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Abstract. Let {F(n)}n∈N, {G(n)}n∈N, be linear recurrent sequences. In this
paper we are concerned with the well-known diophantine problem of the
finiteness of the set N of natural numbers n such that F(n)/G(n) is an
integer. In this direction we have for instance a deep theorem of van der
Poorten; solving a conjecture of Pisot, he established that if N coincides
with N, then {F(n)/G(n)}n∈N is itself a linear recurrence sequence. Here
we shall prove that if N is an infinite set, then there exists a nonzero
polynomial P such that P(n)F(n)/G(n) coincides with a linear recurrence
for all n in a suitable arithmetic progression. Examples like F(n) = 2n − 2,
G(n) = n + 2n + (−2)n , show that our conclusion is in a sense best-
possible. In the proofs we introduce a new method to cope with a notorious
crucial difficulty related to the existence of a so-called dominant root. In an
appendix we shall also prove a zero-density result for N in the cases when
the polynomial P cannot be taken a constant.

1. Introduction

A sequence of complex numbers {G(n)}n∈N is called a linear recurrence if
there exist complex numbers c0, . . . , ck−1 (k ≥ 1) such that G(n + k) =
c0G(n)+. . .+ck−1G(n+k−1) for all n ∈ N. This implies the rationality of
the generating function

∑∞
n=0 G(n)Xn; also, this is equivalent to a (unique)

expression

G(n) =
r∑

i=1

gi(n)α
n
i , for all n ∈ N, (1)

with nonzero polynomials gi ∈ C[X] and distinct nonzero αi ∈ C∗, which
are classically called the “roots” of the recurrence. The recurrence is called
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“simple” when all the gi(n) are constant. It is said “nondegenerate” when no
ratio αi/α j , i �= j, is a root of unity. For the general theory, see [vdP2], [S2]
or [ShT].

The main result of the present paper is the following

Theorem 1. Let F(n),G(n) be linear recurrences and let R be a finitely
generated subring of C. Assume that for infinitely many n ∈ N, we have
G(n) �= 0 and F(n)/G(n) ∈ R. Then there exist a nonzero polynomial
P(X) ∈ C[X] and positive integers q, r such that both sequences n 
→
P(n)F(qn +r)/G(qn +r) and n 
→ G(qn +r)/P(n) are linear recurrences.

We tacitly mean that G(qn + r) �= 0 for all n ∈ N. We may reformulate
the conclusion by saying that G(qn + r) = P(n)H(n), where H is a linear
recurrence dividing (in the appropriate sense) the recurrence n 
→ F(qn+r).
We shall point out later that one cannot always conclude that G(qn + r)
divides F(qn + r).

In the same direction, van der Poorten, solving a conjecture of Pisot,
proved the “Hadamard-quotient Theorem”: if F(n),G(n) are linear recur-
rences such that the ratio F(n)/G(n) is an integer for all large n ∈ N, then
F(n)/G(n) is itself a linear recurrence. In fact, van der Poorten too worked
more generally, by assuming that F(n)/G(n) lies in a fixed finitely generated
ring for all n ∈ N. (See [vdP1], or [R] for a more detailed argument.)

Note that in this last statement we need that all the values F(n)/G(n)
are integral, while in Theorem 1 above it suffices that this holds just for an
infinite set. Actually, the problem of handling this much weaker assumption
was raised explicitly in [vdP2]. A similar situation occurs in connection
with the paper [BPvdP], where the so-called divisibility sequences are char-
acterized. The proofs therein use van der Poorten’s theorem; the use of
Theorem 1 leads to a substantial weakening of the assumptions.

Note that Theorem 1 corresponds to a finiteness result for semi-exponen-
tial diophantine equations F(x) = yG(x). Diophantine equations involving
recurrences have indeed an old tradition. (See e.g. [L], [vdP2], [S2], [ShT].)
M. Laurent [L] investigated the general semi-exponential equation. He was
able to prove finiteness in remarkable generality. However, our equations,
though linear in y, escape from his analysis.

Among other papers involving divisibility between values of recur-
rences, we mention e.g. [E], where the condition G(n)|G(m), for an m < n,
is studied, for a recurrence G(n). The methods of the present paper should
allow to deal with the more general condition G(n)|F(m) for m � n.

In his proof, van der Poorten first treated the fundamental number-field
case by means of ingenious auxiliary constructions of p-adic nature.1 Then
he reduced to this case by specialization arguments. Such a method of proof
does not yield any information towards the proof of Theorem 1, namely
under the much weaker assumption that F(n)/G(n) is an integer infinitely

1 Similar but incomplete arguments also appeared in the paper [P].
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often. The specialization arguments are still possible, but the proof breaks
down in the number field case.

In the paper [CZ], among others, we attacked such questions by means
of the Schmidt Subspace Theorem. We considered only the case of simple
recurrences with positive integer roots (i.e. αi ∈ N) and constant coeffi-
cients gi ∈ Q, obtaining in this case a complete answer. In particular, we
proved [CZ, Theorem 1] that if F(n)/G(n) is an integer infinitely often,
where F,G are simple recurrences with positive integer roots, then F/G is
again a linear recurrence of that type.

As observed in [CZ] (see the few lines following Theorem 1 as well as
Remarks 4 and 5), our method in fact could be applied successfully with
the only assumption that the recurrence G(n) admits a dominant root with
respect to some valuation of the relevant number field K . By this we mean
that there exists an absolute value v of K such that G(n) admits a unique
root which is maximal with respect to v. This assumption, though rather
weak, had represented a well-known crucial difficulty in the whole subject
of diophantine properties of recurrence sequences.

Let us look a little more closely at this assumption. When G(n) is
nondegenerate and has at most two roots, one verifies that a dominant
root exists. However, there are nondegenerate examples with three or more
roots, when the assumption is not verified. A particularly simple and elegant
instance has been proposed to us by Pethö. He starts with an analogue of
the Fibonacci sequence, defining G(n) by G(0) = G(1) = 0, G(2) = 1
and G(n + 3) = G(n + 2) + G(n + 1) + G(n). This recurrence admits
three roots αi which are the solutions of the equation X3 = X2 + X + 1.
It is nondegenerate and the unique real root is “dominant” with respect to
the standard complex absolute value. In particular, the methods of [CZ]
apply to F(n)/G(n) for any recurrence F. If we now change G(n) with
G(−n) the roots become the α−1

i and one may check that the dominant-
root assumption is not verified, for any choice of the valuation. And then,
even a simply stated question such as “does G(−n) divide 2n + 1 infinitely
often?” does not fall into the realm of [CZ] nor in any other known method,
to the best of our knowledge.

