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(a) Arithmetic L-functions

(al) Riemann zeta function: ((s), secC

(a2) Dirichlet L-series: L(x,s)

X : (Z/mZ)* — St ={2e€C | |z]| =1}

(a3) Dedekind zeta funct: (x(s), [K:Q] < oo

(a4) Hecke L-series: Lg(x,s)

(a5) Artin L-function: L(p,s)

p: Gal(K/Q) — GL,(C)  Galois representation

(a6) Motivic L-function: L(M,s)

M pure or mixed motive



(b) Automorphic L-functions

(b1) Classical theory (before Tate's thesis 1950)

L(f,s); L(f,x,s) modular L-function

associated to a modular cusp form f:9H—-C

(b2) Modern adelic theory: L(r,s)

automorphic L-function

™= Q) m, (7, Vr,) = irreducible (admissible)

representation of GL,(Q,)



(al) The Riemann zeta function

1
nS

n

s € C, ((s) = )
n=1

Main Facts

e converges absolutely and uniformly on Re(s) > 1

(Re(s) > 146 (5>0), S |1X<y> L)

= ((s) represents an analytic function in Re(s) > 1

e Euler’s identity: [¢(s) = J] (1 —p~ )71

b
prime

(v =p) 1 = ¢ < Xy i)

Number-theoretic significance of the zeta-function:

» Euler’'s identity expresses the law of unique prime
factorization of natural numbers



oo o s dy i
(s) :=/O e Yy = Gamma-function
Yy

se€ C, Re(s)>0; absolutely convergent

e [ (s) analytic, has meromorphic continuation to C
e [(s) #0, has simple poles at s= —n, n € Z>¢

Ress=_nlM(s) = (=1

n!

e functional equations

M(s+1)=s(s), (s)F(1—35)=_—-F

sin(ms)

e | egendre’'s duplication formula

F(s)M(s+ 1) = 27 (2s)

e special values

r@)=vm, TQ)=1 T(k+1)=k!, kE€EZxo



The connection between I'(s) and ((s)

oo
2, od
Yy — iy = W_Sr(s)%zf e ™ yys—yy
0

sum over n € N

W_SF(S)C(QS) — /OOO Zewn2yy8d?y g(y) e Z e—Trn2y

n>1 n>1

O(z) =) €™ =142) " Jacobi's theta

nez n=1

9(y) = 5(0(iy) — 1), Z(s) =121 (5)¢(s)

Main Facts

(1) Z(s) admits the integral representation

> d o
Z(s) = %/ (@(zy) _ 1)ys/2?y Mellin :P>r|n(:|p|e
0

(2) Z(s) admits an analytic continuation to
C\ {0,1}, has simple poles at s =0, s=1

Ress=0Z(s) = —1, Ress=1Z(s) =1



(3) functional eq Z(s) =Z(1-—5s)

Implications for the Riemann zeta ((s)

(4) ((s) admits an analytic continuation to C\ {1}

has simple pole at s =1, Ress=1((s) =1
(5) (functional eq) (¢(1 —s) =2(27)"°T'(s)cos(F)¢(s)

Moreover, from Z(s)=2(1-s) =

» the only zeroes of ((s) in Re(s) < 0 are the poles of
r(5) (s € 2Z<o, "trivial zeroes")

» other zeroes of ((s) (i.e. on Re(s) > 0) must lie on
the critical strip: 0 < Re(s) <1

Riemann Hypothesis The “non-trivial” zeroes of

C(s) lie on the line  Re(s) :%



(a2) Dirichlet L-series

meN, x:(Z/mZ)*—Stl={zeC:|z|=1}

Dirichlet character mod.m

x(n mod m) (n,m)=1

x . Z — C, X(n)z{o (n.m) # 1

seC, |L(x,s):= Z X(Z) Re(s) > 1
n>1

for x = 1 (principal character): L(1,s) = ((s)

Main Facts

(1) Euler’s identity: |L(x,s) = [[(1 = x(»)p~*) "

(2) L(x,s) converges absolutely and unif. on Re(s) > 1
(represents an analytic function)



x(=1) = (=1)?x(1), pe€ {0,1} exponent
x:{(n)CZ| (n,m)=1} — 5!
x((n)) = x(n) ()P

Grossencharacter mod.m  (multiplicative fct)

> d
My s) 1= F(5te) = / ey Gamma integral
0

y — m™2y/m, 0(x,iy) = >on (n)nPe—m™y/m =

Loo(x;8) i= (2):(x,s)| archimedean Euler factor

A(X, 8) 1= Loo(x, $)L(X; 8), Re(s) > 1
completed L-series of the character x

A(x, s) has integral representation Mellin principle

e Functional eq.: If x %= 1 is a primitive character,

A(x, s) admits an analytic continuation to C and
satisfies the functional equation

ANx,s) =W0OONX,1—-35), W) =1

(x = complex conjugate character)




