A Conjectured Representation of Genocchi Numbers

J. M. Gandhi

Stable URL:
http://links.jstor.org/sici?sici=0002-9890%28197005%2977%3A5%3C505%3AACROGN%3E2.0.CO%3B2-8

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

RESEARCH PROBLEMS

Edited by Victor Klee

In this Department the Monthly presents easily stated research problems dealing with notions ordinarily encountered in undergraduate mathematics. Each problem should be accompanied by relevant references (if any are known to the author) and by a brief description of known partial results. Material should be sent to Victor Klee, Department of Mathematics, University of Washington, Seattle, WA 98105.

A CONJECTURED REPRESENTATION OF GENOCCHI NUMBERS

J. M. Gandhi, Western Illinois University

Genocchi numbers are defined by the formula

$$ (G + 1)^N + G_N = 1, \quad N > 1, \quad \text{with} \quad G_1 = 1, $$

where after expansion G^i is to be replaced by G_i for each $i \leq N$. We remark that the Genocchi numbers can also be generated by the formula [1, pp. 250–263]:

$$ \frac{2t}{e^t + 1} = \sum_{N=0}^{\infty} \frac{G_N}{N!} t^N. $$

The first few Genocchi numbers are $G_1 = 1$, $G_2 = -1$, $G_4 = +1$, $G_6 = -3$, $G_8 = +17$, $G_{10} = -155$, $G_{12} = +2073$, $G_{14} = -38227$, $G_{16} = +929569$, etc. with $G_{2N+1} = 0$. We conjecture that

$$ G_{2N} = (-1)^N \sum 1^2 \sum 2^2 \sum 3^2 \cdots \sum (N - 1)^2, $$

where the \sum notation used in (3) has the following meaning:

$$ \sum k^2 = k^2 - (k - 1)^2 $$

$$ \sum k^2 \sum (k + 1)^2 = k^2 \sum (k + 1)^2 - (k - 1)^2 \sum k^2 $$

$$ = k^2 \{ (k + 1)^2 - k^2 \} - (k - 1)^2 \{ k^2 - (k - 1)^2 \} $$

and in general we have the recurrence

$$ \sum k^2 \sum (k + 1)^2 \sum (k + 2)^2 \cdots \sum (k + N)^2 $$

$$ = k^2 \sum (k + 1)^2 \sum (k + 2)^2 \cdots \sum (k + N)^2 $$

$$ - (k - 1)^2 \sum k^2 \sum (k + 1)^2 \cdots \sum (k + N - 1)^2. $$

We note that $(N+1)\sum$'s on the left hand side of (4) are reduced to $N \sum$'s and the process can be continued till there are no \sum's left. The \sum notation used
can be easily understood by actually calculating the first few Genocchi numbers:

\[G_4 = \sum 1^2 = 1. \]
\[G_6 = -\sum 1^2 \sum 2^2 = -1^2 \sum 2^2 + 0^2 \sum 1^2 = -1^2(2^2 - 1^2) = -3. \]
\[G_8 = \sum 1^2 \sum 2^2 \sum 3^2 = 1^2 \sum 2^2 \sum 3^2 = 1^2(2^2 \sum 3^2 - 1^2 \sum 2^2) \]
\[= 1^2[2^2(3^2 - 2^2) - 1^2(2^2 - 1^2)] = +17. \]
\[G_{10} = -\sum 1^2 \sum 2^2 \sum 3^2 \sum 4^2 \]
\[= -1^2[2^2(3^2 \sum 4^2 - 2^2 \sum 3^2) - 1^2(2^2 \sum 3^2 - 1^2 \sum 2^2)]. \]

using (5) and simplifying we get \(G_{10} = -155. \)

The formula (3) has been verified to be true for all values of \(G \)'s up to \(G_{14}. \)

For similar \(\sum \) notation as used in this paper, though slightly different, reference may be made to [2].

References

CLASSROOM NOTES

EDITED BY DAVID DRASIN

Manuscripts for this Department should be sent to David Drasin, Division of Mathematical Sciences, Purdue University, Lafayette, IN 47907.

INTEGRATION OF TOTAL DIFFERENTIAL EQUATIONS

B. FISHER, The University, Leicester, England

Consider the total differential equation

\[P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0, \]

where we shall suppose first of all that

\[Q(x, y, z) = P(y, z, x) \quad \text{and} \quad R(x, y, z) = P(z, x, y). \]

By treating \(x \) in (1) as a constant and integrating, we get

\[U(x, y, z) = \text{const.} = f(x). \]

Assuming (1) is integrable, there exists an \(f \) such that (2) is a solution of (1). The problem is to find \(f \).

To do this, we have, by the symmetry of (1),

\[U(y, z, x) = f(y) \]

(3)