Theorem 1 answers generally such questions, showing that the dominant-
root assumption, as well as any other technical hypothesis, may be com-
pletely removed. We shall derive it in a moment from our next result, namely

Theorem 2. Let F(n),G(n) be linear recurrences such that their roots
generate together a torsion-free multiplicative group. Let R be a finitely
generated subring of C and assume that for infinitely many n ∈ N, we have
G(n) �= 0 and F(n)/G(n) ∈ R. Then there exists a nonzero polynomial
P(X) ∈ C[X] such that both sequences n 
→ P(n)F(n)/G(n) and n 
→
G(n)/P(n) are linear recurrences.

We pause, to note that the condition “G(n) �= 0” is described by the
Skolem-Mahler-Lech Theorem (see e.g. [vdP2] for an elegant proof). This
asserts that the set of zeros of a linear recurrence is a union of a finite
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set with a finite union of arithmetic progressions. When G is nonzero and
nondegenerate, it is a finite set. In particular, under the assumptions for
Theorem 2 we have G(n) �= 0 for all large n ∈ N; we shall often use this
remark in the proofs.

The “torsion-free” assumption in Theorem 2 is harmless, and may in fact
be considered as a normalization condition. For this reason we shall assume
it in our next statements. The condition may be actually achieved just by
partitioning N into a finite number of suitable arithmetic progressions and
by considering separately the restrictions of the involved functions to each
progression. We illustrate this by deducing Theorem 1 from Theorem 2.
Observe that, if q is the order of the torsion in the multiplicative group Γ
generated by the roots of F,G altogether, then for each r = 0, 1, . . . , q − 1,
the recurrences Fr(n) = F(nq + r), Gr(n) = G(nq + r) have roots gen-
erating a torsion-free group: in fact, their roots are among the q-th powers
of the roots of F and G, so they lie in the torsion-free group Γq. To obtain
Theorem 1 it now suffices to take into account Theorem 2 for each of these
pairs of recurrences. We note that this argument in fact produces a possible
modulus q for Theorem 1. In general one cannot take q = 1 there, even
if F,G are both nondegenerate: a simple counterexample is provided by
F(n) = 2n + 1, G(n) = 2n + (−1)n .

In many cases (but not always!) the polynomial P may be directly taken
to be a constant. For instance it suffices that G has no polynomial factors;
in fact, we have

Corollary 1. Let F,G,R be as in Theorem 2, and assume moreover that
in the canonical expression (1), the gi are coprime polynomials. Then,
if F(n)/G(n) lies in R for infinitely many n ∈ N, the sequence n 
→
F(n)/G(n) is a linear recurrence.

This of course applies when G is a simple recurrence. (Without the as-
sumption that the relevant group is torsion-free, we have a conclusion anal-
ogous to Theorem 1.) This corollary is a direct consequence of Theorem 2:
in fact, if P(n) is as in that theorem, we have in particular that G(n)/P(n) is
a linear recurrence, which we write in the form

∑s
i=1 g̃i(n)α̃n

i , with nonzero
polynomials g̃i and distinct α̃i ∈ C∗. From the uniqueness of the expres-
sion (1), it follows that r = s and gi = Pg̃σ(i) for i = 1, . . . , r, where σ is
a permutation of {1, . . . , r}. By the coprimality assumption in the corollary,
P(n) is then a nonzero constant c and by Theorem 2 again, cF(n)/G(n) is
a linear recurrence, so the same holds for F(n)/G(n).

More generally, this argument shows that P(n) may be taken as a GCD
of the gi’s in (1).

Note however that in Theorems 1,2, we cannot generally take P(n) to
be a constant. This is shown by examples like F(n) = 2n,G(n) = nd, or
F(n) = 2n − 2,G(n) = n. In this last example, the set of integers n such
that F(n)/G(n) is an integer not only is infinite but contains the set of prime
numbers, which is fairly “large” in N. As a counterpart, we state our last
result, where we restrict to number fields for simplicity.
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Corollary 2. Let F,G be recurrence sequences with coefficients and roots
in a number field K, and assume that their roots generate a torsion-free
group. Let R ⊂ K be finitely generated. Then, either F(n)/G(n) is a linear
recurrence, or the set of integers n ∈ N such that F(n)/G(n) ∈ R has zero
density.

The conclusion means that the proportion of relevant integers in an
interval 1 ≤ n ≤ X tends to zero as X → ∞. This result gives as a byproduct
a sharpening of the mentioned theorem by van der Poorten (see Remark 3
below). Also, in the special case of the equations F(x) = yG(x), this
answers a question by Laurent [L] who asked whether “almost all” the
integral solutions must come from an algebraic identity. The deduction of
this corollary falls somewhat apart from the main theme of the paper, and
so will be given in an appendix. There, we shall also briefly discuss some
examples as to whether F(n)/G(n) can be an integer infinitely often, when
G is a polynomial.

Remarks. (1) We stress that for given recurrences F,G, it is easy to test
effectively whether the conclusions of the theorems hold, actually in a purely
algebraic way (i.e. there is no more arithmetic involved). We have already
noted that the polynomial P may be determined by G and moreover it is
well known (and we shall prove it again in Lemma 2.1 below) that F,G
correspond to certain (Laurent) polynomials f, g in several variables, in
such a way that the given condition amounts to check divisibility of P f by
g in the relevant polynomial ring. It is an easy well-known fact that such
a test admits an effective procedure.

(2) Corollary 1 admits the obvious converse stating that if the conclusion is
true, the values F(n)/G(n) all lie in some fixed finitely generated ring.

On the other hand, there is no simple general converse for Theorems 1
or 2: take e.g. F(n) = 2n and G(n) = n or G(n) = n(n + 1). In both cases
the conclusions are satisfied. However, while in the first case the relevant
set is infinite, this cannot happen in the second case, no matter R, in virtue
of the well-known fact that the greatest prime factor of n(n + 1) tends to
infinity with n.

However, if we assume the conclusions of Theorems 1,2, we find that the
values F(n)/G(n) are “quasi integral”, in the sense that the denominators
grow polynomially rather than exponentially. With this in mind, we note that
our arguments in fact lead to slightly more general results. In the number-
field case we may prove that if there exist nonzero integers dn such that
log |dn| = o(n) and dn F(n)/G(n) ∈ R for infinitely many n ∈ N, then the
conclusion of Theorem 1 holds. It is this more technical formulation which
admits a simple converse, similarly to Corollary 1.