(a3) Dedekind zeta function

K/Q number field, [K :Q]=n

1

s e C Cr(s) := Z N(a)’

aCOg

a = integral ideal of K, N(a) = absolute norm

Main Facts

(1) ¢(x(s) converges absolutely and unif. on Re(s) > 1

(2) (Euler’s identity)

k() =[JA=N®) )| Re(s) >1
p

Clg = J/P ideal class group of K

1
)= 3 ), Cbs) = :
[b]%;zK Z; N(a)

integral

¢(b,s) partial zeta functions



Lp(s) :=n%/21(s/2)

Le(s) 1= 2(21) =T (s)

r1 := number of real embeddings v=v: K — C

ro .= number of pairs of complex embeddings
{v,v} : K = C

di = discriminant of K

Zoo(s) = |d|*/?Lg(s)"1 Le(s)™
Euler’s factor at infinity of {(b, s)

> Z(ba 8) L= ZOO(S)C(ba 8)1 Re(s) > 1

admits an analytic continuation to C\ {0, 1}
and satisfies a functional equation

Zi(s) =Y 2(b,5) = Zoo(5)Cxc(5)
b

From the corresponding properties of Z(b,s) one
deduces

10



Main Facts

(1) Zk(s) = Z(s)Ck(s) has analytic continuation to
C\{0,1}
(2) (functional eq) Zgk(s) = Zg(1 —s)
Zi(s) has simple poles at s =0, 1

Ress=0Zk(s) = _¥, Ress=1Zk(s) = 2’hR

w

r=r1+2rp,, h=class nb. of K, R = regulator of K
w = number of roots of 1 in K

[Hecke] Subsequent results for (i (s)

(3) ¢k (s) has analytic continuation to C\ {1}

with a simple pole at s=1

(4) Class number formula

Ress—1(x(s) = 2 (2m)2hk

Vide| ¥

11



(5) (functional eq.) (x(1 —5) = A(s)Ck(s)

A(s) := |dk|*71/?(cos Z2)rFre(sin Z2) Le(s)"

(6) Ck(s) #0 for Re(s)>1 =

m € Z>o

ri1+ro—1=7rk(05) ifm=0
ords=_mCr(s) =< r1+ 1m0 if m > 0 even
T2 if m > 0 odd

The class number formula reads now as

¢1(0) :=lim,_o£l) — _hR

sl +ro—1 w

12



(a5) Artin L-functions

L/K = Galois extension of nb field K, G := Gal(L/K)

Artin L-functions generalize the classical L-series

in the following way

o) =X~ TIa —xGw ), Re(s) > 1

n>1 [2

X (Z/mZ)y* — C*, G := Gal(Q(un)/Q) — (Z/mZ)*

p mod m — ¢p,  ©p(¢m) = ¢4 Frobenius

x : G — GL1(C) 1-dim Galois representation

>  L(x,s) =][(1 = x(ep)p )"
ptm

this is a description of the Dirichlet L-series in a purely
Galois-theoretic fashion

More in general:
13



V = finite dim C-vector space
p:G=Ga(L/K)— GL(V) = Autc(V)
p prime ideal in K, q/p prime ideal of L above p
Dq/Iy = Gal(k(q)/k(p)), Dqg/lq =< pq >

pq = (z—a?) qg= N(p)

©0q € End(V1) finite order endomorphism

P,(T) :=det(1 — ¢ T; V)| characteristic pol

only depends on p (not on q/p)

CLy(pys) =] ] det(1 — @eN(p) =% Vi)™

pprime
inK

Artin L-series

d
det(1 — aN(p)~% V) =[] — e&N(p)™)

1=1
e; = roots of 1: ¢4 has finite order

» (1/k(p,s) converges absolutely and unif on Re(s) > 1

14



If (p,C) is the trivial representation, then

Cr/x(p,s) = (x(s) Dedekind zeta function

1

» An additive expression analogous to (x(s) = Zam

does not exist for general Artin L-series.

» Artin L-series exhibit nice functorial behavior under
change of extensions L/K and representations p

Character of (p,V) Xp : Gal(L/K) — C

xp(o) =tr(p(o)), x,(1) =dimV = deg(p)

(p7 V) ~ (p/7 V/) < Xp — Xp'

Cry(p,s) = Cryx(xp,s); functorial behavior =

() =¢u(s) ] Coywlos)¥®

x#1
x irred of G(L/K)

Artin conjecture Vx # 1 irreducible, (7 /x(x,s)
defines an entire function i.e. holom. function on C

the conjecture has been proved for abelian extensions

15



For every infinite (archimedean) place p of K

Le(s)x(M) p complex

i) = {1 e e

_ w’ n._ — M; wq € Gal(Lq/Kp)

n4 >

Cr/xp(X,s) has also nice functorial behavior

For p real, ¢4 induces decomp V =Vt@V-

Vt={zeV ipgx=u}, V ={zeV:px=—x}

ny =dimV™T, n_=dimV-

Cr/K,00(X,8) 1= H Cr/rp(X;8)

ploo

AL (X, s) = c(L/K,Xx)2Cr/ (X $)Cr/K,00(X: 5)

completed Artin series

c(L/K,x) = ldgMPN(G(L/K,x)) €N
f(L/K,x) = proo fo(x) Artin conductor of x

fo(x) = pfO local Artin conductor (f(x) € Z)

