Bn for n ≥ 0 may be defined by the power series expansion
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that Euler polynomials En(x) are defined by
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that the Genocchi numbers Gn for n ∈ N are given by the generating function
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and that the Stirling numbers of the second kind which may be generated by
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, k ∈ N (4)

and may be computed by
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`k, 1 ≤ m ≤ k. (5)

By the way, the Stirling number of the second kind S(n, k) may be interpreted combinatorially as the number of
ways of partitioning a set of n elements into k nonempty subsets.

The Bernoulli numbers Bn for n ∈ {0} ∪ N satisfy

B0 = 1, B1 = −1

2
, B2n+2 6= 0, B2n+3 = 0. (6)

For n ∈ N, the Genocchi numbers meet G2n+1 = 0. The first few Genocchi numbers Gn are listed in Table 1.1. The

Table 1.1: The first few Genocchi numbers Gn

n 1 2 4 6 8 10 12 14 16 18
Gn 1 −1 1 −3 17 −155 2073 −38227 929569 −28820618

Genocchi numbers G2n may be represented in terms of the Bernoulli numbers B2n and Euler polynomials E2n−1(0)
as

G2n = 2(1− 22n)B2n = 2nE2n−1(0), n ∈ N. (7)

See [1, p. 49]. As a result, we have

Gn = 2(1− 2n)Bn, n ∈ N. (8)

The first formula for the Bernoulli numbers Bn listed in [2] is
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which is a special case of the general formula [13, (2.5)]. The formula (9) is equivalent to
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S(n, k), n ∈ {0} ∪ N, (10)

which was listed in [3, p. 536] and [4, p. 560]. Recently, four alternative proofs of the formula (10) were provided
in [7, 16]. A generalization of the formula (10) was supplied in [6]. In all, we may collect at least seven alternative
proofs for the formula (9) or (10) in [2, 4, 7, 13, 14, 16] and closely related references therein.

In [2, p. 48, (11)], it was deduced that
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which may be rearranged as
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The formula (12) was rediscovered in the paper [8]. On 21 January 2014, the authors searched out that the
formula (12) was also derived in [12, p. 59] and [17, p. 140].
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In [11, p. 1128, Corollary], among other things, it was found that
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for k ∈ N, where Am is defined by
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In [15, Theorem 1.4], among other things, it was presented that
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In [10, Theorem 3.1], it was obtained that
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The aim of this paper is to find the following new explicit formula for the Bernoulli numbers Bk, or say, the
Genocchi numbers Gk, in terms of the Stirling numbers of the second kind S(k,m).

Theorem 1.1 For all k ∈ N, the Genocchi numbers Gk may be computed by
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2. Proof of Theorem 1.1

Differentiating on both sides of the equation (3) and employing Leibniz identity for differentiation give(
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In [9, Theorem 2.1] and [18, Theorem 3.1], it was obtained that, when λ > 0 and t 6= − lnλ
α or when λ < 0 and
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Specially, when λ = −1 and α = 1, the identity (17) becomes(
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Consequently, it follows that
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The proof of Theorem 1.1 is complete.

Remark 2.1 This paper is a slightly modified version of the preprint [5].
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