For the sake of simplicity we omit the proofs, which do not involve new
difficulties. In some cases (e.g. F(n) = bn − 1, G(n) = an − 1) it is even
possible to obtain nearly best-possible upper bounds for GCD(F(n),G(n)):
see [BCZ].
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(3) The mentioned theorem by van der Poorten (i.e. a former conjecture by
Pisot) follows easily from Theorem 1. We sketch the argument in the crucial
number-field case. First, we recall the elementary result by Cantor [C]
(proved long before van der Poorten’s solution) that if a sequence {H(n)}n∈N
of S-integers is such that H1(n) := P(n)H(n) is a recurrence for some
nonzero polynomial P, then H(n) is itself a recurrence. (See e.g. [vdP2]
or [R] for a sketch of the simple proof, as well as the present Appendix for
a quantitative version of the argument.)

Assume now that F(n)/G(n) is an S-integer for all large n ∈ N, and let
q be the order of the torsion in the group generated by the roots of F,G.
As above we find that the recurrences n 
→ F(qn + r), n 
→ G(qn + r)
have roots generating a torsion-free group, whence Theorem 2 implies that
Pr(n)F(qn + r)/G(qn + r) is a recurrence for r = 0, . . . , q − 1, where
P0, . . . Pq−1 are suitable nonzero polynomials. Applying Cantor’s result for
r = 0, 1, . . . , q − 1 then shows that each ar(n) := F(qn + r)/G(qn + r) is
a linear recurrence.

In turn, we find that the power series fr(X) := ∑∞
n=0 ar(n)Xn is rational

for each r = 0, 1, . . . , q − 1. Therefore
∑∞

n=0
F(n)
G(n)Xn = ∑q−1

r=0 Xr fr(Xq)

is rational as well, and the final conclusion follows at once.
By using Corollary 2 in place of Cantor’s result, one may correspond-

ingly strengthen van der Poorten’s Theorem.

2. Proofs

In this section we shall prove Theorem 2 in the crucial case of number-fields.
In the next section we shall apply specialization arguments to deduce it in
full generality.

As in [CZ], our arguments will make heavy use of the Schmidt Subspace
Theorem. For the reader’s convenience, we state a relevant version of it, due
to H.P. Schlickewei:

Subspace Theorem. Let K be a number field, S be a finite set of absolute
values of K containing the archimedean ones, N ≥ 1 be an integer. Let,
for each v ∈ S, Lv,1, . . . , Lv,N be linearly independent linear forms in
N variables, defined over K. Then, for every ε > 0, the solutions of the
inequality

log(
N∏

i=1

∏
v∈S

|Lv,i(x)|v) < −εh(x)

in points x ∈ ON
S are contained in a finite union of hyperplanes of K N

defined over K.

Here as usual h(·) is the absolute logarithmic Weil height and the absolute
values v are normalized so that for x ∈ K∗, h(x) = ∑

v log max(1, |x|v), the
sum running over all places of K . Also, OS denotes the ring of S-integers
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in K made up of all x ∈ K with |x|v ≤ 1 for all v �∈ S. This statement
follows immediately from the projective version [S1, Theorem 1D′], taking
into account that here the coordinates of x lie in OS.

A brief outline of the proof. Our strategy for the proof will be roughly as
follows, where to fix ideas we shall assume that all the involved recurrences
are simple. A first easier case occurs when G has a dominant root with
respect to some place ν of K . Now, as in [CZ, Theorem 1], we may expand
F(n)/G(n) as a convergent “recurrence with infinitely many roots”. Trun-
cating the expansion allows us to approximate F(n)/G(n) by a recurrence
H(n). At this point we may apply the Subspace Theorem: namely, we view
the difference (F(n)/G(n))− H(n) as a “small” linear form, where the vari-
ables are represented by the integer F(n)/G(n) and by the n-th powers of
the roots of the approximating recurrence H(n). This yields the conclusion.

Whenadominantrootdoesnotexist,wemaystillapproximate F(n)/G(n)
by using simultaneously all the roots with maximal absolute value (as in
formula (2.3) below). However the previous method is no longer sufficient,
since the term F(n)/G(n) now appears in too many of the variables in the
relevant linear form; the effect of these “bad” variables (they are S-integers,
but not necessarily S-units) is that the inequality needed for the Subspace
Theorem does not hold in general.

We can get rid of this difficulty by constructing many other small linear
forms, linearly independent, out from the given one. This may be done,
somewhat surprisingly, just by multiplying the given small linear form by
suitable terms of the form βn , for β a monomial in the dominant roots. In
this way, the total number of bad variables also increases, but not enough to
compensate what is gained. We believe that this principle may be helpful in
a more general context as well.

We now go on with the details. As in Theorem 2, we shall restrict our
attention to the class of linear recurrences having roots which belong to
a given torsion-free multiplicative group. (We have already remarked that
this normalization is not a real restriction.) The structure of the ring of such
recurrences is clarified by the following known lemma (see e.g. [vdP2]
and [R]), whose short proof we give for completeness.

Lemma 2.1. Let Γ ⊂ C∗ be a torsion-free multiplicative subgroup of rank
t ≥ 1. The ring of linear recurrences whose roots belong to Γ is isomorphic
to the ring C[X, T1, . . . , Tt, T −1

1 , . . . , T −1
t ]. In particular it is a unique

factorization domain.

Proof. Let (β1, . . . , βt) be a basis of Γ. Note that β1, . . . , βt are multi-
plicatively independent. To each variable Ti (i = 1, . . . , t) we associate the
exponential function n 
→ βn

i . To the variable X we associate the identity
function n 
→ n. We thus obtain a surjective ring homomorphism from
C[X, T1, . . . , Tt, T −1

1 , . . . , T −1
t ] to the ring of linear recurrences having

their roots in Γ. Injectivity follows from the fact that β1, . . . , βt are mul-
tiplicatively independent, whence, as is well known, the functions n 
→ n,
n 
→ βn

1 , . . . , n 
→ βn
t are algebraically independent.
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In virtue of this result, when dealing with recurrences having roots
in a given Γ, we will view them as elements of a ring C[X, T1, . . . , Tt, T −1

1 ,

. . . , T −1
t ] as in Lemma 2.1; correspondingly, divisibility properties such as

coprimality, will be understood in this sense. (It may be worthwile to note
that enlarging Γ does not affect coprimality in the corresponding ring of
Laurent polynomials. This is easily checked, and in any case will not be
needed in what follows, so we omit the proof.)