16



Main Facts

* A1k (Xx,s) admits a meromorphic continuation to C
o (Functional eq.) Ap/x(x,s) =WOOALk(X, 1~ s)
Wix) eC, [Wk)l=1

» the proof of the functional equation uses the fact
that the Euler factors (;/k,(x,s) at the infinite places
p behave, under change of fields and characters, in
exactly the same way as the Euler factors at the finite
places:

p<oo Crirp(x,s) i=det(1 — pgN(q)~*; Vi)t

this uniform behavior that might seem at first in
striking contrast with the definition of the archimedean
Euler factors has been motivated by a
unified interpretation of the Euler's factors
(archimedean and non)

»» [Deninger 1991-92, Consani 1996]

Cryrp(x,8) = detoo (SN (sid — ©,); H(X(p)/Ly))

this result reaches far beyond Artin L-series and
suggests a complete analogy with the theory of
L-series of algebraic varieties over finite fields.

17



(b) Automorphic L-functions

(b1) Classical theory (before Tate’s thesis)

f 9 — C modular form of weight k£ for ' C SLx(Z)

e f holomorphic, $ = upper-half complex plane
_f(a b az+by __ k
o =2 J)er fEE) = (24 DHf(2)

e fis regular at the cusps z of [, |SLa(Z) : '] < o0
(z € QU {icc} fixed pts of parabolic elements of IN)

Examples

- 6,(z) theta series attached to a quadratic form q(z)

0,(z) = > 77 sa(n)e*™*,  a(n) = Card{uv: q(v) = n}

- A(z) discriminant function from the theory of elliptic
modular functions

A(z) =274(2m)12 > > | 7(nz)e?™n?

18



For simplicity will assume: [ = SL>(Z)

(é })er S f+1) = ()

f(z) =) an.e®™"*| Fourier expansion
n>0

fisacusp form ifag=0 I.e.

f(z) = ZTLZI an€27rinz
the Fourier coefficients a, often carry interesting

arithmetical information:

- f(z) =0,(2), an counts the number of times n is
represented by the quadratic form ¢(x)

- f(2) = A(2), a,=7(n) Ramanujan’s r-function

[Hecke 1936] Attached to each cusp form there is a
complex analytic invariant function: its L-function

Qn

L(f,s)= — Dirichlet series

s
n>1

19



L(f,s)=) ==

S
n>1

This L-function is connected to f by an integral
representation: its Mellin transform

A(fos) = @0 LU = [ fy'dy
0
through this integral representation one gets

[Hecke] L(f,s) is entire and satisfies the functional
equation

A(f,s) = i*A(f, k — s)

the functional equation is a consequence of having a

modular transformation law under ((1) _01) sending

i 1
z

Since the Mellin transform has an inverse integral
transform, one gets

20



Converse theorem [Hecke] If

D(s) = %

has a “nice’” behavior and satisfies the correct
functional equation (as above) then

f(Z) — Zan627rinz
is a cusp form (of weight k) for SL>(Z) and

D(s) = L(f,s)

in particular: the modularity of f(z) is a consequence
of the Fourier expansion and the functional equation

[Weil 1967] the Converse theorem for IN'o(NN) holds,
by using the functional equation not just for L(f,s) but
also for

L(f, X, S) — Z X(n)an

ns
n>1

x = Dirichlet character of conductor prime to the
level N € N

Mo(N) = {(CCL Z) € SLo(Z) : ¢c=0 mod N}

21



[Hecke 1936] An algebra of operators
H={T,} Hecke operators
acts on modular forms.

If f(2) is a simultaneous eigen-function for the
operators in ‘H, then L(f,s) has an Euler’s product

L(f,s)=]](Q —aw*+p )"

p

Conclusion

Arithmetic L-functions

are described by Euler’'s products, analytic properties
are conjectural, arithmetic meaning is clear

Automorphic L-functions

are defined by Dirichlet series, characterized by
analytic properties, Euler's product and arithmetic
meaning are more mysterious...

22



(b2) Modern adelic theory

The modular form f(z) for SL>(Z) (or congruence
subgroup) is replaced by an automorphic
representation of GL>(A)

(in general by an automorphic representation of

GLn(A))
this construction is a generalization of Tate’'s thesis for
GL1(A)
/
A=]]@ xR ring of adeles of Q
p

locally compact topological ring (H’ — restricted
product)

Q C A diagonal discrete embedding, A/Q compact
/
GLu(A) = [ [ GLA(@p) x GL.(R)
b

GL,(Q) Cc GL,(A) diagonal discrete embedding

Z(A)GL,(Q\GL,(A) finite volume

23



GL,(A) acts on the space
Ao(Z(A)GL,(Q)\GL,(A)) cusp automorphic forms
producing a decomposition:

Ao(GLA(Q\GLn(A)) = P m(x)Vs

the (infinite dimensional) factors are the cuspidal
automorphic representations

The decomposition of GL,(A) as a restricted product
corresponds to a decomposition of the representations

T~ @y = (®)7p) @ Teo

(7, Vi) = irreducible (admissible) representations of

GLn(Qy)

Main relations

Too — L(Troms) — I_(S)
m — L(mp,s) = Qp(p~*)~1

T — NA(m,s) = HL(TFp,S)L(TFOO,S) = L(m,s)L(ms0, )
for Re(s) >> 0

24



[Jacquet,P-S,Shalika]  L(w,s) (=[], L(mp, s) is entire
and satisfies a functional equation

A(m,s) = e(m,s)A (7,1 — s)

[Cogdell, P-S] A Converse theorem holds
=
» ‘“‘nice’” degree n automorphic L-functions are

modular, i.e. they are associated to a cuspidal
automorphic representation « of GL,(A)

The theory or Artin L-functions L(p,s) associated to
degree n representations p of Gg := Gal(Q/Q) (and
their conjectural theory) has suggested

Langlands’ Conjecture (1967)

{p: Gy — GL,(C)} C {m|autom.rep. of GL,(A)}

s.t. L(p,s) = L(m,s)

modularity of Galois representations

25



there is a local version of this conjecture

In fact the local version (now a theorem!) can be
stated very precisely, modulo replacing the local Galois
group Gg, by the (local) Weil and Deligne groups

Go, ~ Wg,, Wy,

[Harris-Taylor, Henniart 1996-98] there is a 1-1
correspondence satisfying certain natural
compatibilities (e.g. compatibility with local functional
equations and preservation of L and epsilon factors of
pairs)

{pv : W@, — GLy(C) : admissible} «

— {m : irred.admiss rep of GL,(Q.)}

Conclusion: local Galois representations are modular!

Global Modularity?

There is a global version of the Weil group Wy but
there is no definition for a global Weil-Deligne group
(the conjectural Langlands group)

At the moment there is a conjectural re-interpretation
of it: an "avatar’ of this global modularity:

Global (local) functoriality...

26
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(1) Zeta functions of schemes over finite fields

(2) Zeta functions of arithmetic schemes

(3) Motivic L-functions

(1) Zeta functions of schemes over finite fields

X/, scheme of finite type, k =1F, finite field

Main Example

X ={{a=(a1,...,an) €K™ fi(a) =0, i=1,...7}
fi(X1,...,Xn) € k[X1,..., X,]
affine variety (e.g. X = A7)
a=(a1,...,a,) € k", fi(a) =0 Vi k-rational point
X(k) ={zeX: z=1(a1,...,an) € K"}, (JAZ(K)| =q")

1



More in general: X — Spec(k), de&N

X (Fy) := Mory(Spec(F,.),X)| Fp-rational point

Fact: Lk; = qu, Ny = |X(]qu)| < o0

X :={z € X : k(x)/k finite}, k(xz) = residue field
N(z) = #n(z) = ¢?9®), deg(z) = [k(z) : K]

n; .= #{xEX' :deg(a:)zl}<oo, NdZZlnl

Ng = |X(kg)| Diophantine invariant of X,

d
2(Xye, T) = exp(3 Nar—) € Q7]
d>1

Zeta-function of X

sc€C, |(x(s):=2Z(Xu,q°)| Hasse-Weil zeta

carries the “complete package” of the Diophantine
information associated to the set {N,; : d € N}

2



1)

2)

3)

Examples

Ple, Na=gq'+1

Z(IP)17T> — eXp(Zdzl(qd_l_l)%d) — (l—qT%(l—T) € Q(T)

Cpi(s) = (1—q %) 1(1 — g~ =D)L

m qd(m—l-l) — 1 md 2d d
Pl Na= A1 =q¢" "+ ... +tq¢" +q +1
1
Z(Pm,T) = e Q(T)

(1—g¢mT)---(1—qTH(1-T)

G (s) = [ (@ —q )

n=0

A,

Z(A™,T) = exp(P 4, ™ L) = (1= ¢™T)71 € Q(T)

Ng = q"

Can(s) = (1 — g~ (=)L



Main Facts

(1) 2(X;,T) =[] - T1do)

rxeX

absolutely convergent in  Re(s) > dim X

(2) Theorem [Dwork, Grothendieck 1959-64] The
zeta function of a scheme of finite type over a finite
field is rational

.(1—OéiT)
Z(X,T)z%EQ(T), a;, B € C

F:X(k)— X(k), F(a)=a" a=(ai), a; €k

Frobenius morphism

Ny=t#{x € X(k): Fia) =a} fixed points of F¢

a = description in local coordinates of x



Theorem [Grothendieck 1964] X, scheme of finite
type, smooth and proper over k£ =F,

2dim X ' '
Na= ) (U)'Tr((FY" H(Xp Q) =
1=0

2dimX

2y = 1] det(t - s 0, 00) 0
1=0

in Qullg~*]]l, Xz =X xpk, (,q) =1, £= prime

in 1964 it was not known in general (although
expected) that

det(1l — F*q % H,, (X%, Q) € Qg %]

independently of the auxiliary choice of the prime /¢

Theorem [Deligne 1974] Assume X, is smooth, and
proper (dimX = m)
P (T) - Py, 1(T)
PO(T) U PQm(T)

(1) Z(X),T) = in Q(T)

P(T) :=det(1 — F*T'; H'(X, Q) € Q[T]

In particular

Po(T)=1-T, Po(T)=1-q"T



(2) (functional equations)

mB,1 B,
Y Ml A 1
P, (T) = (1) __P,
om—i(T) = (—1) det(F= H) (qu)
Bi = dim Hi(XE,@g)
1 .
ZC ) = +q"PPTEZ(T),  E:=Y(-1)'B;

(3) Riemann Hypothesis

PZ(T) — H](l - aijT) S Z[T‘]7 Qi S @7 ‘Oéij‘ — qZ/Q

Example

E /i, smooth, proper elliptic curve

1 —aT + qT?