We now state a proposition which represents the fundamental point in
the paper.

Proposition 2.1. Let K be a number field, S be a finite set of absolute values
of K containing the archimedean ones, F(n),G(n) be linear recurrences
with roots and coefficients in K. Suppose that the roots of F and G generate
a torsion-free multiplicative subgroup Γ of K∗. Suppose also that F and G
are coprime (with respect to Γ) and that G has more than one root. Then
the set of integers

N :=
{

n ∈ N

∣∣∣∣ F(n)

G(n)
∈ OS

}
is finite.

This immediately implies Theorem 2 in the crucial number-field case,
i.e. when all the involved quantities are algebraic numbers. In fact, after
simplification of the fraction F/G, we may assume that F,G are coprime
(in the notion introduced above). Now, if G(n) = P(n)βn (P a polynomial)
has only one root β, the conclusion of Theorem 2 holds. Otherwise, we
may apply the proposition, by choosing K and S large enough so that
R ⊂ OS. We obtain that N is finite, in contradiction with the assumptions
for Theorem 2.

Proof of Proposition 2.1. Without loss we may enlarge S and assume that it
is a finite set of absolute values of K containing the archimedean ones, and
such that all the roots and nonzero coefficients of F,G are S-units in K .

By assumption G has at least two roots, and no ratio of two of them can
be a root of unity, because Γ is torsion-free. Therefore there exists a place ν
of K such that not all of the roots of G have the same ν-adic absolute value.
Automatically, ν ∈ S. For simplicity of notation, we replace F(n) (resp.
G(n)) by F(n)/βn (resp. G(n)/βn), where β is some root of G(n) with
maximal absolute value with respect to ν; this does not affect assumptions
and conclusions, and leads to the case when the maximal ν-adic absolute
value of the roots of G(n) is 1.

Then we can write G(n) as the difference of two linear recurrences

G(n) = G1(n)− R(n),

where G1 is a nonzero linear recurrence whose roots have ν-adic absolute
value 1 while all the roots of the nonzero recurrence R have ν-adic absolute
value strictly less then 1.
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Recall that the roots of F,G generate a free abelian multiplicative
group Γ. Let Γ∗ be the subgroup of Γ formed with elements of ν-adic
absolute value 1. Note that this is a primitive subgroup, namely, Γ/Γ∗ is
torsion-free. It is an elementary known fact that then there exists a basis
β1, . . . , βt for Γ such that β1, . . . , βp is a basis for Γ∗. (Just pick a basis of
Γ∗ and complete it with representatives in Γ for a basis of Γ/Γ∗.)

Since all the roots of G1 have ν-adic absolute value equal to 1, they lie
in Γ∗ and we may write

G1(n) = g
(
n, βn

1 , . . . , β
n
p

)
, (2.1)

where g ∈ K [X, T1, T −1
1 , . . . , Tp, T −1

p ]. By multiplying both F,G by a suit-
able power of βn

1 · · · βn
p (which again does not affect assumptions and con-

clusions), we may assume that g is in fact a polynomial in its arguments,
say of total degree ≤ D.

By our assumption on the roots of R, there exists a positive real number
ρ < 1 such that

|R(n)|ν � ρn. (2.2)

For G(n) �= 0, put zn := F(n)

G(n)
. We suppose that for all n in an infinite

set N of positive integers, we have G(n) �= 0 and zn ∈ OS; we proceed to
derive a contradiction.

We fix a positive integer s and write

G1(n)
s = (G(n)+ R(n))s = G(n)

(
s−1∑
i=0

(
s

i

)
G(n)s−1−i R(n)i

)
+ R(n)s.

Therefore

G1(n)
szn = G1(n)

s F(n)

G(n)

= F(n)

(
s−1∑
i=0

(
s

i

)
G(n)s−1−i R(n)i

)
+ F(n)

G(n)
R(n)s,

whence, by (2.2)∣∣∣∣∣G1(n)
szn − F(n)

s−1∑
i=0

(
s

i

)
G(n)s−1−i R(n)i

∣∣∣∣∣
ν

� ρns|zn|ν. (2.3)

We now fix two other positive integers h, k; later on we shall impose
that s, h, k satisfy suitable inequalities.

For every d = (d1, . . . , dp) ∈ Np, with d1 + . . . + dp ≤ h, and every
u ∈ N with u < k, we consider the quantity
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φd,u(n) := nuβnd

(
G1(n)

szn − F(n)
s−1∑
i=0

(
s

i

)
G(n)s−1−i R(n)i

)
, (2.4)

where we have abbreviated β(a1,... ,ap) = β
a1
1 · · · βap

p .
Inequality (2.3) and the fact that |βi |ν = 1 for i = 1, . . . , p give

|φd,u(n)|ν � ρns|zn|νnu, (2.5)

where we have used the bound |n|ν ≤ n.
Let us remark that the term nuβndG1(n)szn appearing in the right side

of (2.4) can be written as

nuβndG1(n)
szn =

∑
b,l

pb,l,d,unlβnbzn (2.6)

where the coefficients pb,l,d,u belong to K and the index (b, l) runs over the
vectors (b1, . . . , bp, l) ∈ Np+1 with b1+. . .+bp ≤ h+sD, 0 ≤ l < k+sD.
This follows from our previous expression (2.1) of G1 as a polynomial of
degree ≤ D in n, βn

1 , . . . , β
n
p.

Put

N1 :=
(

p + h + sD

p

)
· (k + sD).

Observe that N1 represents the number of monomials of the form XlT b1
1 · · ·

T
bp
p , with natural numbers l < k + sD and b1 + . . .+ bp ≤ h + sD. Then

the number of nonzero terms on the right of (2.6) is ≤ N1.
We denote by H(n) the recurrence −F(n)

∑s−1
i=0

(s
i

)
G(n)s−1−i R(n)i , so

the other term on the right side of (2.4) is nuβnd H(n).
Note that the recurrence H(n)may be expanded as a sum of terms each

of the type nlαn, for suitable l and α ∈ Γ. Therefore the remaining part of
(2.4) is a linear combination of terms of the type nu+l(βdα)n, for suitable
u,d, l, α. We let N2 be the cardinality of the set of all such terms.

Finally, we let N = N1 +N2, so in particular we can write φd,u as a linear
combination of at most N nonzero terms of the mentioned types.

Let us choose an ordering for the N1 terms of the form nlβnbzn with
0 ≤ l < k + sD, b1 + . . . + bp ≤ h + sD, and denote such terms with
x1(n), . . . , xN1 (n). Then we can write (2.6) as

nuβndG1(n)
szn = Ad,u,1x1(n)+ . . .+ Ad,u,N1 xN1(n).

Here the coefficients Ad,u,i for i = 1, . . . , N1 are the same as the pb,l,d,u
(appearing in (2.6)) in a suitable ordering.

We do the same for the remaining part of (2.4); namely, we choose an
ordering for the N2 mentioned terms and write

nuβnd H(n) = Ad,u,N1+1xN1+1(n)+ . . .+ Ad,u,N1+N2 xN1+N2(n),
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where each of the terms xi(n) for N1 < i ≤ N = N1 + N2 is of the
mentioned type. In particular, of the type nvγ n for suitable v’s in N and
suitable γ ’s in Γ.

Observe that by assumption the point x(n) := (x1(n), . . . , xN (n)) has
S-integers coordinates for all n ∈ N .

Let us now further define an ordering for the vectors (d, u) ∈ Np × N
with d1 + . . .+ dp ≤ h and 0 ≤ u < k and let M be their number. Then

M :=
(

p + h

p

)
· k,

so in particular M < N1, since s > 0.
If (d, u) is the j-th vector with respect to the chosen ordering we put

L j(X1, . . . , X N ) =
N∑

i=1

Ad,u,i Xi, j = 1, . . . ,M. (2.7)

These L j are linear forms in N variables with coefficients in K . They verify
the important formula

φd,u(n) = L j(x1(n), . . . , xN (n)). (2.8)

We now pause to prove a lemma.

Lemma 2.2. The linear forms L1(X1, . . . , X N1 , 0, . . . , 0), . . . , L M(X1,
. . . , X N1 , 0, . . . , 0) are linearly independent.

Proof. Observe that, beyond (2.8), we also have the formula

L j(x1(n), . . . , xN1(n), 0, . . . , 0) = nuβndG1(n)
szn,

where (d, u) is the j-th vector in the given ordering. This formula holds
just by construction. Now, a dependence relation among the linear forms
L1(X1, . . . , X N1 , 0, . . . , 0), . . . , L M(X1, . . . , X N1 , 0, . . . , 0), entails a re-
lation (

∑
u,d cu,dnuβnd)Gs

1(n)zn = 0, valid for all integers n ∈ N, where
not all the cu,d are zero. Now, Gs

1(n)zn can vanish only for finitely many
integers n, by the Skolem-Mahler-Lech Theorem. Also, no ratio of two
terms of the form βnd for two distinct values of d, can be a root of unity,
since the βi are multiplicatively independent by assumption. Therefore, by
the Skolem-Mahler-Lech Theorem again, the sum into brackets is nonzero
for large n. This is a contradiction, which proves the lemma.

Applying the lemma and renumbering if necessary the first N1 vari-
ables, we may thus assume that L1, . . . , L M, X M+1, . . . , X N are linearly
independent.

Let us now define linear forms Lv, j(X) ∈ K [X1, . . . , X N ] in N vari-
ables, for (v, j) ∈ S × {1, . . . , N}, as follows. For j ≤ M put

Lν, j(X) = L j(X)
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where L j(X) is defined in (2.7). For all other pairs (v, j) ∈ S ×{1, . . . , N},
put

Lv, j(X) = X j .

We shall apply the Subspace Theorem with this choice for the linear forms.
We observe that the independence assumption is verified for each v ∈ S:
this is clear for v �= ν and follows from Lemma 2.2 and the subsequent
remark for v = ν.

We consider a double product made out of the previously defined linear
forms and vectors, namely:

N∏
i=1

∏
v∈S

|Lv,i(x1(n), . . . , xN (n))|v. (2.9)

We have already observed that for j ≤ N1, x j(n) = nlβnbzn for a suitable
vector (b, l) depending on j; hence x j(n) = 0 if and only if zn vanishes. This
may happen only for finitely many n, in view of the previously mentioned
Skolem-Mahler-Lech Theorem. We shall disregard this finite set, and so
assume that x j(n) �= 0 for j = 1, . . . , N1. Since the linear forms Lv, j(X)
with either j > M or v �= ν are just the projections X j , the double product
(2.9) can be rewritten as

 N∏
j=1

∏
v∈S

|x j(n)|v

 ·


 M∏

j=1

|Lν, j(x1(n), . . . , xN(n))|ν
|x j(n)|ν


 .

In order to apply the Subspace Theorem to the S-integer vectors (x1(n),
. . . , xN(n)), for n in the set N in the statement of the Proposition (recall
that we are assuming that N is infinite by contradiction), we shall estimate
separately both factors.

Recall that the terms x j(n) are either of the form nlβnbzn (if j ≤ N1)
or of the form nlαn, (N1 < j ≤ N) for suitable integers l and S-units α
depending on j. We let L be an upper bound for all exponents l in nl in
these expressions.

Taking the product over all places of S, the S-unit part disappears by the
product formula, whence we see that the first factor is bounded according
to the inequality

log


 N∏

j=1

∏
v∈S

|x j(n)|v

 ≤ NL log n + N1h(zn).

In order to estimate the second factor, we shall exploit the bound (2.5) for
the ν-adic absolute values of the quantities φd,u . Observe that since M < N1,
all the terms x j(n) with j ≤ M are of the form nlβnbzn for suitable (l,b)
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depending on j. Also, |βnd|ν = 1. Hence, for 1 ≤ j ≤ M, we find

log |x j(n)|ν = log |zn|ν + l log |n|ν,

for a suitable l ∈ {0, . . . , L}, depending on j. Then we obtain from (2.5)
and (2.8) that for each j = 1, . . . ,M,

log
( |Lν, j(x1(n), . . . , xN (n))|ν

|x j(n)|ν
)

≤ sn log ρ + 2L log n.

Taking the product over all indices j = 1, . . . ,M we then obtain

log


 M∏

j=1

|Lν, j(x1(n), . . . , xN (n))|ν
|x j(n)|ν


 ≤ M (sn log ρ + 2L log n) .