ED =G ona-ay

in Q(T)

1—aT+q7T?°=(1—-a1, 7)1 —a,T), |o1]|=q"?

a=ai, + a1, =Tr(F* HLY(E;,Q))) € Z



(2) Zeta functions of arithmetic schemes

X — Spec(Z) scheme separated and of finite type

X(=|X|) ={z e X : k(z) finite}, N(z) = |x(z)]

s eC, x(s) =] (@ = N(@)=)

xeX

Hasse-Weil Zeta function of X

Examples

1) X =Spee(Z),  Cx(s) = [L(1—p*)"t = ¢(s)

2) X = Spec(Z[Tx,...,Ty]) = A7

(x(s) =][J@-p ™)t =¢(s—n)

3) X =P
=[] -p ™) =[] ¢(s—m)
m=0

p m=0

7



4) X = Spec(Ok), Ok = ring of integers of K/Q
number field

Cx(s) =Cx(s) = J] (1 = N(p)™*)"! Dedekind zeta
pCOk

Question on the asymptotic distribution of closed
points on X (i.e. x € X) can be translated into analytic
questions about (x(s)

Fact (x(s) is absolutely convergent (holomorphic)
in Re(s) >dimX

Expected: (x(s) has a meromorphic continuation to
C and a functional equation (once suitably completed)

More in general, consider
X 5 Spec(Og), = = proper

irreducible, arithmetic scheme, K = number field

X1 = 1] 1%

pCOK
pprime

Cx(s) = H Cx,(s), Re(s) >dimX

PCOK
pprime

: Xp = X ®o, (Ok/p)



Assume: Xg = X Xgpec(0,) Spec(K) (generic fiber)

is smooth and proper (dimXg = m)

Known: X, is smooth and proper for almost all p
(i.e. all p except a finite number)

2m
(x(s) = H Li(X, S)(—l)m
i=0

Li(X,s) == ] Pp(X,N@)™)~* x L{PV(X, s)

Xpsmooth

FACT: || P(X,N(p)~*)"' depends only on X

Lgbad)(X, s) depends also on X (the ‘“geometric
model” of Xg)

Pip(X,N(p)™) 1= det(1 — FyN(p)~* H'(Xg, Qo))

Xﬁ L= X}J Xn(p) wf q — N(p), Fp_l S Gal(@/’f@))

> Pp(X,N(p)™) =det(1 — FyN(p)~; H'(X5,Q))

because of the base-change theorem in étale
cohomology



> [Deligne] ] Puw(X, Np)™*) ! = L(px5)

Xpsmooth

px;i: G — Aut(H,(Xz,Qp)) Gi = Gal(K/K)

L(px.i,s) =[] Poo((Nv)™*)"*  Artin L-series
véS
Py p((Nv)~*) :=det(1 — F; ,N(v)~% H' (X, Q)

Fv_,pl € Gk(v) = Dw/pr ’LUl’U, P =P

v € 2 classes of normalized valutations of K

SCZXg, S={v: X, not smooth} U {v:archim} uU{w|¢}

px, factors through Gy =< F}, >

» [Deligne] The conjugacy classes {F, ,} describe a

system of (local) Galois reprentations which defines px;

10



Because the infinite product

II P, NG

pCOK
Xpsmooth

is known to have in some cases (e.g. abelian varieties
with CM) meromorphic continuation to C and
functional equation, if completed at the bad and at the
archimedean primes

» One is led to study L;(X,s) “per se” as a function
associated to H'(Xg,Qy): the f-adic realization of the
(pure) motive h'(Xk)

» The definition of the Euler’'s factors at the places p

of bad reduction for X (i.e. where X, is not smooth) is

deduced by analogy with the case of a scheme defined
over a global field of positive characteristic

Main Point (Analogy with the function field case)

Y/, smooth, projective curve, K(Y) =K
X 5 Spec(K), Spec(K) Ly

F = jRmQ = . H(Xz,Q), (Lq) =1

ye Y], Fy=H(Xz, Q)" = H (Xg, Q)"

K, = completion of K aty, I, C Gk, inertia group

11



Li(X,s) = ][ det(1 — FyN(y)~* H'(Xz, Q")
yelY|
2
Cy(F,s) =[] det(1 — F;N(y) ™% H' (Y, F)?
i=0
has functional equation (as Y)r, is smooth and proper)

)i+1

This result suggests to define in the number-field
case Lgb“d)(X,s) as a product of local factors such as