Finally, for large n ∈ N , the double product (2.9) can be estimated by

log(
N∏

i=1

∏
v∈S

|Lv,i(x1(n), . . . , xN (n))|v)

≤ M (sn log ρ + 2L log n)+ N1h(zn)+ NL log n

≤ N1h(zn)+ Msn log ρ + 3NL log n. (2.10)

The height of zn = F(n)/G(n) plainly verifies

h(zn) ≤ h(F(n))+ h(G(n)) ≤ nC1,

for large values of n, where C1 is a positive number depending only on
F,G. Using this in (2.10), we find

log(
N∏

i=1

∏
v∈S

|Lv,i(x1(n), . . . , xN (n))|v) ≤ (C1N1 + Ms log ρ)n +3NL log n.

(2.11)
Define C2 = C1/− log ρ; this is a positive real number depending only on
F,G. Choose s > 2C2 and k > 3sD. Then sk > 2C2k > 3

2 C2(k + sD).
Now, the function

(p+x
p

)
is a polynomial of degree p, whence, for large h,

sk

(
p + h

p

)
> C2(k + sD)

(
p + sD + h

p

)
.
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In fact for fixed s, D,C2, k, p with s > 2C2 and k > 3sD, both sides are
polynomials in h of the same degree p, and the leading coefficient on the
left side is larger then the one on the right.

Therefore, we may choose h sufficiently large so that this inequality is
verified.

(This inequality actually represents the fundamental point. It expresses
the fact that in the vector x(n), the number of coordinates involving zn is
not too large.)

In turn, the inequality means that C1 N1 < −Ms log ρ, so (2.11) implies

log(
N∏

i=1

∏
v∈S

|Lv,i(x1(n), . . . , xN(n))|v) < −C3n, (2.12)

for large n ∈ N , where now C3 is a suitable positive number independent
of n.

In order to apply the Subspace Theorem, we just need an estimate for
the height of the point x(n). This is easily obtained, since each coordinate
has exponential growth at most, so we have h(x(n)) ≤ C4n, where C4 > 0
does not depend on n. Then (2.12) implies that

log(
N∏

i=1

∏
v∈S

|Lv,i(x1(n), . . . , xN(n))|v) < −C3

C4
h(x(n)). (2.13)

We are therefore able to apply the above stated version of Subspace
Theorem, with ε = C3/C4, concluding that there exists a nontrivial linear
relation of the kind

A1x1(n)+ . . .+ AN xN(n) = 0,

with A1, . . . , AN ∈ K , not all zero, valid for infinitely many n ∈ N .
Let us rewrite this dependence relation as A1x1(n) + . . . + AN1 xN1(n) =
−AN1+1xN1+1(n)− . . .− AN xN(n).

Recall that the terms x j(n) are of the form nlβnbzn for j ≤ N1, and of
the form nlαn for N1 < j ≤ N, where the α’s lie in the torsion-free group Γ.
Thus we obtain a relation of the kind

zn A(n) = B(n),

valid for an infinite subsequence of integers n ∈ N , where A(n) and B(n)
are linear recurrences with roots in Γ, and where all the roots of A(n) lie in
the group Γ∗ generated by β1, . . . , βp.

Observe that the coefficients A1, . . . , AN1 cannot all be zero, for oth-
erwise B(n) would vanish for an infinite sequence of integers. By the
Skolem-Mahler-Lech Theorem, this in turn would imply that Ai = 0 for all
i = 1, . . . , N, a contradiction.
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Therefore A(n) is a nonzero recurrence whose roots lie in the subgroup
Γ∗ of Γ.

Recall also that by definition zn = F(n)/G(n), whence we obtain the
relation

F(n)A(n) = B(n)G(n),

for infinitely many n ∈ N , where all the four recurrences have their roots
in Γ. By the Skolem-Mahler-Lech Theorem again, this relation holds iden-
tically, and corresponds by Lemma 2.1 to a relation

fa = bg,

in the ring A = C[X, T1, . . . , Tt, T −1
1 , . . . , T −1

t ], obtained as in the proof
of that lemma, where we may use the basis β1, . . . , βp, . . . , βt for Γ.

By the assumptions of the proposition, g is coprime with f , whence g
must divide a.

Now, the Laurent polynomial a in fact lies in the ring C[X, T1, . . . , Tp,

T −1
1 , . . . , T −1

p ] (since A(n) has its roots in Γ∗). It easily follows that g
must be of the form g = g1µ, where µ is a product of powers of the Ti ,
i = 1, . . . , t, and g1 ∈ C[X, T1, . . . , Tp, T −1

1 , . . . , T −1
p ].

However, this implies that all the roots of G(n) have the same ν-adic
absolute value, a contradiction which completes our proof.

3. Specializations

In this section we are going to deduce the general case of Theorem 2 from
the number-field case (i.e. essentially Proposition 2.1). As remarked in the
introduction, this is possible by a specialization argument developed by van
der Poorten and Rumely [R]. Actually, we shall proceed in a slightly dif-
ferent way with respect to [R], taking from that approach just the following
lemma, which is a special case of Theorem 7 in [R].

Lemma 3.1. Let O be a finitely generated subring of C. Let ρ ∈ O be
nonzero and let Γ be a finitely generated torsion-free subgroup of O∗. Then
there exists a ring homomorphism ϕ : O → Q such that ϕ(ρ) �= 0 and such
that the restriction of ϕ to Γ is injective.

We now prove Theorem 2, letting N be an infinite set of positive in-
tegers such that F(n)/G(n) ∈ R, where F,G are recurrences as in the
assumptions.

We let O be the ring generated over R by all coefficients of F,G
and by their roots and their respective reciprocals. We are going to apply
Lemma 3.1 to O, defining Γ as before to be the group generated by the
roots; it is torsion-free by assumption, and we denote by γ1, . . . , γt a set of
independent generators for it.
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Using the isomorphism of Lemma 2.1, we associate to F,G elements
f, g respectively, of the ring C[X, T1, T −1

1 , . . . , Tt, T −1
t ]. Namely, we as-

sociate the variable X to the function n 
→ n and the variable Ti to the
function n 
→ γ n

i . Observe that the units of this ring are precisely the terms
cT a1

1 · · · T at
t with c ∈ C and ai ∈ Z.

We can assume that f, g are coprime in this ring and that g is not a unit
times an element of C[X]: in fact, if this were the case our conclusion would
be proved.

Therefore, on multiplying both f, g by a suitable unit, we may assume
that they lie in the polynomial ring C[X, T1, . . . , Tt], that they are coprime
there, and that g has more than one term as a polynomial in T1, . . . , Tt .
In particular, there exists a variable Ti , say T1, appearing in the terms of
g with at least two different degrees. Also, we may assume that f, g ∈
O[X, T1, . . . , Tt].

We now consider the resultant ω(X, T2, . . . , Tt) of f, g with respect
to T1. It is clearly nonzero and has coefficients in O.

At this point we apply Lemma 3.1 by taking ρ to be the product of the
nonzero coefficients of ω and of f, g. Let ϕ be a homomorphism as in that
lemma. In particular the elements ϕ(γi) are multiplicatively independent.

The specializations f ϕ, gϕ are polynomials in Q[X, T1, . . . , Tt] and they
are coprime with respect to T1, in view of the nonvanishing of the respective
resultant and leading coefficients. Also, gϕ contains at least two terms with
respect to T1, in view of our initial choice of this variable, and in view of the
nonvanishing of ϕ on the coefficients. Write f ϕ = d f1, gϕ = dg1, where
d, f1, g1 are polynomials in Q[X, T1, . . . , Tt] and f1, g1 are coprime. Then
d does not depend on T1, whence g1 again contains at least two terms (with
respect to T1).

Then, f1 and g1 correspond in turn to coprime (w.r. to Γ) linear recur-
rences F̃, G̃ with algebraic coefficients and roots, simply by associating the
function n 
→ n to the variable X and the function n 
→ ϕ(γi)

n to the vari-
able Ti . Since ϕ is injective on Γ and since g1 contains at least two terms,
G̃ has at least two distinct roots. By the same reason, the roots of these
recurrences generate a torsion-free group. In particular, such recurrences
are both nondegenerate, so the Skolem-Mahler-Lech Theorem implies that
G̃(n) = 0 only for finitely many n ∈ N. In the sequel we shall tacitly
disregard such integers.

Then, it is clear that, for n ∈ N ,

F̃(n)

G̃(n)
= ϕ

(
F(n)

G(n)

)
.

In particular, for n ∈ N , F̃(n)/G̃(n) lies inϕ(R), which is a finitely gen-
erated subring of a number field. Since we are assuming that N is infinite,
and since by our previous remark G̃ has at least two roots, this contradicts
Proposition 2.1, concluding the proof.
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4. Appendix2

Throughout this appendix we shall restrict to the number-field case. Theo-
rems 1,2 show in particular that in studying the finiteness of the set

N = {n ∈ N : F(n)/G(n) ∈ R},
it is sufficient to consider the case when G is a polynomial. In fact, assuming
for instance that the roots of F,G generate a torsion-free group, Theorem 2
predicts that either N is finite or F(n)/G(n) = H(n)/P(n), where H(n) is
a recurrence and P(n) is a nonzero polynomial.

We have noticed that it may well happen that N is infinite without
F(n)/G(n) being a recurrence, when G(n) is a polynomial. On the other
hand, it seems very difficult in this case to decide in general about the finite-
ness of N . The question is sometimes related with classical conjectures on
primes, and seems to fall far from Diophantine Approximation techniques.
Let us look at some examples, where we take for simplicity K = Q and
R = Z.

(i) F(n) = 2n − 2, G(n) = n2 + n − 1: even in this simply stated case we
do not know the answer, despite the fact that probabilistic arguments
seem to indicate that now the values in question should be infinitely
many. In fact, if we let n be such that n2 + n − 1 is a prime p, then

2n − 2 = 2(2
p−1
n+2 − 1) should have “probability” ≥ 1/(n + 2) of being

divisible by p. On the other hand, the probability that n2 + n − 1
is a prime should be roughly 1/2 log n, so the expected number of
elements in N should be at least

∑ 1
2(n+2) logn = ∞.

(ii) F(n) = 2n − 2, G(n) = n(2n − 1). Now G(n) is reducible and
the question looks a little simpler. For instance, one verifies that
(2n − 2)/n(2n − 1) is an integer for all primes n ≡ 1 (mod 8) such
that 2n − 1 is a prime; that there should exist infinitely many such
integers is a very special case of the well-known Schinzel’s conjecture
on simultaneous prime values of polynomials.

(iii) On the opposite side, we find that N is finite (no matter R) when F
too is a polynomial and F/G has at least two distinct poles: in fact it
is a well-known (nontrivial) diophantine result that the greatest prime
factor of P(n) tends to infinity with n if P is a polynomial with at least
two distinct roots.

(iv) Here is another instance: F(n) = 4n + 1, G(n) = 4n + 3: it goes back
to Fermat that N is empty in this case! However one verifies that N is
infinite if we allow 1/3 ∈ R (consider the odd integers n = 3m, where
4m +1 is prime). Actually, we do not have any example of a recurrence
F with at least two roots and a polynomial G when we can prove that

2 Note added in proof. Lemma A.1 may be derived (actually in a sharpened form) from
Lemma 7 of R. Canetti et al., On the statistical properties of Diffie-Hellmann distributions,
Israel J. of Math., 120 (2000), 23–46. The arguments presented therein are different from
ours and the full result is not needed for our application.
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N is finite no matter R. Could F(n) = 4n + 1, G(n) = 4n3 + 3 be
such an instance?

We conclude this appendix by giving a proof of Corollary 2 (where we
shall proceed somewhat briefly). Our method uses Theorem 2 and then com-
bines Cantor’s argument [C] (mentioned in Remark 3 above) with a sieve
inequality. (In fact, the arguments below may be considered as a quantifi-
cation of Cantor’s proof, where sieves do not appear.) A straightforward
sieve method seems not to work directly however, since the involved mod-
uli are of type p(p − 1), and so are not pairwise coprime. To reduce to the
usual situation, we shall start with three lemmas, not free of some inde-
pendent motivation. The first two of them concern the number of zeros of
a recurrence over Fp.

Lemma A.1. Let c1, . . . , cr , a1, . . . , ar ∈ F∗
p. Let N be the minimum of

the orders of the ai/aj (i �= j) in F∗
p. Then the number of solutions of∑r

i=1 ciam
i = 0 in an interval [l + 1, l + L], where 1 ≤ L ≤ N, is at most

4L1− 1
2r−2 .

Proof. We argue by induction on r, the assertion being clear for r = 1,
and we assume L ≥ 2, as we may. Let r > 1, write ϕ(m) := ∑r

i=1 ciam
i

and let m1 < m2 < . . . < mk be the distinct solutions of ϕ(m) = 0 in the
given interval. Among the k(k − 1)/2 positive differences m j − mi < L ,
1 ≤ i < j ≤ k, some difference d < L , will occur at least k(k−1)/2(L −1)
times. Let I = {mi : mi + d ∈ {m1, . . . ,mk}}, so #I ≥ k(k − 1)/2(L − 1).
Consider the function

ψ(m) := ϕ(m + d)− ad
1ϕ(m) =

r∑
i=2

ci
(
ad

i − ad
1

)
am

i .