PUD (X, N (p)~*) i= det(1 — BN (p) % HI(Xg, Q")

and assuming that the coefficients belong to Q and are
independent of ¢

Example X/K algebraic curve, K = number-field,
g(X) =g

H(g-t(XI_(7Q€) =~ TK(X) ®Z,g QK =" W(J) ~ Qgg
Tate’s module of the Jacobian J = Jac(X) of X
T)(X) := limy, Ker(J 5 J) ~ 229

Li(X,s) =[], Pip(X,N(p)~*)~* L-function of X

LO(Xas) :CK(S)v LQ(Xas) :CK(S_ 1)
12



Cohomology classes are represented by cocycles (cells
for CW complexes)

Grothendieck conjectured that an analogue of the
CW-decomposition should exist for any algebraic
scheme.

The factorization of the zeta-function
2m 4
¢x(s) =[] Li(x, )0
i=0

should then be interpreted as an
arithmetic manifestation of a decomposition, holding
at the level of the geometric space, into more general
types of ‘“‘cells”:

the motives h'(X)

h*(X) are no longer algebraic schemes but elements of
a suitable abelian category constructed by enlarging
the category of smooth, projective schemes over K

13



(3) Motivic L-functions

K, E = number fields
Mg (E) = category of (pure, mixed) motives over K
with coefficients in F, endowed with realization
functors
H} : Mg(E) — Vectg
these functors describe the realizations of a motive M

in a (Weil) cohomology theory with coefficients in
E: H; (M, E)

Example

H;‘t,e(M) = H}(Xg,Qr), X ,x = smooth, projective
K-scheme

/-adic realization, ¢ prime number

plp prime ideal in K, [K;: Q] < o

[p C GKp, (Pp - GKp/Ip! SOP('/'B) — :UN(p)’ Fp — Spp_l

14



Fix £#p, 1:Q—C
E ® C ~ CHom(EC)  consider the functor
Mgk, (E) — FyModggc

FyModggc = category of (E ® C)[Fp]-modules of finite
rank over E® C

. Ip
M — MEI,L = (ME,L’O-)UGHOWL(E’C)

IP
M,

0,0

IP Ip — *
M," ®ggco C, M, = H} (Mg, Q)" ®q, C

Expected These functors are isomorphic for different

choices of ¢ and ¢

» This is in fact the case if M = h(Xkg,), and Xk, is
smooth, projective with good reduction (at p):

Hy (Mg, Q)" = H;(Xg,, Q) E=0Q

15



In general

Ly(M,s) 1= (detc(1 — FpyN(p)~7; Mg{pL,g)_l)aeHom(E,C)

LP(Ma S) — (Lp(Ma g, S))UGHom(E,(C)

Expected to be independent of £ and ¢

If K is a number field, My a motive over K (with
coefficients in E)

Mg, := M Qk K, is a motive over the local field K,

L(M,s) =[] Lp(M, s)
p
expected to be independent of 4,.

To state the convergency properties of the motivic
L-function

consider the integer w,, := largest weight of M

16



Example

wm = 2n, X;g = smooth projective algebraic variety,
dmX =n, M =h(X)

H LP(MIM 5)
p

FACT: this function converges absolutely in
Re(s) > %3 +1=n+1

Expected L(M,s) has meromorphic continuation to C

with functional equation holding for the complete
L-function

L(M,s) :=L(M,s) - Lo(M,s)

17



The Archimedean factors Lo.(M, s)

Fe(s) :=22m) 5 (s), Tr(s) :=n:M(%)

Lo (M, s) depends on the isomorphic class of the
Betti realization

H?(M)®C

of the motive, endowed with the Hodge decomposition
and an involution F

Conjecture the completed motivic L-function L(M, s)
has a meromorphic continuation to C and

(functional eq) L(M,s) = e(M,s)L(M*,1 —s)

M* = dual motive, e(M,s) = epsilon factor

18



» In all cases where the conjecture has been yerified,
the proof runs through the identification of L(M, s)
with an automorphic L-series!

If M is a pure, geometric motive of weight 7, then
M* ~ M (%) and the (expected) functional equation is

L(M,s) =e(M,s)L(M,i+ 1 —s)

Main Conjecture the zeroes of L(M,s) lie on
the line

Re(s) = Hél
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K = number field, M = geometric pure motive over K

with realizations: H} (M)

> g =setof placesof K; veX¥ v:K,—C

Examples

- HE(My) = H™(X(C),Q), veX¥
- M (My) = H}N(Xg,Qp), veXP
» the motive M is realized by the family of all (Weil)

cohomological theories associated to a scheme X of
finite type over K

Hp(M,) ® C= 5 HP?, hP4 := dimg HP4

pt+q=m
P,q=>0

HPP = HP+ @ HP—
HPT :={v e HPP : Fo(v) = (—-1)Pv}

F,, = C-linear involution induced by the complex
conjugation on X (C)

hPE := dimg HP-=(1)



ueC, Le(uw)=202m) I (u), Lr(u)=mn":(%)

(Legendre’'s formula) Lr(u)Lg(u—+ 1) = Le(u)

Loo(M,u) := [ Lo(M,u),  L,(M,u) =

v|oo

Le(My,u) = [ 4 o= Lc(u — min(p,a))*"; v complex
Lr(My,u) =[], Lr(u — p)"" Lp(u —p 4 1) IL,-, Le(u —p)™

Archimedean factor attached to M

Assume:
(1) L(M,u):= HU L,(M,u) =
[[,coodet(l — F,N(v) ™ H™( Xz, Qo)") ™ X Loo(M, u)

converges absolutely in  Re(u) > % + 1
(2) L(M,u) has meromorphic continuation to C
L(M,u) := L(M,u) - Lo(M,u) satisfies functional eq

(3) L(M,u) =e(M,u) L(M,m+1—u)



Then
» T he location and the multiplicity of the zeroes of
L(M,u) in Re(u) <%
are determined by the poles of Lo (M, s)
(thanks to the functional equation)

The I'-function has simple poles at u = —n (n € Z>0)
=

» the multiplicities of the zeroes of L(M,u) in
Re(u) < 7 must depend on the Hodge structure of M.

Assume(for simplicity): K =Q
Fact: The poles of Loo(M,u) at Re(u) =n < 2.

have multiplicities

() " hpe m odd
Ummn = X P m nom
’ Z P14 p>CDTT M even
\ n<p<q

are described by the difference

Vmmn —

dime¢ H™(X(C),R(m — n))"V"" —dime FmH1"HTL (X R)
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Main Facts (K = Q)

Vmn, = dimg HgH_l(X/RaR(m +1- n))

0 — FM " Hip(Xp) = H™(X(C),R(m —n)) """ —
— Hp ™ (X g, R(m +1 —n)) — 0

=

HZHH(X g, R(m + 1 — n)) = Coker(a) |l

Hp(X /g, R(p)) := Hp(X e, R(p))PF, >0

DR = deRham conjugation i.e. R-linear involution
induced by the complex conjugation on (X(C), )

HiL(X o, R(p)) :=H'®R(P)p : R(p) — Ox(c) — Q2 —
. — Qp_l — O)

0—Q_[-1] = R(p)p — R(p) = O



Desirable to have a description of the formulae of the

local factors so that the archimedean and the
non-archimedean cases are treated on equal footing:
i.e. similar definition
keep in mind the similarity in functorial behavior
of the Euler factors of the Artin L-functions

2 approaches to this problem

1) [Deninger 1991, Consani 1996] the archimedean
local factor is interpreted using the definition of an
infinite determinant for the action of a (logarithm
of) suitable archimedean Frobenius operator on an
infinite-dimensional R-vector space

[Deninger]  wloo  Ly(M,u) = detos(Z—2; HT(M,)) !

Filo(H?(M,) ®c Bar )= v complex

H™(M,) = .
ar (M) {Filo(Hg‘(Mv) ®c Bar)=I~=1" 4 real

Ba 2 C[T,T71], c(HP?) = H9P conjugate linear inv

c induced by complex conj on C, F,, = C-linear inv

For example: if HE(M,) = HPP

Lo(M,u)™ = [H524 (55—E52)]" [0 o (5 — 251"

5




[Consani]  w|oo, Ly(M,u) =

detoo (o — 2 H™(X2)V=0)71, v complex

detoo(ie — 2 H™(X 5 )N=0=1)=1 " 4 real

H™(X%)N=% archimedean inertia invariants

H™(X%) infinite dim. graded R-vector space
associated to the nearby-fiber in an infinitesimal
neighborhood of the fiber over v

® = multiplication by the (pure) weight associated to
each graded piece of H™(X%)N=°

2) [Connes-Consani-Marcolli 2005] Reinterpret the
archimedean local factors through a semi-local
trace formula over a

(non-commutative) generalization of the motive M:

an “extension’” of M by a suitable modification of
the space of adeles Ay, by replacing the local field
K,, with a division algebra, at each real archimedean
place v € X g




Recall:

F:V —-V endomorphism of a v. space V

T-Llog(det(l — FT; V)~ =) Tr(F"; V)T"
n>0

IF: Xy, Z(X,T)= ][] @-1%)t
x| X|

T-Llog Z(X,T) =) Y (-1)"Tr((F)"; H}(X,Q))T"
Seek for a similar formula at the archimedean places

HEP(M,) ® C = @ HP(M,), c¢= complex conj on C
pt+qg=m
(1®c)(HPI(My)) = HIP(My)

v=cov:K,—C, conjugateto v:K,—C
by transport of structure 3 7: HZ(M,) = HZ(Mz)
s.t. (7 ®c) preserves bigrading on HF @ C

=

Fy :=(r®1): H?(M,) = H®(M;z) C-linear involution
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(Local) Weil group action

1 case K, complex (local) field
v:K, >C< K;:7 isomorphisms

Wk = C* local Weil group

T(HF(My),w)§ =uwPu"9¢|, uweC*, &e HPI(M,)