Thenψ(m) vanishes for m ∈ I . Also, it is of the same type ofϕ, but with r−1
in place of r. In fact, for i ≥ 2 the new coefficients ci(ad

i − ad
1 ) do not van-

ish, since 1 ≤ d < L ≤ N and since N does not exceed the order of ai/a1.

By the induction hypothesis we have k(k − 1)/2(L − 1) ≤ #I ≤ 4L1− 1
2r−3 ,

whence (k − 1)2 ≤ 8L2− 1
2r−3 . Therefore k ≤ (1 + √

8)L1− 1
2r−2 ≤ 4L1− 1

2r−2 ,
proving the lemma.

An estimate for the total number of solutions is now immediate, on
dividing the interval [1, p − 1] into (p − 1)/N blocks of N consecutive
integers, and then applying Lemma A.1 to each block. We find:

Proposition A.1. Let c1, . . . , cr, a1, . . . , ar ∈ F∗
p. Let N be the minimum

of the orders of the ai/aj (i �= j) in F∗
p. Then the number of solutions of∑r

i=1 ciam
i = 0 with 1 ≤ m ≤ p − 1 is ≤ 4(p − 1)N− 1

2r−2 .
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A Vandermonde argument shows that there cannot be r consecutive
solutions if the ai’s are distinct. This leads however to weaker estimates
in general, especially if the number N is large. In fact, we shall apply the
proposition trying to get a large N. This is accomplished by the following

Lemma A.2. Let β1, . . . , βs lie in a number field K and suppose that none
of them is zero or a root of unity. Then the number of prime numbers p < X
such that some βi has order < p1/4 modulo some prime ideal in K above p
is � √

X, where the implied constant depends only on s and the βi .

Proof. We shall give the proof (by a familiar trick) when the βi are integers
> 1, the general argument being completely similar. Put Y = X1/4 and
consider the product Π := ∏

1≤n≤Y

∏s
i=1(β

n
i − 1). Then Π is divisible

by the product of all the primes in the statement and, being nonzero, is
therefore at least 2H , where H is the number of such primes. On the other
hand |Π| < ∏

i β
Y2

i , whence H log 2 ≤ s maxβi

√
X, as wanted.

We now proceed to prove the Corollary 2, where we may assume that
N is infinite. The opening argument of this section shows that we reduce
via Theorem 2 to the case when G(n) is a polynomial, as we shall suppose.
Enlarging the number field K and S we may assume that R ⊂ OS, that G
has coefficients and zeroes in OS and that

F(n) =
r∑

i=1

fi(n)α
n
i , (A1)

with distinct roots αi which are S-units in K and polynomials fi ∈ OS[X].
Suppose that F(n)/G(n) is not a recurrence; then G(n) does not di-

vide all the polynomials fi(n) in (A1) and we have to prove that N has
zero density. Factoring out the G.C.D. (G, f1, . . . , fr) we may even as-
sume that (G, f1, . . . , fr) = 1 and that G is not constant. In particular,
(G(n), f1(n), . . . , fr(n)) is bounded and we may assume it is an S-unit for
all n ∈ N.

Let P be the set of prime numbers which split completely in K , which
are large enough not to be S-units and such that the minimum order of the
α j/αi (i �= j) modulo any prime above p is ≥ p1/4. Then it follows from
analytic number theory and from Lemma A.2 (applied to the α j/αi) that this
set contains � X/ log X elements up to a large real number X. In particular
the infinite product

∏
p∈P (1 − p−1) diverges to zero.

For p ∈ P we choose once and for all a prime ideal π in OS lying
above p. Then OS/π ∼= Fp.

Let z ∈ K be a zero of G. Then z is a π-integer and z ≡ z p (mod π),
for some z p ∈ Z. Now, define

N p = {n ∈ N : n ≡ z p (mod p)}.
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Write n = z p + m p for n ∈ N p. Then n − z is divisible by π, so the same
must hold for G(n). Since n ∈ N , we have that F(n)/G(n) ∈ OS, whence
F(n) too is divisible by π. Hence

r∑
i=1

fi(z p)α
z p

i α
m
i ≡

r∑
i=1

fi(z p)α
n
i ≡ F(n) ≡ 0 (mod π),

the first congruence holding because p splits completely in K . Then we
may apply Proposition A.1 to the resulting congruence in Fp: the number
r may decrease, but the fi(z p) cannot all vanish modulo π, since π|G(z p)

and since (G(z p), f1(z p), . . . , fr(z p)) ∈ OS. Also, N may be taken > p1/4

in view of the definition of P . We conclude that the possible values of
m modulo p − 1 are at most 4(p − 1)p−η in number, where η > 0 is
independent of p (and may be taken 2−r ).

In particular, we find that Np has (upper) density ≤ 4p−γ where γ =
1+η > 1 is independent of p. Define, for given positive real numbers y < Y ,
Ny,Y = ⋃

p∈P ,y<p<Y Np. Then Ny,Y has upper density ≤ 4
∑

p>y p−γ .
On the other hand N \ Ny,Y misses a whole class modulo p, for every

prime p ∈ P with y < p < Y . Therefore, by Erathostenes’s sieve,
it has (upper) density ≤ ∏

p∈P ,y<p<Y (1 − p−1). Combining this with
the previous estimate proves that N has upper density ≤ 4

∑
p>y p−γ

+ ∏
p∈P ,y<p<Y (1 − p−1). Let now ε > 0 and choose first y so large that

4
∑

p>y p−γ < ε. Then, since
∏

p∈P (1 − p−1) = 0, we may choose Y > y
such that

∏
p∈P ,y<p<Y (1 − p−1) < ε. In particular, this proves that N has

upper density< 2ε. This holds for every positive ε, so in fact N has density
zero, completing the proof.

Remark. A refinement of the argument gives an explicit function ε(X)
tending to zero as X → ∞, such that N has at most ε(X) · X elements
up to X. In fact, by choosing y a suitable power of log X and Y = 3

√
X,

one can show (using e.g. a large-sieve inequality) that ε(X) may be taken
� (log X)−δ for some positive δ depending only on the field K , not on
F,G. By considering simultaneously all the primes π above p, it is even
possible to take any δ < 1. The example F(n) = 2n − 2, G(n) = n shows
that the resulting estimate is nearly best-possible.
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