(T @ 1)(HP1(My)),u) = (1 ® 1) o m(HP(My), u)§
ie. Fow=(®1l) is Wg-equivariant
=

m(HF(M,)) ~ n(HE(Mz)) as representations of C*

2 case K, real (local) field
i.e. v=20: K, —C

M, = My, w(HE(My)) = w(Hg (Ms))

Fy : M, = Mz involution (automorphism)

8



Wk = C*uUjC*, Wk = normalizer of C* in H*

H=C®Cj quaternion division algebra

Rules j°=-1, juj '=a, VYueC

w=ujceWg, uweC* ec{01}

(HE (M), uj)§ = PTuPuFc(€) |, € € HPI(M,)

3

m(HE (M), 5)? = n(Hg (My), —1)

m(H™),j)m(H™, u) = «(H™, u)m(H™, j)



Trace formulas for the action of Wy,

(with A. Connes & M. Marcolli)

Theorem 1 K,=C, Re(z)="2Ft (critical line)

CBzzmT'H—I—is, seR, ueC*

/ T H™(M, ) C d
/ T(ﬂ-( ( ) ’U,)|’U/|C dxu — —2d—%|og L(C(ny'?:)
S

WKv:(CX |1 o U|(C

Theorem 2 K,=R, Re(z)= 2 (critical line)

z:mT'H—I—z's, seR, weWg,

/’ Tr(n(H™(M,),w))|w|;

d
d*w = —2—Slog Lr(M,, 2)
Wi, 11— wig ds

lwlg = |wlw,,, |1 —w|g= reduced norm in H
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Proof of Theorem 1 follows from

Lemma 1 K,=C, R, z=2+4is seR

/ z d
/ U = 2% 109 Mk (2)
K |1 —ul ds

/
/ --- = principal value on K of the distribution
[ul on K;
1—ul

—24%10g Mg (3 +is) = —(F(3 +is) + (% — is)) =
2log(2m) — (F(5 +is) + (5 —1is)), Ky =C
log(m) — 5(F(z +i9) + F(G —i3)), Kv =R

[k (z) is a real function, i.e. Tk (2) =Tk, (2)

11



Similar formula holds for

1xlog Mg, (2 +is+12), nez 1

Main Lemma 2 K, =C, z=@—|—is, sER

m=p+q>0

I =P —4|q, |2 d
/ uPu | du = —2-310g Le(z — min(p, q))
<1 —ulc ds

The shift by min(p,q) in the argument of L¢ appears
when one considers the principal value on C* of the
distribution

uPuul

11 — ulc

. m |n| p4+q |p—¢(q
n:=p-—gq, min(p,q) = — — = —
p—q (p,q) 575 5 5

lulc ' =uu wPu?= e_i”9|u|(_:%, 0 = arg(u)

The above equality can then be written in the
following equivalent form

12



In|
2

I _—inb > tis
2 d 1
/ e g = 0 %s10gTe(t s + 7y
« ds 2

11— ulc
—24x1ogMe(d +is+ 1) =

2log(2m) — (FG+is+ 2+ E@E —is+ 2 —2r'(1))

Proof of Theorem 2, when m = p 4+ g odd (resp.
m = 2p and hPT = hP7) is proven by using the same
arguments as for Theorem 1 (resp. using duplication

formula)

Mr(2)Mr(z+ 1) =Tc(z)

When m = 2p, hPt %= hP>~ one refers instead to

Lemma 2 K,=R, zzé—l—is, seR

/ Y u = —2%510g ( Mr(2) )
R, 1+ u ds Mr(z+ 1)

13



The space on which the trace formula for K, = R

T H™(M z d
Wi, 11— w|g ds
is computed has as base B =H the quaternions

thought of as a complex manifold (right action of C)
with a left-action by the Weil group

More precisely

for a single archimedean place the space on which the
trace formula is computed is a

vector bundle FE over

B — C v complex
 |H v real

with fiber a Z-graded vector space
E=®,B"™ =@, H}(M,) & repr. of W,
- Wi — Aut(FE/B)

(wz, w PwIE) v complex
(wz, i"uPu 9F (&) Vv real

ro(w) (2, €) = {

14



H = L?(B, E("™)) Hilbert sp of L2-sections of E(™)

o : Wi, — Aut(H)

Theorem v = complex, h € S(R%) with compact

support, view h € S(Wg, ) by composition with the
module

Tr(Ramo(h)) =
" h(u)Tr (o (H™ (M)

Wi, |1 T ’LL|(C

2h(1) B log A + d*u + o(1)

as \ — oo
B,, = Betti number, Ry = PrPh

Pn = orthogonal projection onto the subspace

{¢ € L2(B,E™) : £(b) =0 Vbe B, |blc > A}

PN = FP\F~1, F = Fourier transform

15



Conjecture The above trace formula generalizes
to the semi-local case

i.e.ve S C 2Xg finite set of archimedean places of K
W = Weil group, wu+ |u| € R} module

Wk, CW, heSRL), he S(W) with compact support

Tr(Ram(h)) =
/' h(Jw|)Tr(m,(H™(M,)))
W

11— ulg,

d*w—+o0(1)

2h(1)Bmlog A+

veES
as \ — o

(Serre) B, is independent of the place v
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